
A Structural SVM Based Approach for Optimizing Partial AUC

Harikrishna Narasimhan harikrishna@csa.iisc.ernet.in

Shivani Agarwal shivani@csa.iisc.ernet.in

Department of Computer Science and Automation, Indian Institute of Science, Bangalore, India

Abstract

The area under the ROC curve (AUC) is a
widely used performance measure in machine
learning. Increasingly, however, in several
applications, ranging from ranking and bio-
metric screening to medical diagnosis, per-
formance is measured not in terms of the
full area under the ROC curve, but instead,
in terms of the partial area under the ROC
curve between two specified false positive
rates. In this paper, we develop a structural
SVM framework for directly optimizing the
partial AUC between any two false positive
rates. Our approach makes use of a cutting
plane solver along the lines of the structural
SVM based approach for optimizing the full
AUC developed by Joachims (2005). Unlike
the full AUC, where the combinatorial op-
timization problem needed to find the most
violated constraint in the cutting plane solver
can be decomposed easily to yield an effi-
cient algorithm, the corresponding optimiza-
tion problem in the case of partial AUC is
harder to decompose. One of our key techni-
cal contributions is an efficient algorithm for
solving this combinatorial optimization prob-
lem that has the same computational com-
plexity as Joachims’ algorithm for optimizing
the usual AUC. This allows us to efficiently
optimize the partial AUC in any desired false
positive range. We demonstrate the approach
on a variety of real-world tasks.

1. Introduction

The receiver operating characteristic (ROC) curve
plays an important role as an evaluation tool in ma-
chine learning. In particular, the area under the ROC

Proceedings of the 30 th International Conference on Ma-
chine Learning, Atlanta, Georgia, USA, 2013. JMLR:
W&CP volume 28. Copyright 2013 by the author(s).

Figure 1. Partial AUC in false positive range [α, β].

curve (AUC) is widely used to summarize the perfor-
mance of a scoring function in binary classification,
and is often the primary performance measure of in-
terest in bipartite ranking problems (Cortes & Mohri,
2004; Agarwal et al., 2005). In an increasing num-
ber of applications, however, the performance mea-
sure of interest is not the area under the full ROC
curve, but instead, the partial area under the ROC
curve between two specified false positive rates (FPRs)
(see Figure 1). For example, in ranking applications
where accuracy at the top is critical, one is often inter-
ested in the left-most part of the ROC curve (Rudin,
2009; Agarwal, 2011; Rakotomamonjy, 2012); this cor-
responds to maximizing partial AUC in a false positive
range of the form [0, β]. In biometric screening, where
false positives are intolerable, one is again interested in
maximizing the partial AUC in a false positive range
[0, β] for some suitably small β. In the KDD Cup 2008
challenge on breast cancer detection, performance was
measured in terms of the partial AUC in a specific
false positive range [α, β] that was deemed clinically
relevant (Rao et al., 2008).1

In this paper, we develop a general structural SVM
based method for directly optimizing the partial AUC
between any two given false positive rates α and β.
Our approach makes use of a cutting plane solver along
the lines of the structural SVM based approach for op-
timizing the full AUC developed by (Joachims, 2005).

1More specifically, the KDD Cup 2008 challenge used
the partial area under the free-response operating charac-
teristic curve, where a scaled version of usual FPR is used.

A Structural SVM Based Approach for Optimizing Partial AUC

Each iteration of the cutting plane method involves
a combinatorial search over an exponential number of
orderings of the positive vs. negative training instances
– with each ordering represented as a binary matrix –
to find the currently most violated constraint. In the
case of the AUC, this combinatorial optimization prob-
lem decomposes neatly into one in which each matrix
entry can be chosen independently (Joachims, 2005).
Unfortunately, for the partial AUC, such a straight-
forward decomposition is no longer possible since the
negative instances involved in the relevant false posi-
tive range can be different for different orderings. We
characterize the set of relevant negative instances in
the optimal ordering and formulate an equivalent opti-
mization problem with a restricted search space, which
can then be broken down into smaller tractable opti-
mization problems. For a false positive range of the
form [0, β], it turns out that following the reformula-
tion, the individual matrix entries can again be opti-
mized independently. For the general case [α, β], the
individual entries of the matrix cannot be chosen in-
dependently, but each row of the matrix can be opti-
mized separately – and efficiently. In both cases, the
optimization procedure has the same computational
complexity as in the case of Joachims’ algorithm for
optimizing the usual AUC.

Related Work. There has been much work on
developing algorithms to optimize the full AUC,
mostly in the context of ranking (Herbrich et al., 2000;
Joachims, 2002; Freund et al., 2003; Burges et al.,
2005; Joachims, 2005). There has also been interest
in the ranking literature in optimizing measures focus-
ing on the left end of the ROC curve, corresponding
to maximizing accuracy at the top of the list (Rudin,
2009); in particular, the recent Infinite Push algorithm
(Agarwal, 2011; Rakotomamonjy, 2012) can be viewed
as maximizing the partial AUC in the range [0, 1

n
],

where n is the number of negative training examples.

The partial AUC in false positive ranges of the form
[0, β] has received some attention in the bioinfor-
matics and biometrics literature (Pepe & Thompson,
2000; Dodd & Pepe, 2003; Wang & Chang, 2011;
Ricamato & Tortorella, 2011; Hsu & Hsueh, 2012);
however in most cases, the algorithms developed are
heuristic in nature. The asymmetric SVM algo-
rithm of (Wu et al., 2008), an extension of one-class
SVM that relies on a parameter tuning procedure,
also aims to maximize the partial AUC in a range
[0, β]. Some recent work on optimizing the partial
AUC in general false positive ranges of the form
[α, β] includes the boosting-based algorithms pAUC-
Boost (Komori & Eguchi, 2010) and pU -AUCBoost
(Takenouchi et al., 2012).

To our knowledge, this is the first work to develop
a principled support vector method that can directly
optimize the partial AUC in an arbitrary false positive
range [α, β].

Organization. We start with some preliminaries in
Section 2. Section 3 describes our structural SVM
based approach for optimizing the partial AUC. Sec-
tion 4 gives efficient algorithms for finding the most vi-
olated constraint for the cutting plane solver for both
the special case [0, β] and the general case [α, β]. Sec-
tion 5 gives experimental results on several real-world
tasks: ranking applications; protein-protein interac-
tion (PPI) prediction; and medical diagnosis.

2. Preliminaries

Let X be an instance space, and let D+,D− be prob-
ability distributions on X . Given a training sam-
ple S = (S+, S−) consisting of m positive instances
S+ = (x+

1 , . . . , x
+
m) ∈ Xm drawn iid according to D+

and n negative instances S− = (x−
1 , . . . , x

−
n) ∈ Xn

drawn iid according to D−, the goal is to learn a scor-
ing function f : X→R that has good performance in
terms of the partial AUC between some specified false
positive rates α and β, where 0 ≤ α < β ≤ 1, as
described in more detail below.

Partial AUC. Recall that for a scoring function
f : X→R and threshold t ∈ R, the true positive rate
(TPR) of the classifier sign(f(x)− t) is the probability
that it correctly classifies a random positive instance
from D+ as positive:2

TPRf (t) = Px+∼D+
[f(x+) > t] .

Similarly, the false positive rate (FPR) of the classi-
fier is the probability that it misclassifies a random
negative instance from D− as positive:

FPRf (t) = Px−∼D−
[f(x−) > t] ,

The ROC curve for the scoring function f is then de-
fined as the plot of TPRf (t) against FPRf (t) for dif-
ferent values of t. The area under this curve can be
computed as

AUCf =

∫ 1

0

TPRf (FPR
−1
f (u)) du ,

where FPR−1
f (u) = inf

{
t ∈ R | FPRf (t) ≤

u
}
. Assuming there are no ties, it can be shown

(Cortes & Mohri, 2004) that the AUC can be written
as

AUCf = P(x+,x−)∼D+×D−
[f(x+) > f(x−)] .

2If f has ties with non-zero probability, then one needs
to add a 1

2
Px+∼D+

[f(x+) = t] term in the definition.

A Structural SVM Based Approach for Optimizing Partial AUC

0 1
0

1

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

α βjα

n
jα−1

n

jβ+1

n

jβ

n

term2

↑

−→ term3term1 ←−

Figure 2. Empirical partial AUC between FPRs α and β.

Our interest here is in the area under the curve be-
tween FPRs α and β. The (normalized) partial AUC
of f in the range [α, β] is defined as

pAUCf (α, β) =
1

β − α

∫ β

α

TPRf (FPR
−1
f (u)) du .

Empirical Partial AUC. Given a sample S =
(S+, S−) as above, one can plot an empirical ROC
curve corresponding to a scoring function f : X→R;
assuming there are no ties, this is obtained by using

T̂PRf (t) =
1

m

m∑

i=1

1
(
f(x+

i) > t
)

F̂PRf (t) =
1

n

n∑

j=1

1
(
f(x−

j) > t
)

instead of TPRf (t) and FPRf (t). Again assuming
there are no ties, the area under this empirical curve
is given by

ÂUCf =
1

mn

m∑

i=1

n∑

j=1

1
(
f(x+

i) > f(x−
j)

)
.

The (normalized) empirical partial AUC of f in
the FPR range [α, β] can then be written as
(Dodd & Pepe, 2003)3

p̂AUCf (α, β) =

1

mn(β − α)

m∑

i=1

[(
jα − nα

)
· 1

(
f(x+

i) > f(x−
(jα))

)

+

jβ∑

j=jα+1

1
(
f(x+

i) > f(x−
(j))

)

+
(
nβ − jβ

)
· 1

(
f(x+

i) > f(x−
(jβ+1))

)]
,

3Dodd & Pepe (2003) used only the sum over jα +1 to
jβ ; we give a more complete definition here.

Table 1. Scores assigned by two scoring functions f1 and f2
to a sample containing 4 positive instances and 5 negative
instances.

x+
1 x+

2 x+
3 x+

4 x−
1 x−

2 x−
3 x−

4 x−
5

f1 9.1 6.8 6.1 5.7 8.5 8.1 4.2 3.6 2.3

f2 9.9 8.7 3.3 2.1 7.6 5.3 4.9 4.4 0.8

0 1/5 2/5 3/5 4/5 1
0

0.25

0.5

0.75

1

T
ru

e
P

os
iti

ve
 R

at
e

False Positive Rate

f
1

f
20.20.1

Figure 3. ROC curves for scoring functions f1, f2 from Ta-
ble 1.

where jα = ⌈nα⌉, jβ = ⌊nβ⌋, and x−
(j) denotes the

negative instance in S− ranked in j-th position (among
negatives, in descending order of scores) by f (see Fig-
ure 2 for a visual explanation of the three terms in the
sum). Note that we have assumed n ≥ 1

β−α
, so that

jα ≤ jβ .
4

Partial AUC vs. AUC. Before closing this section,
we note that a scoring function with a high AUC value
need not be optimal in terms of partial AUC in a par-
ticular FPR range. This is illustrated in Table 1 and
Figure 3, which show scores assigned by two scoring
functions f1 and f2 on a hypothetical sample of 4 pos-
itive and 6 negative instances, and the corresponding
ROC curves. As can be seen, while f1 gives a higher
AUC value, f2 has higher partial AUC in the FPR
range [0.1, 0.2]. This motivates the need to design al-
gorithms tailored for optimizing partial AUC.

3. Structural SVM Approach for

Optimizing Partial AUC

Given a training sample S = (S+, S−) ∈ Xm × Xn,
our goal is to find a scoring function f : X → R that
maximizes the partial AUC in an FPR range [α, β],
or equivalently, that minimizes the following empirical
risk:

R̂pAUC(α,β)(f) = 1− p̂AUCf (α, β) . (1)

We now cast this problem into a structural SVM
framework (Tsochantaridis et al., 2005). In the follow-
ing, we shall assumeX ⊆ Rd for some d ∈ Z+ and con-

4If n < 1
β−α

, the empirical partial AUC in the FPR

range [α, β] becomes 1
mn(β−α)

∑m

i=1 n(β − α) · 1
(

f(x+
i) >

f(x−
(jα))

)

.

A Structural SVM Based Approach for Optimizing Partial AUC

sider linear scoring functions of the form f(x) = w⊤x
for some w ∈ Rd; the approach extends to non-linear
functions / non-Euclidean instance spaces using ker-
nels (Yu & Joachims, 2008).

For any ordering of the training instances, we can rep-
resent (errors in) the relative ordering of them positive
instances in S+ and n negative instances in S− via a
matrix π = [πij] ∈ {0, 1}m×n as follows:

πij =

{
1 if x+

i is ranked below x−
j

0 if x+
i is ranked above x−

j .

Not all 2mn matrices in {0, 1}m×n represent a valid rel-
ative ordering (due to transitivity requirements). We
let Πm,n denote the set of all matrices in {0, 1}m×n

that do correspond to valid orderings. Clearly, the
correct relative ordering π∗ has π∗

ij = 0 ∀i, j. For any
π ∈ Πm,n, we can define the partial AUC loss of π
with respect to π∗ as

∆pAUC(α,β)(π
∗, π) =

1

mn(β − α)

m∑

i=1

[(
jα − nα

)
· πi,(jα)π

+

jβ∑

j=jα+1

πi,(j)π +
(
nβ − jβ

)
· πi,(jβ+1)π

]
, (2)

where (j)π denotes the index of the negative instance
in S− ranked in j-th position (among negatives) by
any fixed ordering consistent with the matrix π (note
that all such orderings yield the same value of partial
AUC loss).

Building on the approach of (Joachims, 2005), we de-
fine a joint feature map φ : (Xm × Xn) × Πm,n→Rd

as

φ(S, π) =
1

mn(β − α)

m∑

i=1

n∑

j=1

(1− πij)(x
+
i − x−

j) .

The above expression evaluates to a (normalized) sum
of feature vector differences over all pairs of positive-
negative instances in S in which the positive instance is
ordered by π above the negative instance.5 This choice
of φ(S, π) ensures that for any fixed w ∈ Rd, maximiz-
ing w⊤φ(S, π) over π ∈ Πm,n yields an ordering matrix

5Note that while the definition of partial AUC loss in
Eq. (2) involves only a subset of the negative instances in
S− corresponding to the FPR interval [α, β], the definition
of the feature map φ(S, π) includes all negative instances in
S−. This ‘mismatch’ between the loss and feature vector is
necessary and is handled in the argmax operation in OP2;
while one could imagine defining φ(S, π) by summing over
only the negative instances that fall in the range [α, β] using
a ranking consistent with π, this would not yield a unique
feature vector since such a ranking is not unique.

consistent with the scoring function f(x) = w⊤x. The
problem of optimizing the partial AUC now reduces
to finding a w ∈ Rd for which the maximizer over
π ∈ Πm,n of w⊤φ(S, π) has the highest partial AUC
(or minimum partial AUC loss). This can be framed
as the following convex optimization problem:

min
w,ξ≥0

1

2
||w||2 + Cξ

s.t. ∀π ∈ Πm,n :

w⊤
(
φ(S, π∗)− φ(S, π)

)
≥ ∆pAUC(α,β)(π

∗, π)− ξ ,

which in turn can be written as

min
w,ξ≥0

1

2
||w||2 + Cξ (OP1)

s.t. ∀π ∈ Πm,n :

1

mn(β − α)

m∑

i=1

n∑

j=1

πij w
⊤(x+

i − x−
j) ≥

∆pAUC(α,β)(π
∗, π)− ξ ,

where C > 0 is an appropriate regularization param-
eter. It can be shown that the slack variable ξ in
the above optimization problem evaluates to an upper
bound on the empirical partial AUC risk in Eq. (1) (de-
tails will be provided in a longer version of the paper).
For α = 0 and β = 1, the above optimization problem
reduces to that associated with the full AUC consid-
ered in (Joachims, 2005). As we shall see, solving the
above optimization problem for the partial AUC turns
out to be more tricky.

The optimization problem OP1 has an exponential
number of constraints, one for each matrix π ∈ Πm,n.
To solve this problem, we use the cutting plane
method, which is based on the fact that for any ǫ > 0,
a small subset of the constraints is sufficient to find
an ǫ-approximate solution to the problem (Joachims,
2006). In particular, the cutting plane method starts
with an empty constraint set C = ∅, and on each iter-
ation, adds the most violated constraint to C, thereby
solving a tighter relaxation of OP1 in the subsequent
iteration; this continues until no constraint is violated
by more than ǫ (see supplementary material for an
outline of this algorithm).

It can be shown that for any fixed regularization pa-
rameter C > 0 and accuracy parameter ǫ > 0, the cut-
ting plane method converges in a constant number of
iterations (Joachims, 2006). Since the quadratic pro-
gram in each iteration of this algorithm is of constant
size, the only bottleneck in the algorithm is the com-
binatorial optimization over Πm,n required to find the
most violated constraint. In the following, we show
how this combinatorial optimization can be performed

A Structural SVM Based Approach for Optimizing Partial AUC

efficiently for the partial AUC, yielding an overall time
complexity that is polynomial in the size of the train-
ing sample, and moreover, that matches the computa-
tional complexity for the full AUC.

4. Efficient Algorithms for Finding the

Most Violated Constraint

As noted above, obtaining a polynomial-time cutting
plane method for optimizing the partial AUC in the
structural SVM setting of OP1 hinges on having a
polynomial-time algorithm for the combinatorial opti-
mization problem (over Πm,n) associated with finding
the most violated constraint on each iteration, which
can be stated explicitly as follows:

π̄ = argmax
π∈Πm,n

Qw(π) , (OP2)

where

Qw(π) = ∆pAUC(α,β)(π
∗, π)

−
1

mn(β − α)

m∑

i=1

n∑

j=1

πij w
⊤(x+

i − x−
j) .

(3)

In the case of AUC, the above argmax (over an expo-
nential number of matrices) can be easily computed by
neatly decomposing the problem into one where each
πij can be chosen independently (Joachims, 2005). For
the case of partial AUC in an arbitrary FPR inter-
val [α, β], it is not obvious how such a decomposition
is possible as the loss term in the objective Qw(π)
now involves different subsets of negative instances
for different orderings π ∈ Πm,n. However it turns
out that by working with a restricted search space of
orderings in Πm,n, one can indeed break down OP2
into smaller maximization problems over (groups of)
πij ’s, and that the resulting maximization problems
can then be solved with the same computational cost
as that required for the usual AUC. To proceed, for
any w ∈ Rd, let us define the set

Πw
m,n =

{
π ∈ Πm,n

∣∣ ∀i, j1 < j2 : πi,(j1)w ≥ πi,(j2)w

}
.

This is the set of all ordering matrices π in which any
two negative instances that are separated by a positive
instance are sorted according to w (i.e. in descending
order of the scores w⊤x−

j). Then we have the following
result (see supplementary material for a proof):

Theorem 1. The solution π̄ to OP2 lies in Πw
m,n.

6

6We note that a similar observation was made for
the optimizer associated with the mean average precision
(MAP) objective in (Yue et al., 2007).

This allows us to restrict the search space to Πw
m,n and

rewrite OP2 as follows:

π̄ = argmax
π∈Πw

m,n

Qw(π) . (OP3)

Now note that for any π ∈ Πm,n, any ordering of
the instances that is consistent with π yields the same
value of Qw(π). In particular, for any π ∈ Πw

m,n, there
is an ordering consistent with π in which all negative
instances are sorted according to w (this follows from
the definition of Πw

m,n). This gives

Qw(π) = Q̃w(π) ∀π ∈ Πw
m,n ,

where

Q̃w(π) =
m∑

i=1

[
−

jα−1∑

j=1

πi,(j)w w⊤x±
i,(j)w

+ πi,(jα)w

(
(jα − nα)− w⊤x±

i,(jα)w

)

+

jβ∑

j=jα+1

πi,(j)w

(
1− w⊤x±

i,(j)w

)

+ πi,(jβ+1)w

(
(nβ − jβ)− w⊤x±

i,(jβ+1)w

)

−
n∑

j=jβ+2

πi,(j)w w⊤x±
i,(j)w

]
, (4)

where (j)w refers to the index of the negative instance
in S− ranked in j-th position by w, and where we
have used the shorthand notation x±

ij = (x+
i − x−

j).
This allows us to rewrite OP3 as follows:

π̄ = argmax
π∈Πw

m,n

Q̃w(π) . (OP4)

This optimization problem is now easier to solve as the
set of negative instances over which the loss term in
the objective is computed is the same for all orderings
in the search space. Below we give efficient algorithms
for solving this problem both for the special case when
the FPR range of interest is of the form [0, β], and for
the general case [α, β].

4.1. Efficient Algorithm for Special Case [0, β]

For α = 0, we have jα = ⌈nα⌉ = 0. In this case, Q̃w(π)
reduces to the following:

Q̃w(π) =
m∑

i=1

[jβ∑

j=1

πi,(j)w

(
1− w⊤x±

i,(j)w

)

+ πi,(jβ+1)w

(
(nβ − jβ)− w⊤x±

i,(jβ+1)w

)

−
n∑

j=jβ+2

πi,(j)w w⊤x±
i,(j)w

]
. (5)

A Structural SVM Based Approach for Optimizing Partial AUC

We consider solving a relaxation of OP4 in which the
above objective is optimized over all π ∈ {0, 1}m×n:

π̄ = argmax
π∈{0,1}m×n

Q̃w(π) . (OP5)

As can be seen from Eq. (5), the objective Q̃w(π) de-
composes into a sum of terms involving the individ-
ual elements πi,j , and therefore the solution to OP5

is obtained by maximizing Q̃w(π) over each element
πi,j ∈ {0, 1} separately, which clearly yields:

π̄i,(j)w =

1(w⊤x±
i,(j)w

≤ 1) if j ∈ {1, . . . , jβ}

1(w⊤x±
i,(j)w

≤ nβ − jβ) if j = jβ + 1

1(w⊤x±
i,(j)w

≤ 0) otherwise.

(6)

The following result shows that this solution to the re-
laxed problem OP5 actually lies in Πw

m,n, and therefore
this is also a solution to the desired problem OP4:

Theorem 2. The ordering matrix π̄ defined by Eq. (6)
lies in Πw

m,n.

Proof. (sketch) Let i ∈ [m] and j1 < j2. There are
5 possibilities: (1) j1, j2 ∈ {1, . . . , jβ}; (2) j1, j2 ∈
{jβ + 2, . . . , n}; (3) j1 ∈ {1, . . . , jβ} and j2 = jβ + 1;
(4) j1 = jβ + 1 and j2 ∈ {jβ + 2, . . . , n}; and (5)
j1 ∈ {1, . . . , jβ} and j2 ∈ {jβ + 2, . . . , n}. In each
case, it can be verified from Eq. (6) that π̄i,(j1)w ≥
π̄i,(j2)w (in each case, taking π̄i,(j1)w < π̄i,(j2)w gives

w⊤x−
(j1)w

< w⊤x−
(j2)w

, a contradiction).

A straightforward implementation to compute the
solution in Eq. (6) has computational complexity
O(mn + n logn). Using a more compact representa-
tion of the orderings, this can be further reduced to
O((m + n) log(m + n)) (Joachims, 2005) (details will
be provided in a longer version of the paper).

4.2. Efficient Algorithm for General Case [α, β]

In the general case, where we allow FPR intervals of
the form [α, β] for α > 0, it is no longer sufficient to
solve a relaxation of OP4 over all π ∈ {0, 1}m×n as the
resulting solution no longer lies in Πw

m,n. Therefore the
individual πij ’s can no longer be chosen independently.
However, it turns out that each row of the matrix,
πi ∈ {0, 1}n, can still be considered separately, and
moreover, that the optimization over each πi can be
done efficiently. In particular, note that for each i, the
i-th row of π̄ essentially corresponds to an interleaving
of the lone positive instance x+

i with the list of negative
instances sorted according to w⊤x−

j ; thus each π̄i is of
the form

π̄i,(j)w =

{
1 if j ∈ {1, . . . , ri}

0 if j ∈ {ri + 1, . . . , n}
(7)

Algorithm 1 Find Most-Violated Constraint

1: Inputs: S = (S+, S−), α, β, w
2: For i = 1, . . . ,m do
3: Optimize over ri ∈ {0, . . . , jα − 1}:

π
(1)
i,(j)w

=

{

1(w⊤x±
i,(j)w

≤ 0) , j ∈ {1, . . . , jα − 1}

0 , j ∈ {jα, . . . , n}

4: Optimize over ri ∈ {jα}:

π
(2)

i,(j)w
=

{

1 , j ∈ {1, . . . , jα}

0 , j ∈ {jα + 1, . . . , n}

5: Optimize over ri ∈ {jα + 1, . . . , n}:

π
(3)
i,(j)w

=

1 , j ∈ {1, . . . , jα + 1}

1(w⊤x±
i,(j)w

≤ 1) , j ∈ {jα + 2, . . . , jβ}

1(w⊤x±
i,(j)w

≤ nβ − jβ) , j = jβ + 1

1(w⊤x±
i,(j)w

≤ 0) , j ∈ {jβ + 2, . . . , n}

6: k̄ = argmax
k∈{1,2,3}

{

term inside sum over i in
Eq. (4) evaluated at π

(k)
i

}

7: π̄i = π
(k̄)
i

8: End For
9: Output: π̄

for some ri ∈ {0, 1, . . . , n}. In other words, the opti-
mization over πi ∈ {0, 1}n reduces to an optimization
over ri ∈ {0, 1, . . . , n}, or equivalently, an optimization
over πi ∈ Rw

i , where

Rw
i =

{
πi ∈ {0, 1}n

∣∣ ∀j1 < j2 : πi,(j1)w ≥ πi,(j2)w

}

with |Rw
i | = n + 1. Clearly, we have Πw

m,n = Rw
1 ×

. . .×Rw
m, and therefore we can rewrite OP4 as

π̄ = argmax
π∈Rw

1
×...×Rw

m

Q̃w(π) . (OP6)

Since the objective Q̃w(π) (as given by Eq. (4)) de-
composes into a sum of terms involving the individ-
ual rows πi, OP6 can be solved by maximizing Q̃w(π)
over each row πi ∈ Rw

i separately. In a straightfor-
ward implementation of this optimization, for each
i ∈ {1, . . . ,m}, one would evaluate the term inside
the sum over i in Eq. (4) for each of the n+ 1 values
of ri (corresponding to the n + 1 choices of πi ∈ Rw

i ;
see Eq. (7)) and select the optimal among these; each
such evaluation takes O(n) time, yielding an overall
time complexity of O(mn2). It turns out, however,
that one can partition the n + 1 values of ri into 3
groups, {0, . . . , jα−1}, {jα}, and {jα+1, . . . , n}, such
that the optimization over ri in each of these 3 groups
(after the negative instances have been sorted accord-
ing to w) can be implemented in O(n) time; this yields
an overall time complexity of O(mn + n logn). A de-
scription is given in Algorithm 1. Again, using a more
compact representation of the orderings, it is possible
to further reduce the computational complexity of Al-
gorithm 1 to O((m+ n) log(m+ n)) (Joachims, 2005)
(details will be provided in an extended version).

A Structural SVM Based Approach for Optimizing Partial AUC

Thus, for both [0, β] and [α, β] cases, it is possible to
find the most violated constraint for the partial AUC
in the same time as that required for the usual AUC.

5. Experiments

This section contains an experimental evaluation of
our structural SVM based method for optimizing par-
tial AUC, which we refer to as SVMpAUC, on several
real-world tasks: ranking applications; protein-protein
interaction (PPI) prediction; and medical diagnosis.7,8

All experiments involve learning a linear function.

5.1. Partial AUC in [0, β] for Ranking
Applications

As noted in the introduction, several ranking applica-
tions require optimizing performance at the top of the
list, which corresponds to optimizing partial AUC in
an FPR range of the form [0, β]. We consider two such
applications here.

Cheminformatics. Here one is given examples of
chemical compounds that are active or inactive against
a therapeutic target, and the goal is to rank new com-
pounds such that active ones appear at the top of
the list. We used a virtual screening data set from
(Jorissen & Gilson, 2005); this contains 2142 com-
pounds, each represented as a 1021-bit vector using
the FP2 molecular fingerprint representation as in
(Agarwal et al., 2010). There are 5 sets of 50 active
compounds each (active against 5 different targets),
and 1892 inactive compounds. For each target, the
50 active compounds are treated as positive, and all
others as negative. We considered optimizing the par-
tial AUC in the FPR range [0, 0.1]. The results, av-
eraged over the 5 targets and 10 random 10%-90%
train-test splits for each target (subject to preserving
the proportion of positives) are shown in Table 2.9

For comparison, we also show results obtained using
the SVMAUC algorithm of (Joachims, 2005), as well as
three existing algorithms for optimizing partial AUC:
asymmetric SVM (ASVM) (Wu et al., 2008), pAUC-
Boost (Komori & Eguchi, 2010), and a greedy heuris-
tic method due to (Ricamato & Tortorella, 2011).

7Code for SVMpAUC (implemented using APIs
from (Joachims, 2008) and (Vedaldi, 2008)) is avail-
able at http://clweb.csa.iisc.ernet.in/harikrishna/
Papers/SVMpAUC/.

8See supplementary material for details of parameter
tuning and data preprocessing.

9In all our evaluations, we used a slightly modified def-
inition of partial AUC that allows for ties. A star against a
baseline method in the table indicates a statistically signif-
icant difference between SVMpAUC and the method (using
the two-sided Wilcoxon test) at a 95% confidence level.

Table 2. Results on cheminformatics data set.

pAUC(0, 0.1)

SVMpAUC[0,0.1] 65.25

SVMAUC 62.64 *
ASVM[0,0.1] 63.80
pAUCBoost[0,0.1] 43.89 *
Greedy-Heuristic[0,0.1] 8.33 *

Information retrieval (IR). Another ranking ap-
plication where accuracy at the top is important is
IR. Here one is given a certain number of training
queries together with documents labeled as relevant
for the query (positive) or irrelevant (negative), and
the goal is to rank documents for new queries. We
evaluated our algorithm on two widely used IR data
sets: TD2004, which is part of the LETOR 2.0 collec-
tion (Liu et al., 2007) (75 queries; total of 444 positive
documents and 73726 negative documents); and the
TREC10 data set (50 queries, 2892 positive documents
and 203507 negative documents) used in (Yue et al.,
2007). In TD2004, each document is represented us-
ing 44 features, while those in TREC10 are represented
using 750 features. For each data set, we used random
splits containing 60% of the queries for training, 20%
for validation and the remaining for testing (subject
to preserving the proportion of positives). The results,
averaged over 10 such random splits, are shown in Ta-
ble 3. In this case, the existing algorithms for optimiz-
ing partial AUC do not apply easily as they are not
designed to handle queries; we include a comparison
with SVMAUC as a baseline. Since in IR it is common
to focus on just a small number of documents at the
top, we show performance in terms of a range of par-
tial AUC values that capture this, as well as the AUC.
As can be seen, optimizing partial AUC tends to give
higher accuracy close to the very top of the list; where
SVMAUC has similar performance, the difference is not
statistically significant.

5.2. Partial AUC in [0, β] for PPI Prediction

In protein-protein interaction (PPI) prediction, given
a pair of proteins, the task is to predict whether they
interact or not; here again the partial AUC has been
used as an evaluation measure (Qi et al., 2006). We
used the PPI data for Yeast from (Qi et al., 2006),
which contains 2865 protein pairs known to be inter-
acting (positive) and a random set of 237384 protein
pairs assumed to be non-interacting (negative). Each
protein pair is represented by 162 features, but there
are several missing features; we used a subset of 85
features that contained less than 25% missing values
(with missing feature values replaced by mean/mode
values). The results, averaged over 10 random 1%-9%-
90% train-validation-test splits (subject to preserving

http://clweb.csa.iisc.ernet.in/harikrishna/Papers/SVMpAUC/
http://clweb.csa.iisc.ernet.in/harikrishna/Papers/SVMpAUC/

A Structural SVM Based Approach for Optimizing Partial AUC

Table 3. Results on information retrieval data sets (here ntest = number of negative test examples).

pAUC(0, 1
ntest

) pAUC(0, 5
ntest

) pAUC(0, 0.1) pAUC(0, 1) = AUC

TD2004
SVMpAUC[0,0.1] 16.74 30.19 70.51 93.95
SVMAUC 13.62 * 23.39 * 67.60 93.38

TREC10
SVMpAUC[0,0.1] 4.58 7.47 49.07 89.23
SVMAUC 3.85 * 7.16 50.69 89.51

Table 4. Results on PPI data set.

pAUC(0, 0.1)

SVMpAUC[0,0.1] 51.79

SVMAUC 39.72 *
ASVM[0,0.1] 44.51 *
pAUCBoost[0,0.1] 48.65 *
Greedy-Heuristic[0,0.1] 47.33 *

the proportion of positives), are shown in Table 4.
Here SVMpAUC significantly outperforms all the four
baseline algorithms.

5.3. Partial AUC in [α, β] for Medical
Diagnosis

Our final evaluation is on the KDD Cup 2008 challenge
on early breast cancer detection (Rao et al., 2008).
Here the task is to predict whether a given region of
interest (ROI) from a breast X-ray image is malignant
(positive) or benign (negative). The data set is col-
lected from 118 malignant patients and 1594 normal
patients. Four X-ray images are available for each pa-
tient; overall, there are 102294 candidate ROIs selected
from these X-ray images, with each ROI represented
by 117 features. In the KDD Cup challenge, perfor-
mance was evaluated in terms of the partial area un-
der the free-response operating characteristic (FROC)
curve in a false positive range [0.2, 0.3] deemed clini-
cally relevant based on radiologist surveys. The FROC
curve (Miller, 1969) effectively uses a scaled version
of the false positive rate; for our purposes, the corre-
sponding false positive rate is obtained by re-scaling
by a factor of s = 6848/101671 (this is the total num-
ber of images divided by the total number of nega-
tive ROIs). Thus, the goal in our experiments was to
maximize the partial AUC in the clinically relevant
FPR range [0.2s, 0.3s]. The results, averaged over
10 random 5%-95% train-test splits (subject to pre-
serving the proportion of positives) are shown in Ta-
ble 5. Baselines here include SVMAUC, pAUCBoost
which can optimize partial AUC over FPR ranges
[α, β], and an extension of the greedy heuristic method
in (Ricamato & Tortorella, 2011) to handle arbitrary
FPR ranges.

5.4. Run Time Analysis

Finally, we analyzed the training time of the proposed
SVMpAUC method for different FPR intervals. We

Table 5. Results on KDD Cup 08 data set.

pAUC(0.2s, 0.3s)

SVMpAUC[0.2s, 0.3s] 51.44

SVMAUC 50.50
pAUCBoost[0.2s, 0.3s] 48.06 *
Greedy-Heuristic[0.2s, 0.3s] 46.99 *

used the TREC10 data set for these experiments, fo-
cusing on FPR intervals of the form [0, β] for different
values of β. Figure 4 shows (a) the average CPU time
taken by the routine for finding the most violated con-
straint (MVC) for different values of β, and (b) the
average number of calls to this routine. As can be
seen, the average time taken to find the most violated
constraint is similar for all values of β, demonstrating
as shown in Section 4 that the time complexity of this
procedure for partial AUC is the same as that for full
AUC (β = 1); on the other hand, the average number
of calls to this procedure increases as β decreases, i.e.
as the FPR interval becomes smaller.

1 0.5 0.1 0.05 0.01
0

0.005

0.01

0.015

0.02

β

A
vg

. C
P

U
 T

im
e

to
 F

in
d

M
V

C
 (

s)

(a)

1 0.5 0.1 0.05 0.01
0

1000

2000

3000

4000

5000

β

A
vg

. N
o.

 o
f C

al
ls

 to
 F

in
dM

V
C

(b)

Figure 4. Timing statistics for SVMpAUC[0, β] on TREC10
data set.

6. Conclusion

The partial AUC is increasingly used as a perfor-
mance measure in several machine learning applica-
tions. We have developed a structural SVM based
method, termed SVMpAUC, for optimizing the par-
tial AUC between any two given false positive rates
with similar computational complexity as that re-
quired for optimizing the usual AUC. Our empirical
evaluations on several real-world tasks indicate the
proposed method indeed optimizes partial AUC in the
desired false positive range, performing comparable to
or better than existing baseline techniques.

Acknowledgments. Thanks to the anonymous re-
viewers for helpful comments. HN thanks Microsoft
Research India for a partial travel grant to attend the
conference. This work is supported in part by a Ra-
manujan Fellowship from DST to SA.

A Structural SVM Based Approach for Optimizing Partial AUC

References

Agarwal, S. The Infinite Push: A new support vector
ranking algorithm that directly optimizes accuracy at
the absolute top of the list. In Proceedings of the SIAM
International Conference on Data Mining, 2011.

Agarwal, S., Graepel, T., Herbrich, R., Har-Peled, S., and
Roth, D. Generalization bounds for the area under the
ROC curve. Journal of Machine Learning Research, 6:
393–425, 2005.

Agarwal, S., Dugar, D., and Sengupta, S. Ranking chemi-
cal structures for drug discovery: A new machine learn-
ing approach. Journal of Chemical Information and
Modeling, 50(5):716–731, 2010.

Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds,
M., Hamilton, N., and Hullender, G. Learning to rank
using gradient descent. In Proceedings of the 22nd In-
ternational Conference on Machine Learning, 2005.

Cortes, C. and Mohri, M. AUC optimization vs. error rate
minimization. In Advances in Neural Information Pro-
cessing Systems 16. MIT Press, 2004.

Dodd, L. E. and Pepe, M. S. Partial AUC estimation and
regression. Biometrics, 59(3):614–623, 2003.

Freund, Y., Iyer, R., Schapire, R. E., and Singer, Y. An
efficient boosting algorithm for combining preferences.
Journal of Machine Learning Research, 4:933–969, 2003.

Herbrich, R., Graepel, T., and Obermayer, K. Large mar-
gin rank boundaries for ordinal regression. In Smola, A.,
Bartlett, P., Schoelkopf, B., and Schuurmans, D. (eds.),
Advances in Large Margin Classifiers, pp. 115–132. MIT
Press, 2000.

Hsu, M.-J. and Hsueh, H.-M. The linear combinations of
biomarkers which maximize the partial area under the
ROC curve. Computational Statistics, pp. 1–20, 2012.

Joachims, T. Optimizing search engines using clickthrough
data. In Proceedings of the 8th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data
Mining, 2002.

Joachims, T. A support vector method for multivariate
performance measures. In Proceedings of the 22nd In-
ternational Conference on Machine Learning, 2005.

Joachims, T. Training linear SVMs in linear time. In Pro-
ceedings of the 12th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, 2006.

Joachims, T. SVMstruct support vector machine for com-
plex outputs, 2008. URL http://svmlight.joachims.
org/svm_struct.html.

Jorissen, R. N. and Gilson, M. K. Virtual screening of
molecular databases using a support vector machine.
Journal of Chemical Information and Modeling, 45:549–
561, 2005.

Komori, O. and Eguchi, S. A boosting method for max-
imizing the partial area under the ROC curve. BMC
Bioinformatics, 11:314, 2010.

Liu, T-Y., Xu, J., Qin, T., Xiong, W., and Li, H. Letor:
benchmark dataset for research on learning to rank for
information retrieval. In Proceedings of SIGIR 2007
Workshop on Learning to Rank for Information Re-
trieval, 2007.

Miller, H. The FROC curve: A representation of the ob-
server’s performance for the method of free response.
Journal of the Acoustical Society of America, 46(6B):
1473–1476, 1969.

Pepe, M. S. and Thompson, M. L. Combining diagnostic
test results to increase accuracy. Biostatistics, 1(2):123–
140, 2000.

Qi, Y., Bar-joseph, Z., and Klein-seetharaman, J. Evalua-
tion of different biological data and computational clas-
sification methods for use in protein interaction predic-
tion. Proteins, 63:490–500, 2006.

Rakotomamonjy, A. Sparse support vector infinite push.
In Proceedings of the 29th International Conference on
Machine Learning, 2012.

Rao, R. B., Yakhnenko, O., and Krishnapuram, B. KDD
Cup 2008 and the workshop on mining medical data.
SIGKDD Explorations Newsletter, 10(2):34–38, 2008.

Ricamato, M. T. and Tortorella, F. Partial AUCmaximiza-
tion in a linear combination of dichotomizers. Pattern
Recognition, 44(10-11):2669–2677, 2011.

Rudin, C. The p-norm push: A simple convex ranking al-
gorithm that concentrates at the top of the list. Journal
of Machine Learning Research, 10:2233–2271, 2009.

Takenouchi, T., Komori, O., and Eguchi, S. An exten-
sion of the receiver operating characteristic curve and
AUC-optimal classification. Neural Computation, 24
(10):2789–2824, 2012.

Tsochantaridis, I., Joachims, T., Hofmann, T., and Altun,
Y. Large margin methods for structured and interde-
pendent output variables. Journal of Machine Learning
Research, 6:1453–1484, 2005.

Vedaldi, A. A matlab wrapper of SVMstruct,
2008. URL http://www.vlfeat.org/~vedaldi/code/
svm-struct-matlab.html.

Wang, Z. and Chang, Y.-C.I. Marker selection via maxi-
mizing the partial area under the ROC curve of linear
risk scores. Biostatistics, 12(2):369–385, 2011.

Wu, S.-H., Lin, K.-P., Chen, C.-M., and Chen, M.-S.
Asymmetric support vector machines: low false-positive
learning under the user tolerance. In Proceedings of
the 14th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2008.

Yu, C. J. and Joachims, T. Training structural svms with
kernels using sampled cuts. In Proceedings of the 14th
ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 794–802, 2008.

Yue, Y., Finley, T., Radlinski, F., and Joachims, T. A
support vector method for optimizing average precision.
In Proceedings of the 30th ACM SIGIR International
Conference on Research and Development in Informa-
tion Retrieval, 2007.

http://svmlight.joachims.org/svm_struct.html
http://svmlight.joachims.org/svm_struct.html
http://www.vlfeat.org/~vedaldi/code/svm-struct-matlab.html
http://www.vlfeat.org/~vedaldi/code/svm-struct-matlab.html

