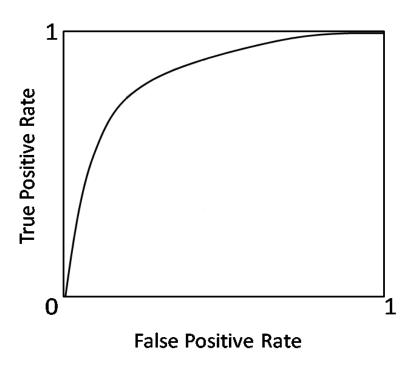
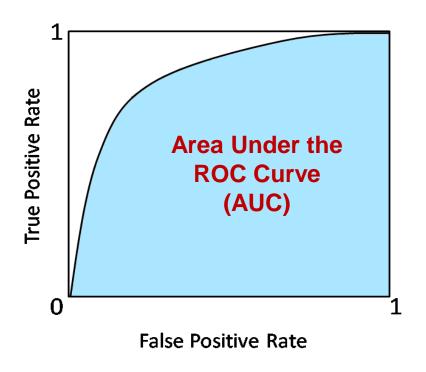
A Structural SVM Based Approach for Optimizing the Partial AUC

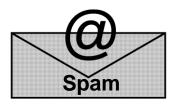
Harikrishna Narasimhan and Shivani Agarwal

Department of Computer Science and Automation Indian Institute of Science, Bangalore

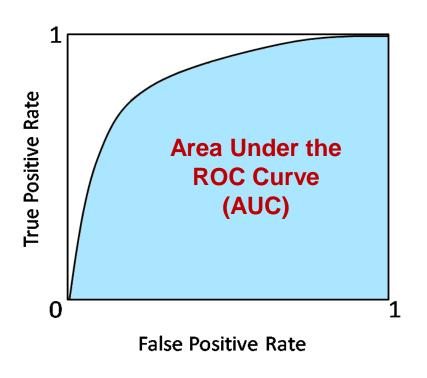




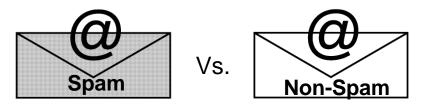
Binary Classification



Vs.

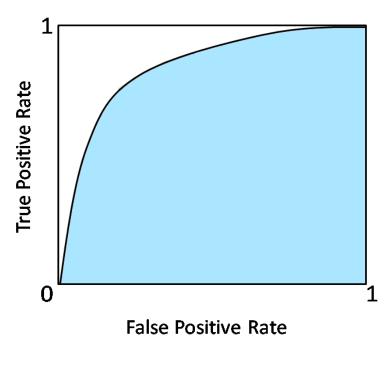


Binary Classification



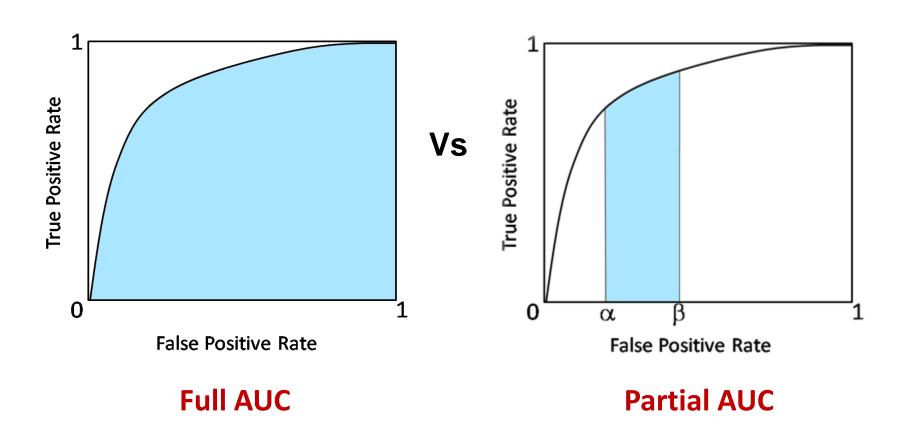
Bipartite Ranking

Partial AUC?



Full AUC

Partial AUC?



Ranking

learning to rank

Q,

Search

About 216,000,000 results (0.23 seconds)

Web

Maps

Videos

News

More

<u>Learning to rank</u> - Wikipedia, the free encyclopedia en.wikipedia.org/wiki/Learning to rank

Images Learning to rank or machine-learned

Learning to rank or machine-learned ranking (MLR) is a type of supervised or semisupervised machine learning problem in which the goal is to automatically ...

Applications - Feature vectors - Evaluation measures - Approaches

Yahoo! Learning to Rank Challenge

learningtorankchallenge.yahoo.com/ - United States

Learning to Rank Challenge is closed! Close competition, innovative ideas, and fierce determination were some of the highlights of the first ever Yahoo!

Bangalore, Karnataka

Change location

The web

Pages from India

More search tools

[PDF] Learning to Rank for Information Retrieval This Tutorial

www2009.org/.../T7A-LEARNING%20TO%20RANK%20TUTORIA...

File Format: PDF/Adobe Acrobat - Quick View

12 Apr 2009 – Learning to Rank for Information Retrieval. Tie-Yan Liu. Microsoft Research Asia. A tutorial at WWW 2009. This Tutorial. • Learning to rank for ...

LETOR: A Benchmark Collection for Research on Learning to Rank ...

research.microsoft.com/~letor/

This website is designed to facilitate research in **LEarning TO Rank** (LETOR). Much information about **learning to rank** can be found in the website, including ...

[PDF] Large Scale Learning to Rank

www.eecs.tufts.edu/~dsculley/papers/large-scale-rank.pdf

File Format: PDF/Adobe Acrobat - Quick View by D Sculley - Cited by 19 - Related articles

Pairwise learning to rank methods such as RankSVM give good performance, ... In this paper, we are concerned with learning to rank methods that can learn on ...

[PDF] Metric Learning to Rank

www.icml2010.org/papers/504.pdf

File Format: PDF/Adobe Acrobat - Quick View

by B McFee - Cited by 21 - Related articles

Metric Learning to Rank. Brian McFee bmcfee@cs.ucsd.edu. Department of Computer Science and Engineering, University of California, San Diego, CA 92093 ...

[PDF] Yahoo! Learning to Rank Challenge Overview

jmlr.csail.mit.edu/proceedings/papers/v14/.../chapelle11a.pdf

File Format: PDF/Adobe Acrobat - Quick View by O Chapelle - Cited by 23 - Related articles

Learning to rank for information retrieval has gained a lot of interest in the ... field in which machine learning algorithms are used to learn this ranking function.

[PDF] Future directions in learning to rank

http://www.google.com/

Ranking

Google

learning to rank

Search

About 216,000,000 results (0.23 seconds)

Web

Images

Maps

Videos

News More

Bangalore, Karnataka

Change location

The web

Pages from India

More search tools

Learning to rank - Wikipedia, the free encyclopedia

en.wikipedia.org/wiki/Learning to rank

Learning to rank or machine-learned ranking (MLR) is a type of supervised or semisupervised machine learning problem in which the goal is to automatically ...

Applications - Feature vectors - Evaluation measures - Approaches

Yahoo! Learning to Rank Challenge

learningtorankchallenge.yahoo.com/ - United States

Learning to Rank Challenge is closed! Close competition, innovative ideas, and fierce determination were some of the highlights of the first ever Yahoo!

[PDF] Learning to Rank for Information Retrieval This Tutorial

www2009.org/.../T7A-LEARNING%20TO%20RANK%20TUTORIA... File Format: PDF/Adobe Acrobat - Quick View

12 Apr 2009 - Learning to Rank for Information Retrieval. Tie-Yan Liu. Microsoft Research Asia, A tutorial at WWW 2009, This Tutorial, . Learning to rank for ...

LETOR: A Benchmark Collection for Research on Learning to Rank ...

research.microsoft.com/~letor/

This website is designed to facilitate research in LEarning TO Rank (LETOR), Much information about learning to rank can be found in the website, including ...

[PDF] Large Scale Learning to Rank

www.eecs.tufts.edu/~dscullev/papers/large-scale-rank.pdf

File Format: PDF/Adobe Acrobat - Quick View by D Sculley - Cited by 19 - Related articles

Pairwise learning to rank methods such as RankSVM give good performance, ... In this paper, we are concerned with learning to rank methods that can learn on ...

[PDF] Metric Learning to Rank

www.icml2010.org/papers/504.pdf

File Format: PDF/Adobe Acrobat - Quick View

by B McFee - Cited by 21 - Related articles

Metric Learning to Rank. Brian McFee bmcfee@cs.ucsd.edu. Department of Computer Science and Engineering, University of California, San Diego, CA 92093 ...

[PDF] Yahoo! Learning to Rank Challenge Overview

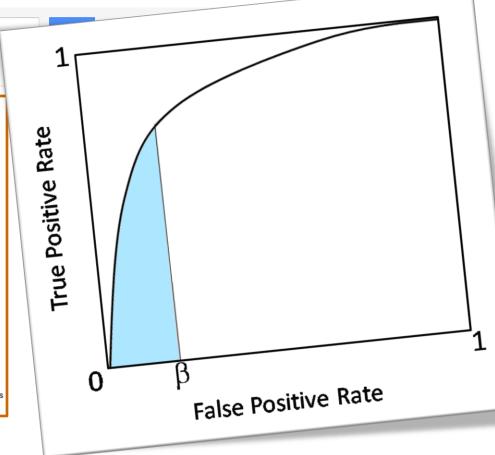
imlr.csail.mit.edu/proceedings/papers/v14/.../chapelle11a.pdf

File Format: PDF/Adobe Acrobat - Quick View by O Chapelle - Cited by 23 - Related articles

Learning to rank for information retrieval has gained a lot of interest in the ... field in which machine learning algorithms are used to learn this ranking function.

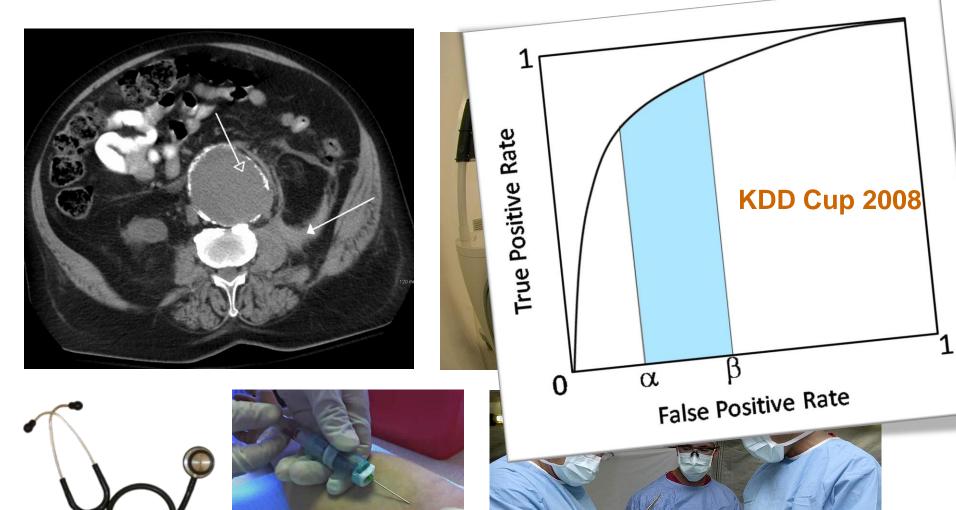
[PDF] Future directions in learning to rank

jmlr.csail.mit.edu/proceedings/papers/v14/.../chapelle11b.pdf

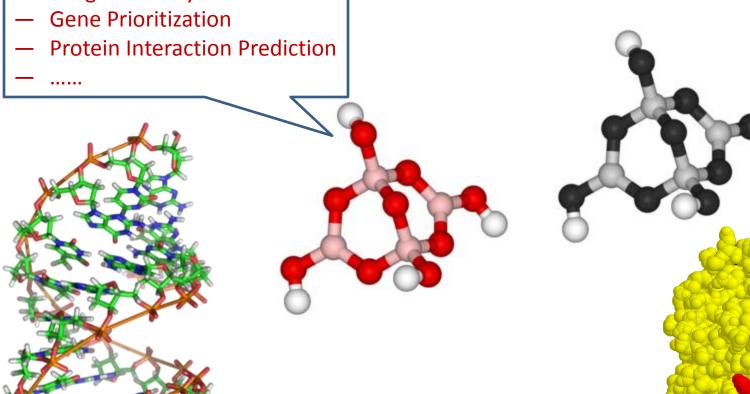


Medical Diagnosis

Medical Diagnosis

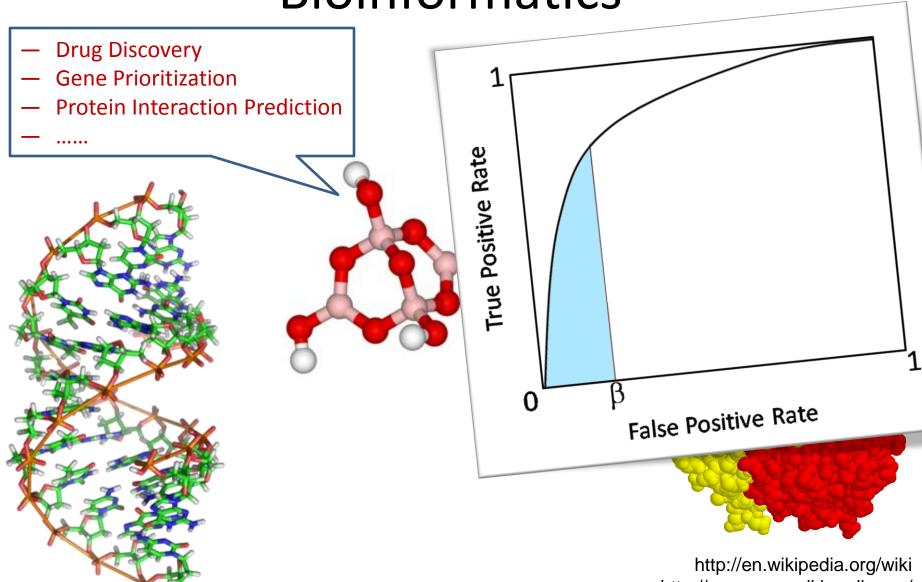


Bioinformatics



http://en.wikipedia.org/wiki http://commons.wikimedia.org/ http://www.google.com/imghp

Bioinformatics



http://en.wikipedia.org/wiki http://commons.wikimedia.org/ http://www.google.com/imghp

Partial Area Under the ROC Curve is critical to many applications

Asymmetric SVM:

 Wu, S.-H., Lin, K.-P., Chen, C.-M., and Chen, M.-S. Asymmetric support vector machines: low false-positive learning under the user tolerance. In KDD, 2008.

Boosting style algorithm:

- Komori, O. and Eguchi, S. A boosting method for maximizing the partial area under the ROC curve. BMC Bioinformatics, 11:314, 2010.
- Takenouchi, T., Komori, O., and Eguchi, S. An extension of the receiver operating characteristic curve and AUC-optimal classification. Neural Computation, 24, (10):2789–2824, 2012.

Several heuristic approaches:

- Pepe, M. S. and Thompson, M. L. Combining diagnostic test results to increase accuracy. *Biostatistics*, 1(2):123–140, 2000.
- Ricamato, M. T. and Tortorella, F. Partial AUC maximization in a linear combination of dichotomizers. *Pattern Recognition*, 44(10-11):2669– 2677, 2011.

 Many of the existing approaches are either heuristic or solve special cases of the problem.

- Many of the existing approaches are either heuristic or solve special cases of the problem.
- Our contribution: A new support vector method for optimizing the general partial AUC measure.

- Many of the existing approaches are either heuristic or solve special cases of the problem.
- Our contribution: A new support vector method for optimizing the general partial AUC measure.
- Based on Joachims' Structural SVM approach for optimizing full AUC, but leads to a trickier inner combinatorial optimization problem.
 - Joachims, T. A Support Vector Method for Multivariate Performance Measures. In ICML, 2005.
 - Joachims, T. Training linear SVMs in linear time. In KDD, 2006.

- Many of the existing approaches are either heuristic or solve special cases of the problem.
- Our contribution: A new support vector method for optimizing the general partial AUC measure.
- Based on Joachims' Structural SVM approach for optimizing full AUC, but leads to a trickier inner combinatorial optimization problem.
 - Joachims, T. A Support Vector Method for Multivariate Performance Measures. In ICML, 2005.
 - Joachims, T. Training linear SVMs in linear time. In KDD, 2006.
- Improvements over baselines on several real-world applications

Outline

- Problem Setup
- Structural SVM for Optimizing Partial AUC
- Experiments

Positive Instances

Negative Instances

Training Set

•••••

Positive Instances

 X_1^+

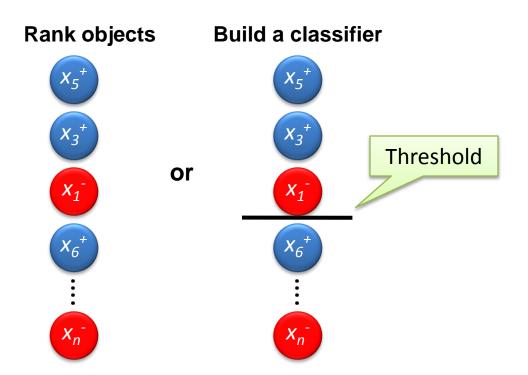
Training Set

$$X_1$$

GOAL? Learn a scoring function $f:X \to \mathbb{R}$

Positive Instances X_1^{\dagger} X_2^{\dagger} X_3^{\dagger} X_n^{\dagger} Training Set

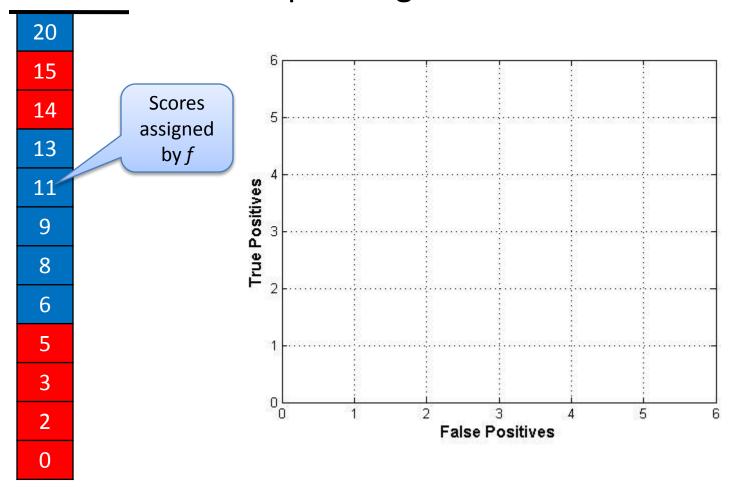
GOAL? Learn a scoring function $f:X\to\mathbb{R}$

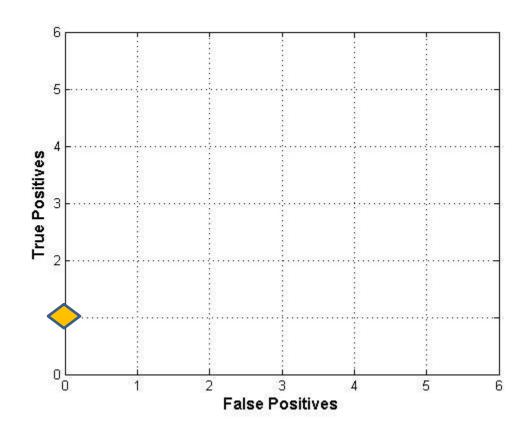


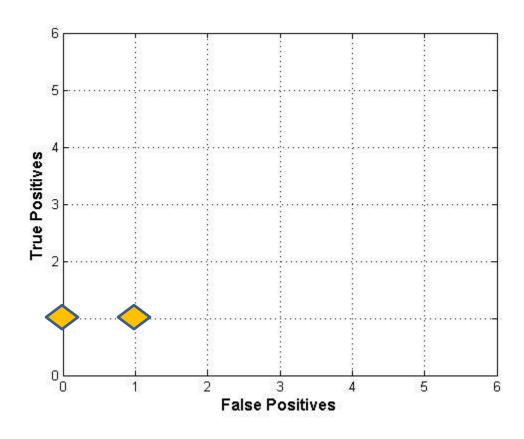
 X_3^+ **Positive Instances** X_1^+ X_m Training Set **Negative Instances** *X*₃ **GOAL?** Learn a scoring function $f:X\to\mathbb{R}$ **Build a classifier** Quality of scoring function? Rank objects X_5^{\dagger} X_5 X_3^{\dagger} **Threshold True Positive Rate** or X_1^{-} X_1^{-} **Threshold Assignment** X_6^+ X_6^+

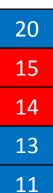
0

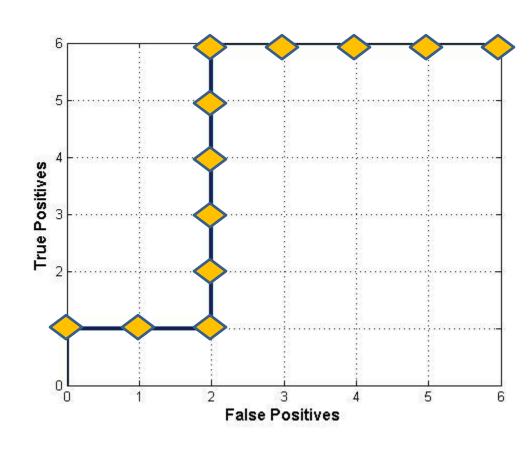
False Positive Rate

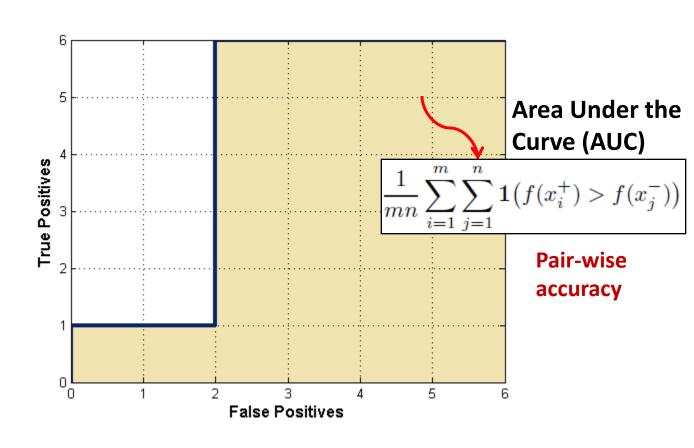


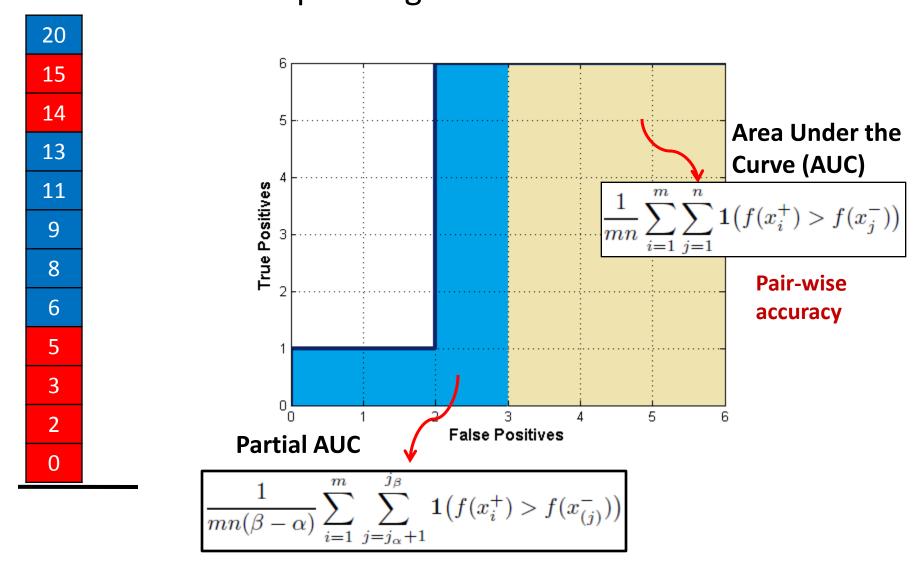






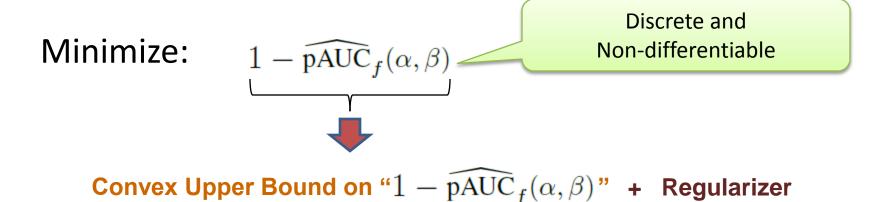




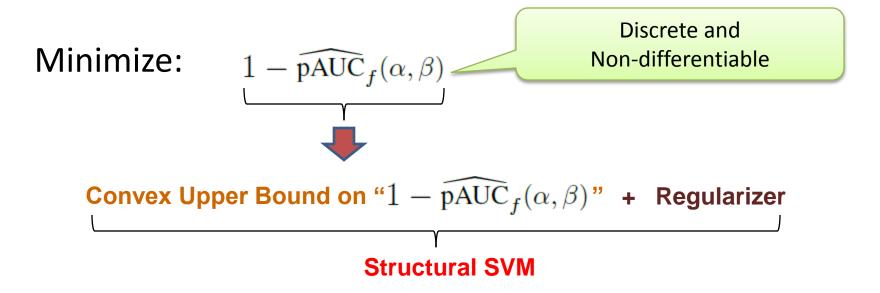


Minimize: $1 - \widehat{pAUC}_f(\alpha, \beta)$

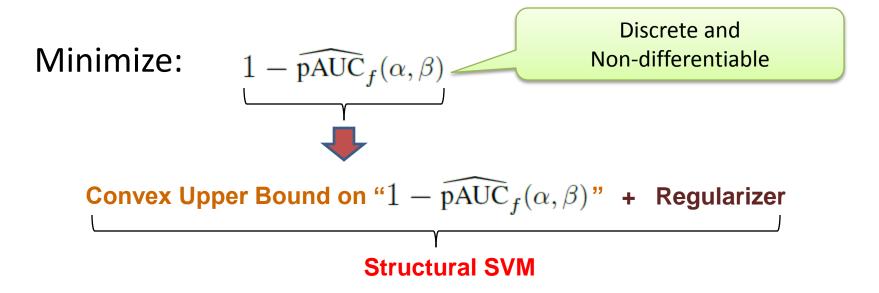
Discrete and Non-differentiable







 Extends Joachims' approach for full AUC optimization, but leads to a trickier combinatorial optimization step.

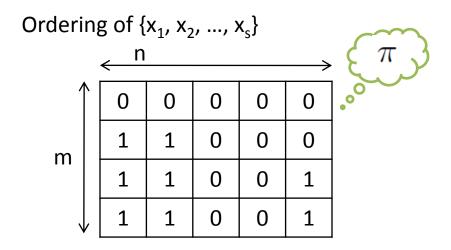


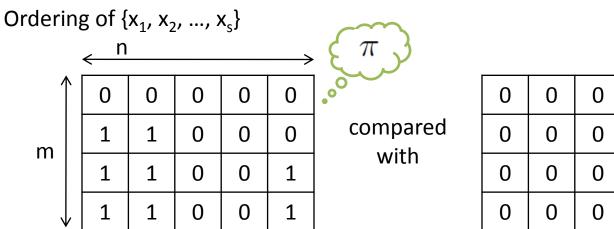
- Extends Joachims' approach for full AUC optimization, but leads to a trickier combinatorial optimization step.
- Efficient solver with the same time complexity as that for full AUC.

Outline

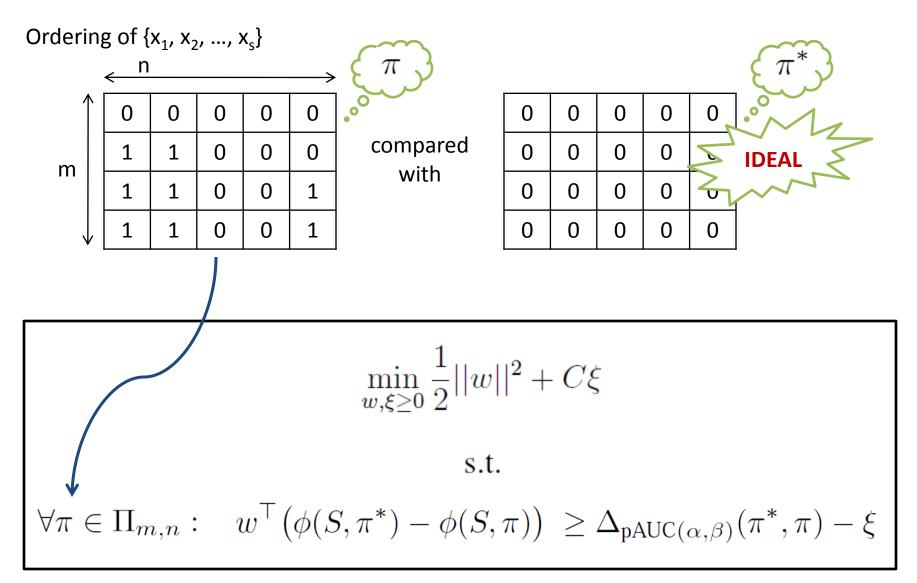
- Problem Setup
- Structural SVM for Optimizing Partial AUC
- Experiments

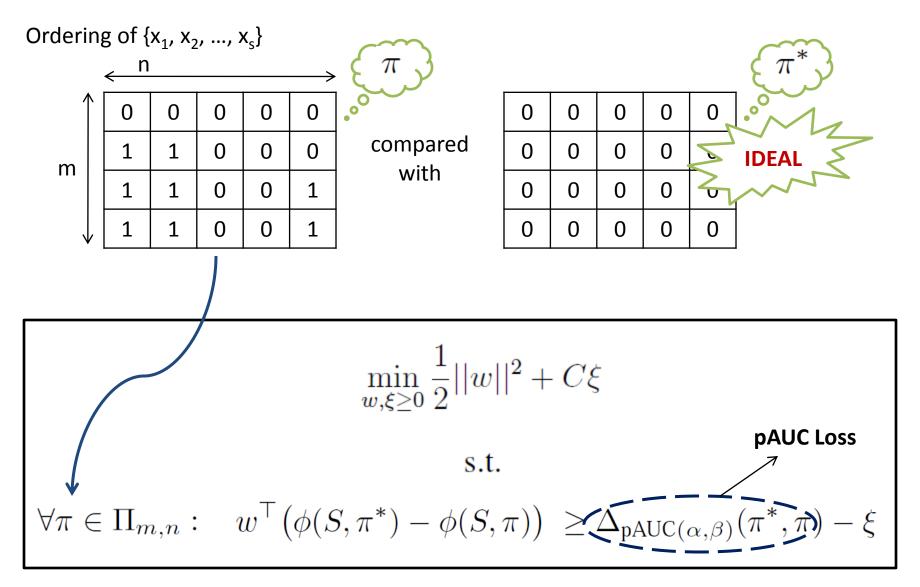
Structural SVM Based Approach

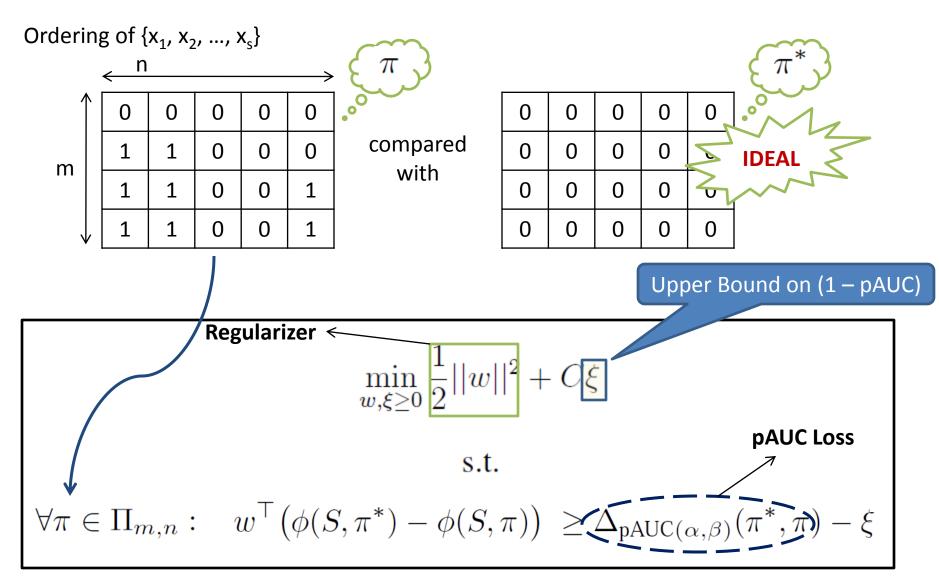


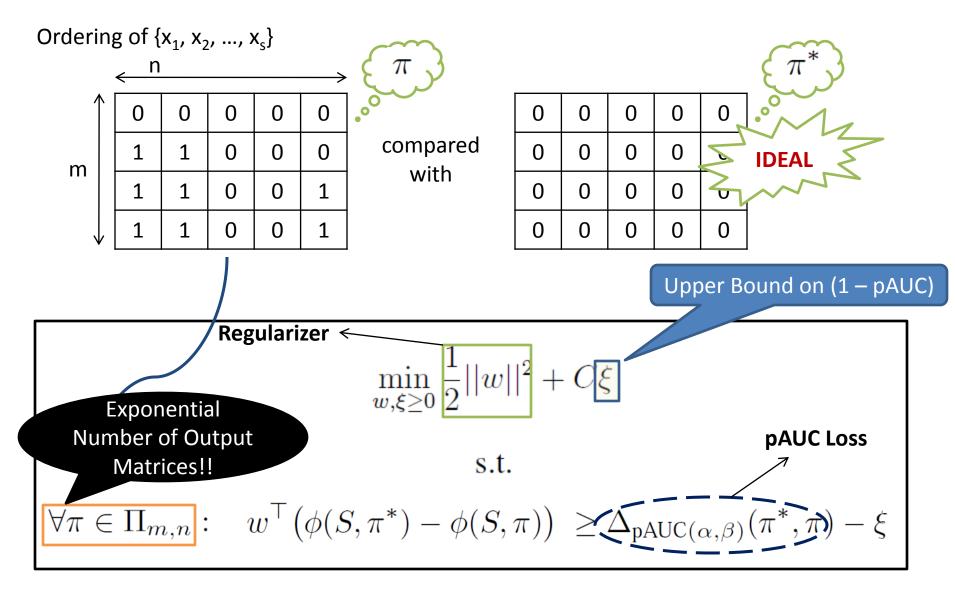


				π^*	
0	0	0	0	0 .00	
0	0	0	0	IDEAL	—
0	0	0	0	Some	
0	0	0	0	0	









Repeat:

$$\min_{w,\xi \ge 0} \frac{1}{2} ||w||^2 + C\xi$$

s.t. $\forall \pi \in \mathcal{C}$:

$$w^{\top} \left(\phi(S, \pi^*) - \phi(S, \pi) \right) \ \geq \Delta_{\mathsf{pAUC}(\alpha, \beta)}(\pi^*, \pi) - \xi$$

1. Solve OP for a subset of constraints.

Repeat:

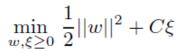
$$\min_{w,\xi \ge 0} \frac{1}{2} ||w||^2 + C\xi$$

$$w^{\top} (\phi(S, \pi^*) - \phi(S, \pi)) \ge \Delta_{\mathsf{pAUC}(\alpha, \beta)}(\pi^*, \pi) - \xi$$

- 1. Solve OP for a subset of constraints.
- Add the most violated constraint.

Converges in constant number of iterations

Repeat:

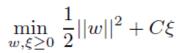


$$w^{\top} (\phi(S, \pi^*) - \phi(S, \pi)) \ge \Delta_{\mathsf{pAUC}(\alpha, \beta)}(\pi^*, \pi) - \xi$$

- 1. Solve OP for a subset of constraints.
- 2. Add the most violated constraint.

Converges in constant number of iterations

Repeat:

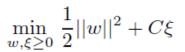


$$w^{\top} (\phi(S, \pi^*) - \phi(S, \pi)) \ge \Delta_{\mathsf{pAUC}(\alpha, \beta)}(\pi^*, \pi) - \xi$$

- 1. Solve OP for a subset of constraints.
- 2. Add the most violated constraint.

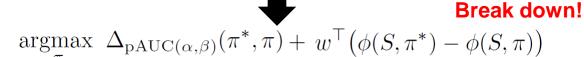
Converges in constant number of iterations

Repeat:



$$w^{\top} (\phi(S, \pi^*) - \phi(S, \pi)) \ge \Delta_{\mathsf{pAUC}(\alpha, \beta)}(\pi^*, \pi) - \xi$$

- 1. Solve OP for a subset of constraints.
- 2. Add the most violated constraint.



Converges in constant number of iterations

Repeat:

$$\min_{w,\xi \geq 0} \, \frac{1}{2} ||w||^2 + C\xi$$

s.t. $\forall \pi \in \mathcal{C}$:

$$w^{\top} (\phi(S, \pi^*) - \phi(S, \pi)) \ge \Delta_{\mathsf{pAUC}(\alpha, \beta)}(\pi^*, \pi) - \xi$$

- 1. Solve OP for a subset of constraints.
- 2. Add the most violated constraint.

Break down!

$$\underset{\pi}{\operatorname{argmax}} \ \Delta_{\operatorname{pAUC}(\alpha,\beta)}(\pi^*,\pi) + w^{\top} (\phi(S,\pi^*) - \phi(S,\pi))$$

Full AUC

0	1	0	1	0
1	1	0	0	0
1	1	0	0	1
1	1	0	0	1

Converges in constant number of iterations

Repeat:

$$\min_{w,\xi \geq 0} \, \frac{1}{2} ||w||^2 + C\xi$$

s.t. $\forall \pi \in \mathcal{C}$:

$$w^{\top} (\phi(S, \pi^*) - \phi(S, \pi)) \ge \Delta_{\mathsf{pAUC}(\alpha, \beta)}(\pi^*, \pi) - \xi$$

- 1. Solve OP for a subset of constraints.
- 2. Add the most violated constraint.

Break down!

$$\underset{\pi}{\operatorname{argmax}} \ \Delta_{\operatorname{pAUC}(\alpha,\beta)}(\pi^*,\pi) + w^{\top} (\phi(S,\pi^*) - \phi(S,\pi))$$

Full AUC

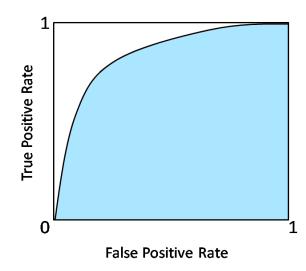
0	1	0	1	0
1	1	0	0	0
1	1	0	0	1
1	1	0	0	1

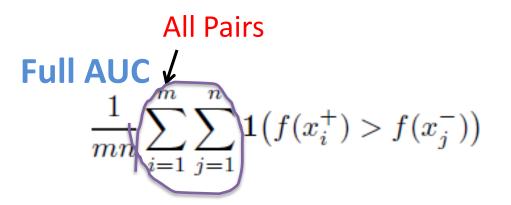
Partial AUC

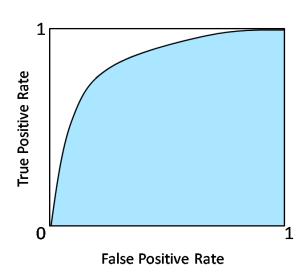
0	1	0	1	0
1	1	0	0	0
1	1	0	0	1
1	1	0	0	1

Full AUC

$$\frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} \mathbf{1} \left(f(x_i^+) > f(x_j^-) \right)$$

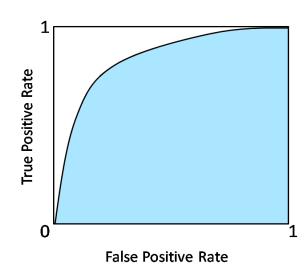






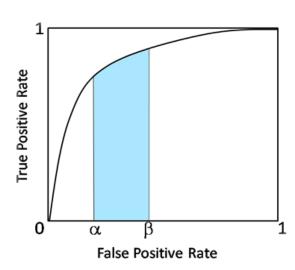
All Pairs

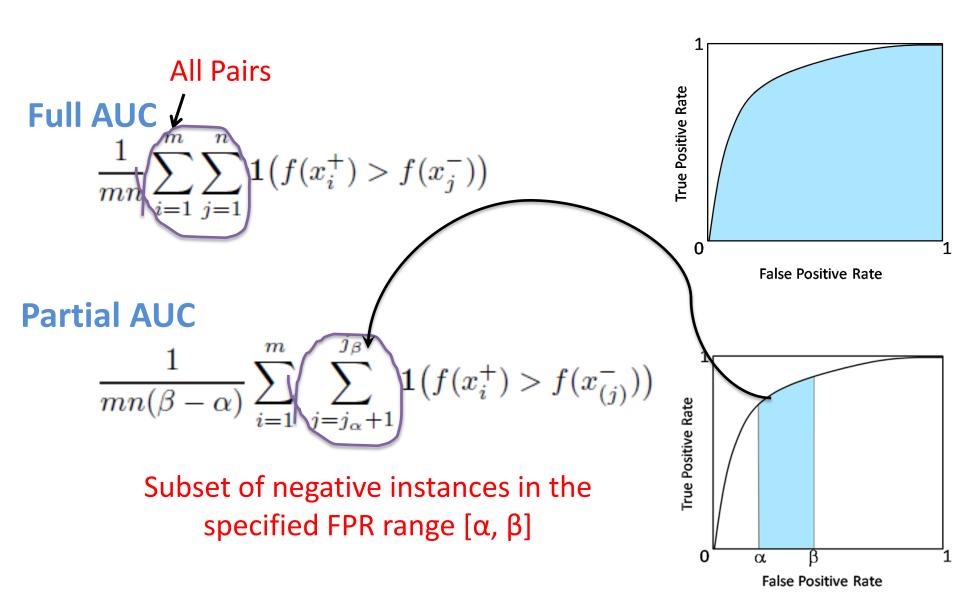
Full AUC
$$\frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} \mathbf{1} \left(f(x_i^+) > f(x_j^-) \right)$$



Partial AUC

$$\frac{1}{mn(\beta - \alpha)} \sum_{i=1}^{m} \sum_{j=j_{\alpha}+1}^{j_{\beta}} \mathbf{1} \left(f(x_i^+) > f(x_{(j)}^-) \right)$$





$$\underset{\pi}{\operatorname{argmax}} \ \Delta_{\operatorname{pAUC}(\alpha,\beta)}(\pi^*,\pi) + w^{\top} (\phi(S,\pi^*) - \phi(S,\pi))$$

Partial AUC

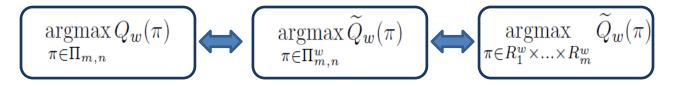
0	1	0	1	0
1	1	0	0	0
1	1	0	0	1
1	1	0	0	1

$$\underset{\pi}{\operatorname{argmax}} \ \Delta_{\operatorname{pAUC}(\alpha,\beta)}(\pi^*,\pi) + w^{\top} (\phi(S,\pi^*) - \phi(S,\pi))$$

Partial AUC

0	1	0	1	0
1	1	0	0	0
1	1	0	0	1
1	1	0	0	1

Equivalent easy-to-solve optimization problem

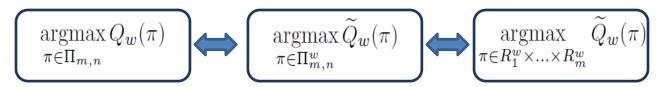


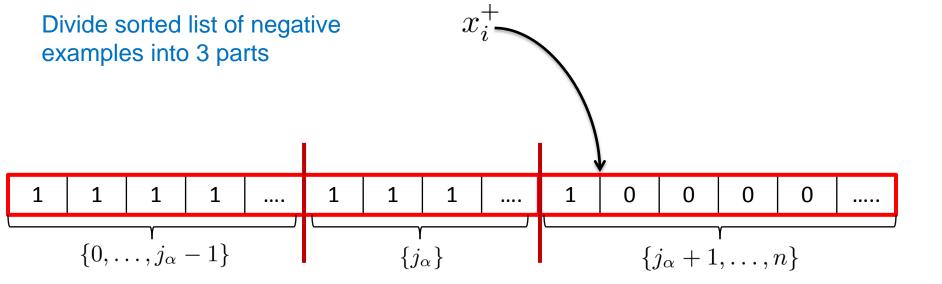
$$\underset{\pi}{\operatorname{argmax}} \ \Delta_{\operatorname{pAUC}(\alpha,\beta)}(\pi^*,\pi) + w^{\top} (\phi(S,\pi^*) - \phi(S,\pi))$$

Partial AUC

0	1	0	1	0
1	1	0	0	0
1	1	0	0	1
1	1	0	0	1

Equivalent easy-to-solve optimization problem



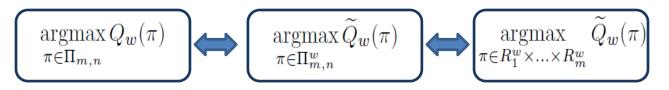


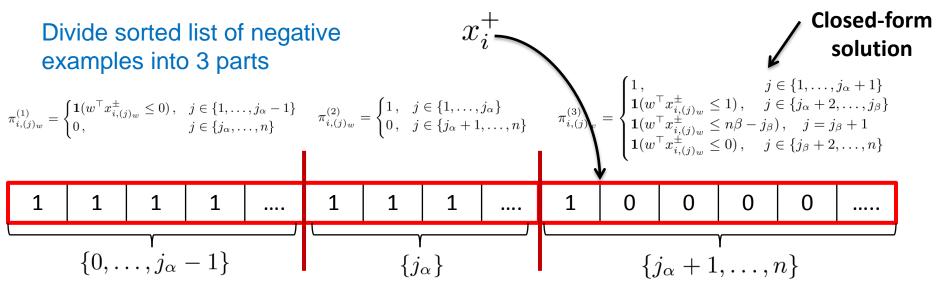
$$\underset{\pi}{\operatorname{argmax}} \ \Delta_{\operatorname{pAUC}(\alpha,\beta)}(\pi^*,\pi) + w^{\top} (\phi(S,\pi^*) - \phi(S,\pi))$$

Partial AUC

0	1	0	1	0
1	1	0	0	0
1	1	0	0	1
1	1	0	0	1

Equivalent easy-to-solve optimization problem





$$\operatorname{argmax} \ \Delta_{\operatorname{pAUC}(\alpha,\beta)}(\pi^*,\pi) + \underline{w}^{\top} (\phi(S,\pi^*) - \phi(S,\pi))$$

```
1: Inputs: S = (S_+, S_-), \alpha, \beta, w
2: For i = 1, ..., m do
               Optimize over r_i \in \{0, \ldots, j_{\alpha} - 1\}:
              \pi_{i,(j)_w}^{(1)} = \begin{cases} \mathbf{1}(w^\top x_{i,(j)_w}^{\pm} \le 0), & j \in \{1,\dots,j_{\alpha}-1\} \\ 0, & j \in \{j_{\alpha},\dots,n\} \end{cases}
               Optimize over r_i \in \{j_\alpha\}:
              \pi_{i,(j)_w}^{(2)} = \begin{cases} 1, & j \in \{1, \dots, j_\alpha\} \\ 0, & j \in \{j_\alpha + 1, \dots, n\} \end{cases}
               Optimize over r_i \in \{j_{\alpha} + 1, \dots, n\}:
            \pi_{i,(j)w}^{(3)} = \begin{cases} 1, & j \in \{1, \dots, j_{\alpha} + 1\} \\ 1(w^{\top} x_{i,(j)w}^{\pm} \leq 1), & j \in \{j_{\alpha} + 2, \dots, j_{\beta}\} \\ 1(w^{\top} x_{i,(j)w}^{\pm} \leq n\beta - j_{\beta}), & j = j_{\beta} + 1 \\ 1(w^{\top} x_{i,(j)w}^{\pm} \leq 0), & j \in \{j_{\beta} + 2, \dots, n\} \end{cases}
         \bar{k} = \underset{k \in \{1,2,3\}}{\operatorname{argmax}} \left\{ \begin{array}{l} \text{term inside sum over } i \text{ in} \\ \text{Eq. (4) evaluated at } \pi_i^{(k)} \end{array} \right\}
               \bar{\pi}_i = \pi_i^{(\bar{k})}
8: End For
9: Output: \bar{\pi}
```

 $\{0,\ldots,j_{\alpha}-1\}$

y-to-solve optimization problem

$$\underset{\pi \in \Pi_{m,n}^{w}}{\operatorname{argmax}} \widetilde{Q}_{w}(\pi)$$

$$\underset{\pi \in R_{1}^{w} \times ... \times R_{m}^{w}}{\operatorname{argmax}} \widetilde{Q}_{w}(\pi)$$

Closed-form

Can be implemented in

O((m+n) log (m+n)) time

complexity $1(w^{\top}x_{i,(j)_{w}}^{\pm} \leq 0), \quad j \in \{j_{\beta}+2,\ldots,n\}$

$$\{j_{\alpha}+1,\ldots,n\}$$

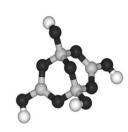
Outline

- Problem Setup
- Structural SVM for Optimizing Partial AUC
- Experiments

Drug Discovery

50 active compounds / 2092 inactive compounds

	pAUC(0, 0.1)
$SVM_{pAUC}[0,0.1]$	65.25
SVM_{AUC}	62.64 *
ASVM[0,0.1]	63.80
pAUCBoost[0,0.1]	43.89 *
Greedy-Heuristic[0,0.1]	8.33 *

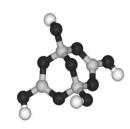


True Positive Rate	Interval [0, β]
	False Positive Rate

Drug Discovery

50 active compounds / 2092 inactive compounds

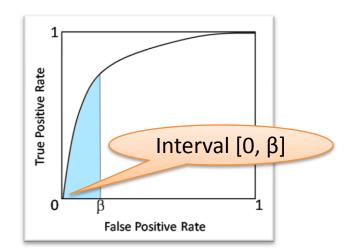
	pAUC(0, 0.1)
$SVM_{pAUC}[0,0.1]$	65.25
SVM_{AUC}	62.64 *
ASVM[0,0.1]	63.80
pAUCBoost[0,0.1]	43.89 *
Greedy-Heuristic[0,0.1]	8.33 *

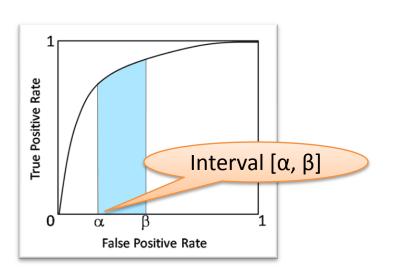


Protein-Protein Interaction Prediction

~3x10³ interacting pairs / ~2x10⁵ non-interacting pairs

	pAUC(0, 0.1)
$SVM_{pAUC}[0,0.1]$	51.79
SVM_{AUC}	39.72 *
ASVM[0,0.1]	44.51 *
pAUCBoost[0,0.1]	48.65 *
Greedy-Heuristic[0,0.1]	47.33 *

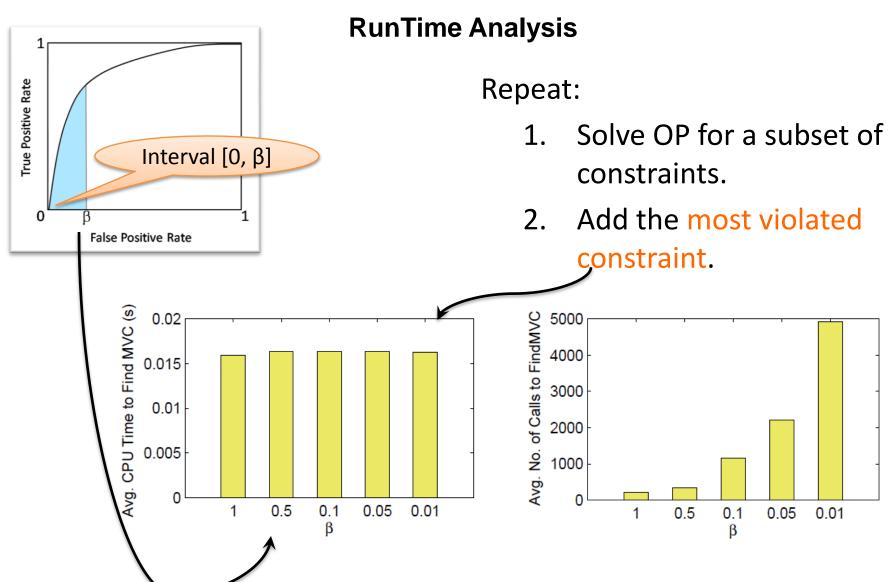


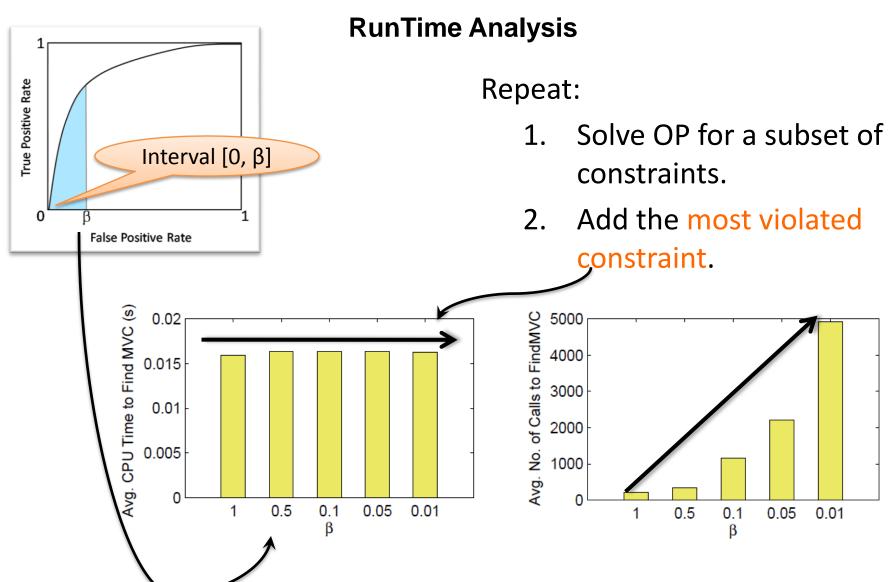


KDD Cup 2008 Breast Cancer Detection

~600 malignant ROIs / ~105 benign ROIs

	pAUC(0.2s, 0.3s)
$SVM_{pAUC}[0.2s, 0.3s]$	51.44
SVM_{AUC}	50.50
pAUCBoost[0.2s, 0.3s]	48.06 *
Greedy-Heuristic $[0.2s, 0.3s]$	46.99 *





A new support vector algorithm for optimizing partial AUC

- A new support vector algorithm for optimizing partial AUC
- Efficient algorithm for solving the inner combinatorial optimization step

- A new support vector algorithm for optimizing partial AUC
- Efficient algorithm for solving the inner combinatorial optimization step
- Experimental results confirm the effectiveness of our approach

- A new support vector algorithm for optimizing partial AUC
- Efficient algorithm for solving the inner combinatorial optimization step
- Experimental results confirm the effectiveness of our approach
- Follow up: Improved algorithm that optimizes a tighter upper bound on the partial AUC loss

Narasimhan, H. and Agarwal, S. SVM^{tight}_{pAUC}: A new support vector method for optimizing partial AUC based on a tight convex upper bound. In *Proceedings of the ACM SIGKDD Conference on Knowledge, Discovery and Data Mining (KDD)*, 2013. To appear.

Questions?