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Partial AUC Optimization

* Asymmetric SVM:

— Wu, S.-H,, Lin, K.-P.,, Chen, C.-M., and Chen, M.-S. Asymmetric support
vector machines: low false-positive learning under the user tolerance.
In KDD, 2008.

* Boosting style algorithm:

— Komori, O. and Eguchi, S. A boosting method for maximizing the partial
area under the ROC curve. BMC Bioinformatics, 11:314, 2010.

— Takenouchi, T., Komori, O., and Eguchi, S. An extension of the receiver
operating characteristic curve and AUC-optimal classification. Neural
Computation, 24, (10):2789-2824, 2012.

* Several heuristic approaches:

— Pepe, M. S. and Thompson, M. L. Combining diagnostic test results to
increase accuracy. Biostatistics, 1(2):123-140, 2000.

— Ricamato, M. T. and Tortorella, F. Partial AUC maximization in a linear
combination of dichotomizers. Pattern Recognition, 44(10-11):2669—
2677, 2011.
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Partial AUC Optimization

Many of the existing approaches are either heuristic or
solve special cases of the problem.

Our contribution: A new support vector method for
optimizing the general partial AUC measure.

Based on Joachims’ Structural SVM approach for
optimizing full AUC, but leads to a trickier inner
combinatorial optimization problem.

— Joachims, T. A Support Vector Method for Multivariate
Performance Measures. In ICML, 2005.

— Joachims, T. Training linear SVMs in linear time. In KDD, 2006.

Improvements over baselines on several real-world
applications
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Partial AUC Optimization

Discrete and
Minimize: 1 — mf(ﬁnﬁ) Non-differentiable
\ J
|

N g

Convex Upper Bound on “]1 — mf(&, £)” + Regularizer
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|

Structural SVM

* Extends Joachims’ approach for full AUC optimization,
but leads to a trickier combinatorial optimization step.

* Efficient solver with the same time complexity as that
for full AUC.
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Find Most Violated Constraint

arglgl‘dX ApAUC(a,ﬁ)(W*? ﬂ-) + wT (@(S ﬂ—*) o @(S 7T))

Partial AUC
o 11 lo 1 lo Equivalent easy-to-solve optimization problem
t |1 10 0 |0 argmax (y, () RN argmaxéw(ﬁ) &=)| rgmax éu(’ﬂ')
1 (1 (0 (0 |1 TEln,n Telly, TERY x...xRw
1 |1 |0 |0 |1

Divide sorted list of negative

Closed-form
examples into 3 parts / solution

1, jef{l, ..., Ja + 1}
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W l(w—rm?’:(_?)w <0), je{1,..., Jo — 1} 2 1 l(meiém“’ < 1) IS {Ja +2,..., jﬁ}
ﬂi’(j)w N Oa j € {JQ 1111 7’1} 1(]):0 01 l(w wi}(;’)w S nﬁ - jﬂ)! j = jﬁ + 1
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1: Inputs: S =(5+,5-), a, B, w
2: Fori=1.....m do
3: Optimize over r; € {0,...,ja — 1}:
O E 1 -rfm“_ <0), je{l,...,Ja —1}
(D 0, jE {j& _____ ;1}
4: Optimize over r; € {ja }:
o _ [t de{lida)
i e T 0__ J‘ .: {.J?ﬂ —|—1~~Tl}
5: Optimize over r; € {ja +1,...,n}:
(1, JEL ... ja+ 1}
Tt & P s
ol 3) _ 1(w i (w = 1}_ J€lJa+2,....Js}
i) — l{-wT:f:;'_:l,j:m <nf—jg), Jj=is+1
Lw' 'z, <0), je{js+2....,n}
6 F— aromax term inside sum over i in
' - f‘ &r{?‘fﬂ;f; Eq. (4) evaluated at "rf;‘
T i = w;-““'
8: End For
9: Output: 7

Can be implemented in
O((m+n) log (m+n)) time
complexity
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Drug Discovery
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Protein-Protein Interaction Prediction
~3x103 interacting pairs / ~2x10° non-interacting pairs

pAUC(0,0.1)
AV Mpavc 0.,0.1 51.79
SVMave 3072 F
ASVMI[0,0.1] 44.51 *
pAUCBoost|0,0.1 48.65 *
Greedy-Heuristic[0,0.1 47.33 *
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Breast Cancer Detection
~600 malignant ROIs / ~10° benign ROIs

pAUC(0.25,0.3s)

SVMpavuc|0.2s,0.3s 51.44
SVMaiuc 50.50
pAUCBoost[0.2s, 0.3s] 48.06 *
Greedy-Heuristic|0.2s, 0.3s] 46.99 *
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Experimental Results

RunTime Analysis
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Conclusions

A new support vector algorithm for optimizing
partial AUC

* Efficient algorithm for solving the inner
combinatorial optimization step

* Experimental results confirm the effectiveness of
our approach

* Follow up: Improved algorithm that optimizes a
tighter upper bound on the partial AUC loss

Narasimhan, H. and Agarwal, S. SVT&-‘IEE{}'C: A new support vector method for

optimizing partial AUC based on a tight convex upper bound. In Proceedings
of the ACM SIGKDD Conference on Knowledge, Discovery and Data Mining (KDD ),
2013. To appear.
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