
SVMtight
pAUC

: A New Support Vector Method for Optimizing
Partial AUC Based on a Tight Convex Upper Bound

Harikrishna Narasimhan
Indian Institute of Science
Bangalore 560012, India

harikrishna@csa.iisc.ernet.in

Shivani Agarwal
Indian Institute of Science
Bangalore 560012, India

shivani@csa.iisc.ernet.in

ABSTRACT
The area under the ROC curve (AUC) is a well known per-
formance measure in machine learning and data mining. In
an increasing number of applications, however, ranging from
ranking applications to a variety of important bioinformatics
applications, performance is measured in terms of the par-
tial area under the ROC curve between two specified false
positive rates. In recent work, we proposed a structural
SVM based approach for optimizing this performance mea-
sure (Narasimhan and Agarwal, 2013). In this paper, we

develop a new support vector method, SVMtight
pAUC, that opti-

mizes a tighter convex upper bound on the partial AUC loss,
which leads to both improved accuracy and reduced compu-
tational complexity. In particular, by rewriting the empirical
partial AUC risk as a maximum over subsets of negative in-
stances, we derive a new formulation, where a modified form
of the earlier optimization objective is evaluated on each of
these subsets, leading to a tighter hinge relaxation on the
partial AUC loss. As with our previous method, the result-
ing optimization problem can be solved using a cutting-plane
algorithm, but the new method has better run time guar-
antees. We also discuss a projected subgradient method for
solving this problem, which offers additional computational
savings in certain settings. We demonstrate on a wide va-
riety of bioinformatics tasks, ranging from protein-protein
interaction prediction to drug discovery tasks, that the pro-
posed method does, in many cases, perform significantly bet-
ter on the partial AUC measure than the previous structural
SVM approach. In addition, we also develop extensions of
our method to learn sparse and group sparse models, often
of interest in biological applications.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning

Keywords
Partial AUC, SVM, Cutting-Plane Method, ROC Curve

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
KDD’13, August 11–14, 2013, Chicago, Illinois, USA.
Copyright 2013 ACM 978-1-4503-2174-7/13/08 ...$15.00.

Figure 1: Partial AUC between false positive rates
α and β.

1. INTRODUCTION
The receiver operating characteristic (ROC) curve plays

an important role as an evaluation tool in machine learning
and data mining. In particular, the area under the ROC
curve (AUC) is widely used to summarize the performance
of a scoring function in binary classification, and is also used
as a performance measure in bipartite ranking [8, 3]. In an
increasing number of applications, however, the performance
measure of interest is not the area under the full ROC curve,
but instead, the partial area under the ROC curve between
two specified false positive rates (Figure 1). For example,
in ranking applications where accuracy at the top is critical,
good performance in the left-most part of the ROC curve
[25, 1, 22] is warranted; in several important bioinformatics
applications such as protein-protein interaction prediction
where data is often imbalanced, the partial AUC up to a low
false positive rate is preferred over standard classification
accuracy [21]; in medical diagnosis applications such as those
involving biomarker selection, one is often interested in good
performance in a clinically relevant portion of the ROC curve
rather than in the entire ROC curve [20, 30, 23].

In recent work, we proposed a structural SVM based ap-
proach, which we shall refer to here as SVMstruct

pAUC, for op-
timizing the partial AUC performance measure [18]. This
method builds on Joachims’ approach for optimizing the full
AUC [13], where the resulting optimization problem is solved
using an efficient cutting-plane solver. In this paper, we de-
velop a new support vector method, SVMtight

pAUC, that opti-
mizes a tighter convex upper bound on the partial AUC loss,
which leads to both improved accuracy and reduced compu-
tational complexity. In particular, by rewriting the partial
AUC loss as a maximum of a certain quantity over subsets
of negative instances, we derive a new formulation, where a
truncated form of the earlier optimization objective is eval-

uated on each of these subsets, leading to a tighter hinge
relaxation on the partial AUC loss. As with our previous
method, the resulting optimization problem can be solved
using a cutting-plane solver, but the new method has better
run time guarantees. We also discuss a (primal) projected
subgradient descent solver for the new problem, which offers
additional computational savings in certain settings.

We evaluate our new method on a variety of bioinformatics
tasks where the partial AUC measure is of interest, ranging
from protein-protein interaction prediction to drug discovery
tasks, and find that in most cases, the new method gives sig-
nificant improvement in partial AUC performance over the
previous structural SVM approach. We also develop exten-
sions of our method to learn sparse and group sparse models,
often of interest in biological applications, and demonstrate
their efficacy on real-world data.

Related Work. The problem of developing methods that
optimize the partial AUC measure has received much at-
tention from the bioinformatics and biometrics communities
[20, 9, 17, 30, 24], and also has been addressed to a lesser ex-
tent in the machine learning and data mining communities
[32, 1, 22, 27]. Many of the existing methods however are
either heuristic in nature or focus on specialized cases of this
problem. The recently developed structural SVM approach
SVMstruct

pAUC [18] is a general approach that can be used to
optimize the partial AUC between any two given false posi-
tive rates, and on several real-world data sets, was found to
outperform many of the other existing approaches for this
problem; it will therefore serve as a baseline here.

Organization. We give preliminaries together with a
brief background on SVMstruct

pAUC in Section 2. Section 3 char-
acterizes the upper bound on partial AUC loss optimized
by SVMstruct

pAUC, and motivates the development of our new

method. Section 4 describes our new formulation SVMtight
pAUC

that optimizes a tighter convex upper bound on the partial
AUC loss. Section 5 gives efficient solvers for the resulting
optimization problem. Section 6 discusses sparse and group
sparse extensions of the proposed method. Section 7 gives
experimental results on a variety of bioinformatics tasks.

2. PRELIMINARIES AND BACKGROUND

2.1 Problem Setup
Let X be an instance space and D+,D− be probability

distributions on X. Given a training sample S = (S+, S−)
consisting of m positive instances S+ = (x+

1 , . . . , x
+
m) ∈ Xm

drawn iid according to D+ and n negative instances S− =
(x−

1 , . . . , x
−
n) ∈ Xn drawn iid according to D−, the goal is to

learn a scoring function f : X→R that has good performance
in terms of the partial AUC between some specified false
positive rates α and β, where 0 ≤ α < β ≤ 1.

Partial AUC. Recall that for a scoring function f : X→R

and threshold t ∈ R, the true positive rate (TPR) of the
classifier sign(f(x) − t) is the probability that it correctly
classifies a random positive instance from D+ as positive:1

TPRf (t) = Px+∼D+
[f(x+) > t] .

Similarly, the false positive rate (FPR) of the classifier is the
probability that it misclassifies a random negative instance
from D− as positive:

1If f has ties with non-zero probability, then one needs to
add a 1

2
Px+∼D+

[f(x+) = t] term in the definition.

FPRf (t) = Px−∼D− [f(x−) > t] ,

The ROC curve for the scoring function f is then defined as
the plot of TPRf (t) against FPRf (t) for different values of
t. The area under this curve can be computed as

AUCf =

∫ 1

0

TPRf (FPR
−1
f (u)) du ,

where FPR−1
f (u) = inf

{
t ∈ R | FPRf (t) ≤ u

}
. Assuming

there are no ties, the AUC can be written as [8]

AUCf = P(x+,x−)∼D+×D− [f(x+) > f(x−)] .

Our interest here is in the area under the curve between
FPRs α and β. The (normalized) partial AUC (pAUC) of
f in the range [α, β] is defined as

pAUCf (α, β) =
1

β − α

∫ β

α

TPRf (FPR
−1
f (u)) du .

Empirical Partial AUC. Given a sample S = (S+, S−)
as above, one can plot an empirical ROC curve correspond-
ing to a scoring function f : X→R; assuming there are no
ties, this is obtained by using

T̂PRf (t) =
1

m

m∑
i=1

1
(
f(x+

i) > t
)

F̂PRf (t) =
1

n

n∑
j=1

1
(
f(x−

j) > t
)

instead of TPRf (t) and FPRf (t). Again assuming there are
no ties, the area under this empirical curve is given by

ÂUCf =
1

mn

m∑
i=1

n∑
j=1

1
(
f(x+

i) > f(x−
j)

)
.

For simplicity of exposition, we assume nα and nβ are in-
tegers; in this case, the (normalized) empirical partial AUC
(pAUC) of f in the FPR range [α, β] can be written as [9]2

p̂AUCf (α, β) =
m∑
i=1

jβ∑
j=jα+1

1
(
f(x+

i) > f(x−
(j)f

)
)
,

where (j)f denotes the index of the negative instance in
S− ranked in j-th position (among negatives, in descending
order of scores) by f .

2.2 Quick Review of SVMstruct
pAUC [18]

Given a training sample S = (S+, S−) ∈ Xm × Xn, the
SVMstruct

pAUC algorithm [18] aims to find a scoring function f :
X → R that approximately maximizes the empirical pAUC
in an FPR range [α, β], or equivalently, that minimizes the
following empirical pAUC risk:

R̂(f) = 1− p̂AUCf (α, β)

=
m∑
i=1

jβ∑
j=jα+1

1
(
f(x+

i) < f(x−
(j)f

)
)
. (1)

2See [18] for a slightly more general definition when nα
and/or nβ are not integers. We note that all our results
extend easily to the more general setting; moreover, all our
experiments use the general formulation.

We briefly review the algorithm below. In the following, we
assume X ⊆ R

d for some d ∈ Z+ and consider linear scoring
functions of the form f(x) = w�x for some w ∈ R

d.3

For any ordering of the training instances, we represent
(errors in) the relative ordering of the m positive instances
in S+ and n negative instances in S− via a matrix π =
[πij] ∈ {0, 1}m×n as follows:

πij =

{
1 if x+

i is ranked below x−
j

0 if x+
i is ranked above x−

j .

Let Πm,n denote the set of all matrices in {0, 1}m×n that
correspond to valid orderings (satisfying anti-symmetry and
transitivity requirements). Clearly, the correct relative or-
dering π∗ has π∗

ij = 0 ∀i, j. For any π ∈ Πm,n, we can define
the pAUC loss of π with respect to π∗ as the empirical pAUC
risk of an ordering consistent with π:

Δ(π∗, π) =
1

mn(β − α)

m∑
i=1

jβ∑
j=jα+1

πi,(j)π , (2)

where (j)π denotes the index of the negative instance in
S− ranked in j-th position (among negatives) by any fixed
ordering consistent with the matrix π.

Next, we define a joint feature map φ : (Xm × Xn) ×
Πm,n → R

d of the form

φ(S, π) =
1

mn(β − α)

m∑
i=1

n∑
j=1

(1− πij)(x
+
i − x−

j) , (3)

and reduce the problem of optimizing the partial AUC to
the following convex optimization problem:

min
w,ξ≥0

1

2
||w||22 + Cξ (OP1)

s.t. ∀π ∈ Πm,n :

w�(φ(S, π∗)− φ(S, π)
) ≥ Δ(π∗, π)− ξ ,

where C > 0 is an appropriate regularization parameter.
Note that the above quadratic program has an exponen-
tial number of constraints, one for each ordering matrix
π ∈ Πm,n. In [18], we describe a cutting-plane algorithm
for solving this problem, which for a fixed regularization pa-
rameter C > 0 and a tolerance parameter ε > 0 runs in time
polynomial in the size of the training set.

3. CHARACTERIZATION OF THE UPPER
BOUND OPTIMIZED BY SVMstruct

pAUC
The structural SVM optimization problem described in

the previous section (OP1) essentially amounts to minimiz-
ing a (regularized) convex upper bound on the empirical
pAUC risk in Eq. (1) (see [13] for details). We show here that
this upper bound can be characterized in terms of a sum-
mation of certain hinge loss terms over individual pairs of
positive and negative training instances; this helps us draw
insights for deriving a new formulation that minimizes a
tighter upper bound on the empirical pAUC risk.

For any γ ≥ 0, denote the pairwise γ-margin hinge loss of
w ∈ R

d on the instance pair (x+
i , x

−
j) as

	
(γ)
ij (w) =

(
γ − w�(x+

i − x−
j)

)
+
, (4)

3The methods discussed can be extended to non-linear func-
tions and non-Euclidean instance spaces using kernels.

where u+ = max(u, 0). Then for the special case of FPR
intervals [0, β], we have the following result:

Theorem 1. Let α = 0 and 0 < β ≤ 1. Then for any
w ∈ R

d, the smallest ξ ≥ 0 satisfying the constraints of OP1
evaluates to

ξ = ξpAUC + ξextra,

where

ξpAUC =
1

mnβ

m∑
i=1

jβ∑
j=1

	
(1)
i,(j)w

(w)

ξextra =
1

mnβ

m∑
i=1

n∑
j=jβ+1

	
(0)
i,(j)w

(w).

We omit the proof here due to space constraints; please see
[19] for details. In the above theorem, the slack variable ξ
(error term in OP1) is decomposed into a sum of two terms:
the first term ξpAUC is an upper bound on the empirical
pAUC risk in Eq. (1) (with each 0-1 indicator term upper
bounded by a pair-wise hinge loss term); the second term
ξextra is an additional non-negative term. We can show a
similar result for FPR intervals [α, β] with α > 0:

Theorem 2. Let 0 < α < β ≤ 1. Then for any w ∈ R
d,

the smallest ξ ≥ 0 satisfying the constraints of OP1 can be
characterized as follows:

ξ = ξpAUC + ξextra,

where

ξpAUC ≥ 1

mn(β − α)

∑
i:w�x+

i <w�x−
(jα)w

jβ∑
j=jα+1

	
(1)

i,(j)w
(w);

ξpAUC ≤ 1

mn(β − α)

m∑
i=1

jβ∑
j=jα+1

	
(1)
i,(j)w

(w);

ξextra =
1

mn(β − α)

m∑
i=1

n∑
j=jβ+1

	
(0)
i,(j)w

(w) .

See [19] for the proof. Again, one can see that the slack
variable ξ is the sum of a term upper bounding the empirical
pAUC risk and an additional non-negative term.

Insights for a Better Formulation. In both the above
cases, the presence of an additional non-negative term in
the upper bound on the pAUC risk optimized by OP1 is
due to the mismatch in structure between the loss term Δ
(see Eq. (2)) and the joint-feature map φ (see Eq. (3)) terms
occurring in the constraints of OP1; while the former is com-
puted over only the negative instances ranked in positions
{jα + 1, . . . , jβ} (among all negative instances) by π, the
latter is computed over all the negative instances. In or-
der to obtain a formulation with a tighter upper bound on
the pAUC risk, we redefine Δ and φ so as to reduce this
mismatch, thus yielding an upper bound on the pAUC risk
without the additional negative term.

4. NEW FORMULATION: SVMtight
pAUC

We now derive a new SVM formulation for optimizing the
partial AUC that allows us to get rid of the ξextra terms
in Theorems 1 and 2, thus yielding a tighter upper bound
on the empirical pAUC risk in Eq. (1). The key idea is to

rewrite the pAUC risk as a maximum of a certain quantity
over appropriate subsets of negative instances, and to for-
mulate an optimization problem in which an optimization
objective with a smaller value is evaluated on each subset.

Rewriting R̂. Let Zβ =
(
S−
jβ

)
denote the set of all subsets

of negative training instances of size jβ . Let us first consider
the special case when α = 0. In this case, the pAUC risk for
a score function f is given by

R̂(f) =

jβ∑
j=1

m∑
i=1

1
(
f(x+

i) < f(x−
(j)f

)
)
. (5)

This can be rewritten as

R̂(f) = max
z∈Zβ

∑
x−
j
∈z

m∑
i=1

1
(
f(x+

i) < f(x−
j)

)
,

︸ ︷︷ ︸
(1−̂AUCf) evaluated on (S+,z)

(6)

which can be viewed as the maximum value of (1− ÂUCf)
attainable on subsets of negative instances of size jβ . To see
that the expressions in Eq. (5) and Eq. (6) are equivalent,

note that the maximum value of (1−ÂUCf) over all subsets
z in Eq. (6) is attained for the subset of negative instances
ranked in the top jβ positions (among all negative instances
in S−, in descending order of scores) by f .

To obtain a similar rewriting for the general case of FPR
intervals [α, β], let us first define a form of the general pAUC
risk restricted to a subset of negative instances z:

R̂z(f) =

jβ∑
j=jα+1

m∑
i=1

1
(
f(x+

i) < f(x−
(j)f|z) ,

where (j)f |z denotes the index of the negative instance in
the set z ranked in j-th position among negative instances
in z by f . Then the pAUC risk can be rewritten as

R̂(f) = max
z∈Zβ

R̂z(f). (7)

In particular, we can show the following:

Theorem 3. The maximum in Eq. (7) is attained for the
subset of negative instances z∗ ranked in the top jβ positions
(among all negative instances in S−, in descending order of
scores) by f .

A proof sketch can be found in [19]. Given this, it is easy
to see that the expression in Eq. (7) is equivalent to that in
the definition of pAUC risk in Eq. (1).

New Formulation. Based on the expression for the
pAUC risk in Eq. (7), we now derive a new SVM formu-
lation for optimizing the partial AUC that yields a tighter
upper bound on the pAUC loss. In the new formulation, the

restricted pAUC risk R̂z evaluated on a subset of negative
instances z in Eq. (7) is upper bounded by a restricted form
of the earlier optimization objective in OP1, as seen next.

As before, consider linear scoring functions of the form
f(x) = w�x for some w ∈ R

d. For a given subset of negative
instances z = {x−

k1
, . . . , x−

kjβ
} ∈ Zβ of size jβ , we define the

joint feature map φz : (Xm×Xn)×Πm,jβ→R
d restricted to

z, which takes in as input a set of m positive and n negative
training instances and an ordering matrix of dimension m×
jβ and outputs a vector in R

d, as follows:

φz(S, π) =
1

mn(β − α)

jβ∑
j=1

m∑
i=1

(1− πij)(x
+
i − x−

kj
) .

Similarly, for any π ∈ Πm,jβ , define the modified loss func-

tion Δβ with respect to π∗ = 0m×jβ as

Δβ(π
∗, π) =

1

mn(β − α)

m∑
i=1

jβ∑
j=jα+1

πi,(j)π .

Then our new formulation SVMtight
pAUC consists of solving the

following convex optimization problem:

min
w,ξ≥0

1

2
||w||22 + Cξ (OP2)

s.t. ∀z ∈ Zβ , π ∈ Πm,jβ :

w�(φz(S, π
∗)− φz(S, π)

) ≥ Δβ(π
∗, π)− ξ ,

where C > 0 as before is a regularization parameter. As with
the earlier structural SVM formulation, OP2 is a quadratic
program with an exponential number of constraints. We
describe efficient solvers for this problem in Section 5.

Upper Bound on R̂ Optimized by SVMtight
pAUC. We

can show that the new SVM formulation in OP2 optimizes
a tighter upper bound on the pAUC risk than the previous
structural SVM formulation in OP1. In particular, we have
the following characterization of the upper bound optimized
by OP2:

Theorem 4. Let 0 ≤ α < β ≤ 1. Then for any w ∈ Rd,
the smallest ξ ≥ 0 satisfying the constraints of OP2 can be
characterized as follows:

ξ = ξpAUC

where ξpAUC is as in Theorems 1 and 2.

The proof can be found in [19]. Note that the error term
in the new formulation does not have the additional non-
negative term ξextra that was present with the error term
in the previous formulation (see Theorems 1 and 2), thus
resulting in a tighter upper bound on the pAUC risk.

5. OPTIMIZATION METHODS FOR SVMtight
pAUC

In this section, we describe two optimization techniques
for solving OP2, namely, a cutting-plane algorithm that has
better run time guarantees than the cutting-plane solver of
SVMstruct

pAUC and a (primal) projected subgradient method.

5.1 Cutting-Plane Method
The optimization problem OP2 has an exponential num-

ber of constraints, one for each set z ∈ Zβ and matrix
π ∈ Πm,jβ . One approach to solving this problem is through
a cutting-plane method [14], which starts with an empty
constraint set C = ∅, and on each iteration, adds the most-
violated constraint to C, thereby solving a tighter relaxation
of OP1 in the subsequent iteration; the algorithm stops when
no constraint is violated by more than ε (see Algorithm 1).

It can be shown that for any fixed regularization param-
eter C > 0 and tolerance parameter ε > 0, Algorithm 1
converges in a constant number of iterations [14]. Since the
quadratic program in each iteration (line 5) is of constant
size, the only bottleneck in the algorithm is the combina-
torial optimization over Zβ × Πm,jβ required to find the
most-violated constraint (line 6).

Algorithm 1 Cutting-Plane Method for SVMtight
pAUC

1: Inputs: S = (S+, S−), α, β, C, ε
2: Initialize: C = ∅
3: H(S, z, π;w) ≡ Δβ(π

∗, π)−w�(
φz(S, π∗)− φz(S, π)

)

4: Repeat
5: (w, ξ) = argmin

w,ξ≥0

1
2
||w||22 + Cξ

s.t. ∀(z, π) ∈ C : ξ ≥ H(S, z, π;w)

6: (z̄, π̄) = argmax
z∈Zβ , π∈Πm,jβ

H(S, z, π;w)

(compute the most-violated constraint)
7: C = C ∪ {(z̄, π̄)}
8: Until (H(S, z̄, π̄;w) ≤ ξ + ε)
9: Output: w

Algorithm 2 SVMtight
pAUC: Find Most-Violated Constraint

1: Inputs: S = (S+, S−), α, β, w
2: Set z̄ to the set of negative instances in the top jβ positions in

the ranking of negative instances in S− (in descending order
of scores) by w�x

3: Obtain π̄ by applying the procedure for finding the most-
violated constraint in SVMstruct

pAUC on (S+, z̄) (see [18])

4: Output: (z̄, π̄)

Finding Most-Violated Constraint. It can be shown
that in the solution (z̄, π̄) to the combinatorial optimization
problem in Algorithm 1 (line 6), the set z̄ contains the top
jβ negative instances ranked (among all negative instances)
by w�x (see [19]). Hence, finding z̄ simply involves sort-
ing the negative instances in S− according to w�x. Having
fixed z̄, finding the ordering matrix π̄ then reduces to find-
ing the most-violated constraint in SVMstruct

pAUC [18], but with
a smaller set of instances (S+, z̄) (see Algorithm 2) .

Time Complexity. A naive implementation of this pro-
cedure would take O

(
n log n + mjβ + (m+n)d

)
. However,

by using a more compact representation of the orderings [13],
the time complexity can be reduced to O

(
n log n + (m +

jβ) log(m+jβ) + (m+n)d
)
, which is clearly lower than the

O
(
(m + n) log(m + n) + (m + n)d

)
time required to find

the most-violated constraint in SVMstruct
pAUC; moreover, unlike

in SVMstruct
pAUC, the time complexity decreases with β.

Convergence. It can be shown from [15] that the number
of iterations needed for Algorithm 1 to converge is at most⌈

log2

(1

4R2
tightC

)⌉
+

⌈16R2
tightC

ε

⌉
,

where Rtight =
β

β−α
maxi,j ||x+

i − x−
j ||2; see [19] for details.

This is a stronger guarantee than the one for SVMstruct
pAUC,

where the number of iterations required by the cutting-plane
procedure to converge is at most⌈

log2

(1

4R2
structC

)⌉
+

⌈16R2
structC

ε

⌉
,

where Rstruct =
1

β−α
maxi,j ||x+

i −x−
j ||2; this gives Rstruct =

1
β
Rtight ≥ Rtight. The larger value of Rstruct than Rtight is

due to the fact that the joint feature map φ in SVMstruct
pAUC

is defined over the entire set of negative instances, whereas
the joint feature map φz in SVMstruct

pAUC is defined over only a
subset of negative instances z of size jβ.

5.2 Primal Projected Sub-gradient Method
We now describe a projected sub-gradient method for solv-

ing an equivalent reformulation of OP2 (along the lines of

Algorithm 3 Projected Subgradient Method for SVMtight
pAUC

1: Inputs: S = (S+, S−), α, β, C, η0, tmax

2: Initialize: w0 = Initial solution in W
3: H(S, z, π;w) ≡ Δβ(π

∗, π)− w�(
φz(S, π∗)− φz(S, π)

)

4: For t = 1 to tmax do:
5: (z̄, π̄) = argmax

z∈Zβ, π∈Πm,jβ

H(S, z, π;wt)

6: ∇Qw(wt) = φz̄(S, π∗)− φz̄(S, π̄)
7: wt+1/2 = wt − η0√

t
∇Qw(wt) [Subgradient Update Step]

8: wt+1 = PW

(
wt+1/2

)
[Projection Step]

9: End For
10: Output: wt∗ , where t∗ = argmin1≤t≤tmax+1Q(wt)

[34]).4 Consider the following unconstrained form of OP2:

min
w

1

2
||w||22 +C max

z∈Zβ , π∈Πm,jβ

H(S, z, π;w), (OP3)

where H(S, z, π;w) = Δβ(π
∗, π)−w�(φz(S, π

∗)−φz(S, π)
)
.

As in [34], this optimization problem in turn can be reformu-
lated into the following equivalent constrained optimization
problem, where the regularization term is now part of an
inequality constraint:

min
w

[
max

z∈Zβ, π∈Πm,jβ

H(S, z, π;w)
]
, s.t. ||w||2 ≤ λ, (OP4)

where for every value of C > 0 in OP3, there exists a value
of λ > 0 in OP4 for which the two optimization problems
have the same solution. OP4 can be efficiently solved using
a projected subgradient method, as described below.

Let Q(w) denote the objective function in OP4 and let
W = {w ∈ Rd | ||w||2 ≤ λ} denote the feasible set. The pro-
jected subgradient method (outlined in Algorithm 3) starts
with an initial solution w0 in W , and on each iteration t,
performs a two step update, involving a subgradient based
update and a projection:

wt+1 = PW

(
wt − ηt∇wQ(wt)

)
,

where PW denotes the Euclidean projection onto W , ∇wQ
is a subgradient of Q with respect to w, and ηt is an appro-
priate step size.

Note that Q(w) is a point-wise maximum of a set of linear
functions; hence, one subgradient of Q (with respect to w)
at wt is the gradient of the linear function that attains the
highest value at wt [5]:

∇Qw(wt) = φz̄(S, π
∗)− φz̄(S, π̄),

where (π̄, z̄) is the maximizer of H(S, z, π;wt) over z ∈ Zβ

and π ∈ Πm,jβ , which can be computed efficiently using the
procedure outlined in Algorithm 2.

From standard results [6], one can show that when ηt =
η0/

√
t, for some η0 > 0, the projected subgradient method

takes Õ(1/ε2) iterations5 to reach a solution that is ε-close to
the optimal solution. Since the subgradient computation can
be performed in O

(
n log n+(m+jβ) log(m+jβ) + (m+n)d

)
time and the projection onto the 	2-ball can be performed
in O(d) time, the total time taken by the algorithm to reach

an ε-optimal solution is Õ
(
(n log n + (m + jβ) log(m +

jβ) + (m+ n)d)/ε2
)
.

4While the method described uses linear scoring functions,
one can extend it to learn non-linear scoring functions by
incorporating kernels in the primal formulation (see [26]).
5Here Õ hides only polylogarithmic factors in 1/ε.

6. SPARSE EXTENSIONS OF SVMtight
pAUC

In this section, we discuss how the SVMtight
pAUC method

can be extended to learn sparse models, often of interest
in biological applications. In particular, we discuss how
the SVMtight

pAUC optimization problem can be solved when the
regularizer used is not the 	2 norm, but instead a sparsity-
inducing regularizer Ω : Rd → R, such as the 	1 regularizer
(known as lasso penalty in regression settings [28]), the elas-
tic net regularizer [35], or the mixed 	1/	2 regularizer (known
as group lasso penalty in regression settings [33]). As dis-
cussed further in our experiments, such sparsity-inducing
regularizers are useful in several applications where the par-
tial AUC performance measure is of interest.

Indeed, both the 	1 penalty, Ω(w) = ‖w‖1, and the elastic
net penalty, Ω(w) = κ‖w‖1 + (1− κ) 1

2
‖w‖22 with 0 ≤ κ ≤ 1,

which is a convex combination of the 	1 and 	2 penalties, are
useful in applications such as drug discovery and gene selec-
tion for cancer diagnosis, where a small subset of features
that yield high accuracy needs to be selected; while the 	1
penalty is known to yield highly sparse models, often at the
cost of accuracy, the elastic net penalty strikes a trade off
between sparsity and accuracy.

On the other hand, the group lasso penalty is of interest in
applications where the features fall into natural groups and
a small set of feature groups needs to be selected; this is the
case for example with the protein-protein interaction pre-
diction task we consider, where the features fall into natural
groups (each corresponding to a different data source), and it
is desirable to learn a prediction model that uses a small set
of such feature groups (data sources). More formally, given
a set of P non-overlapping groups into which the d features
can be divided, say {G1, . . . ,GP }, where ∪P

p=1Gp = {1, . . . , d}
and ∩P

p=1Gp = φ, the group lasso penalty can be defined as

Ω(w) =
(∑P

p=1 ‖wGp‖2
)2
, where wGp is a vector of weights

corresponding to the features in Gp. Note that the group
lasso applies 	1 regularization at the group level and 	2 reg-
ularization on weights within each group, thus promoting
sparsity at the group level, while penalizing model complex-
ity within each group.

While for each of these sparsity-inducing regularizers, one
could potentially use a cutting-plane style method to solve
the resulting optimization problem, owing to high training
times observed with the cutting-plane method when applied
to learn sparse models [34, 4] (this is also confirmed by our
experiments in the next section), we instead resort to the
projected subgradient method, which offers a clean and el-
egant way of incorporating different regularizers (as long as
the projection step can be performed efficiently). In partic-
ular, we are interested in solving the following optimization
problem using the projected subgradient technique for dif-
ferent sparsity-inducing norms Ω(w).

min
w

[
max

z∈Zβ, π∈Πm,jβ

H(S, z, π;w)
]
, s.t. Ω(w) ≤ λ.

In the case of the 	1 penalty, the projection step in Algorithm
3 can be performed efficiently in time linear in the number
of dimensions using the algorithm developed in [11]; in the
case of the elastic net penalty, an extension of the same
algorithm [10] allows efficient projection in linear time; with
the group lasso penalty, the projection step can be efficiently
computed in linear time using the algorithm in [29].

7. EXPERIMENTAL RESULTS
In this section, we give extensive experimental evalua-

tions of the proposed method on real-world and synthetic
data. We present three sets of experimental results: compar-
ison between the partial AUC performances of the proposed
SVMtight

pAUC method and the earlier structural SVM method,

SVMstruct
pAUC; comparison of the run time performances of the

different optimization techniques for solving the SVMtight
pAUC

and SVMstruct
pAUC optimization problems; and evaluation of the

different sparse extensions of SVMtight
pAUC. We start by de-

scribing various bioinformatics tasks where the partial AUC
is of interest and which will be used in our experiments.

7.1 Bioinformatics Tasks and Data Sets
Drug Discovery. Here one is given examples of chemical

compounds that are active or inactive against a therapeutic
target, and the goal is to rank new compounds such that
active ones appear at the top of the list; in this application,
it is of interest to optimize partial AUC in a small FPR range
[0, β], which corresponds to optimizing ranking accuracy at
the top of the list. We used two data sets for this task.
The first is a virtual screening data set from [16], which
contains 2142 compounds, each represented as a 1021-bit
vector using the FP2 molecular fingerprint representation as
in [2]; there are 5 sets of 50 active compounds each (active
against 5 different targets), and 1892 inactive compounds,
where for each target, the 50 active compounds are treated
as positive, and all others as negative. The second data set
is from the KDD Cup 2001 challenge6; this contains 1909
compounds, each represented by 139,351 binary features,
of which 42 compounds are active (known to bind well to a
target receptor, thrombin), while the remaining are inactive.

Protein-Protein Interaction (PPI) Prediction. Here
the goal is to predict whether a pair of proteins interact or
not; owing to the highly imbalanced nature of PPI data, the
partial AUC in a small FPR range [0, β] has been advocated
as a performance measure for this task [21]. We used the
PPI data for yeast obtained from [21]7, which contains 2865
protein pairs known to be interacting and a random set of
237,384 protein pairs taken as non-interacting. Each pro-
tein pair is represented using 162 features, grouped into 17
groups based on the data source they were obtained from.

Gene Ranking. Here the goal is to rank genes by rel-
evance to a disease; here again the partial AUC in a small
FPR range [0, β], which captures ranking performance at
the top of the list, is useful. We used a Leukemia microar-
ray gene expression data set for this task, obtained from
[12]; this consists of 7129 genes, each represented using 72
features (corresponding to gene expression levels in different
tissue samples); out of these 18 genes are known to be asso-
ciated with leukemia (positive), while 157 genes are known
to be irrelevant to the disease (negative).

Medical Diagnosis. In many medical diagnosis tasks,
the performance measure of interest is the partial AUC in
a clinically relevant portion of the ROC curve; this can ei-
ther be an FPR range of the form [0, β] or more generally a
range [α, β] for α > 0. We consider three such tasks. The
first is ovarian cancer diagnosis from protein biomarkers;

6http://pages.cs.wisc.edu/~dpage/kddcup2001/
7http://www.cs.cmu.edu/~qyj/papers_sulp/
proteins05_PPI.html

pAUC(0, β)
Cheminformatics KDD Cup 2001 PPI Leukemia Ovarian Cancer

β = 0.05 β = 0.1 β = 0.05 β = 0.1 β = 0.01 β = 0.05 β = 0.1 β = 0.1 β = 0.1 β = 0.2

SVMtight
pAUC[0, β] 57.10 65.30 62.20 69.91 25.49 43.98 52.95 30.44 91.84 94.37

SVMstruct
pAUC[0, β] 57.03 65.28 61.53 70.12 23.06 ** 41.70 ** 51.96 ** 24.64 ** 91.84 94.29

SVMAUC 53.98 62.78 * 51.45 ** 62.23 ** 13.51 ** 29.57 ** 39.72 ** 28.83 92.17 94.56

Table 1: SVMpAUC[0, β] on different bioinformatics data sets.

pAUC(α, β)
KDD Cup 2008 Diabetes

[0.2s, 0.3s] [0.1, 0.2]

SVMtight
pAUC[α, β] 53.43 60.94

SVMstruct
pAUC[α, β] 51.89 48.72 **

SVMAUC 50.66 * 62.03

Table 2: SVMpAUC[α, β] on medical data sets.

this data set obtained from [7]8 contains 216 tissue samples,
represented using 373,401 protein biomarkers, of which 121
samples are cancerous (positive) and the remaining are nor-
mal (negative). The second task we consider is the (early)
breast cancer detection part of the KDD Cup 2008 challenge
[23], where one needs to predict whether a given region of
interest (ROI) from an X-ray image of the breast is malig-
nant (positive) or benign (negative). This data set consists
of information for 118 malignant patients and 1594 normal
patients, where 4 X-ray images of the breast are available
for each patient. Overall, there are 102,294 candidate ROIs
from these X-ray images, with each candidate represented by
117 features. In the KDD Cup challenge, the performance
measure for this task was a scaled version of partial AUC
in a false positive range [0.2s, 0.3s], where s = 6848/101671
(this is the total number of images divided by the total num-
ber of negative ROIs), deemed clinically relevant based on
radiologist surveys. The third medical diagnosis data set
we consider is the Pima Indian Diabetes data set (drawn
from the UCI machine learning repository9), which consists
of 768 samples corresponding to female patients of the Pima
Indian heritage, with 268 having diabetes (positive); each
sample here is described by 8 numerical attributes.

7.2 Comparison of SVMtight
pAUC

with SVMstruct
pAUC

Our first set of experiments involved a comparison of the
partial AUC performances of SVMtight

pAUC and SVMstruct
pAUC on

the bioinformatics tasks mentioned above; the cutting-plane
solver was used with both the methods.10 We first com-
pared the performances of the two methods on partial AUC
in FPR intervals [0, β] for different values of β. Five dif-
ferent data sets (Cheminformatics, KDD Cup 2001, PPI,
Leukemia, Ovarian Cancer) were used for this purpose; the
results, averaged over 10 random train-test splits (subject
to preserving the proportion of positives), are shown in Ta-
ble 1.11 We also compared the two methods on the gen-
eral partial AUC measure in FPR interval [α, β] on two

8http://datam.i2r.a-star.edu.sg/datasets/krbd/
OvarianCancer/OvarianCancer-NCI-QStar.html
9http://archive.ics.uci.edu/ml/

10Code for SVMtight
pAUC is available at http://clweb.csa.

iisc.ernet.in/harikrishna/Papers/SVMpAUC-tight
11The PPI data set was split into train-validation-test sets
in the ratio 1:9:99; KDD Cup 2001 data set: 1/3:1/3:1/3;
for the Leukemia data set, the train set contained a ran-
dom set of 10 positive genes and all 157 negative genes,
while the test set contained everything else; the remaining
data sets were split into train-test sets as follows: Chem-
informatics: 5:95; Ovarian cancer: 2:1. In each case, the

0.5 0.4 0.3 0.2 0.1
0

10

20

30

40

50

60

β

A
vg

. N
o.

 o
f C

al
ls

 to
 F

in
dM

V
C

SVMpAUC−tight

SVMpAUC−struct

0.5 0.4 0.3 0.2 0.1
0

0.1

0.2

0.3

0.4

β

A
vg

. C
P

U
 T

im
e

to
 F

in
d

M
V

C
 (

s)

 SVMpAUC−tight

SVMpAUC−struct

Figure 2: Timing statistics: SVMtight
pAUC[0, β] vs.

SVMstruct
pAUC[0, β] on synthetic data.

medical diagnosis data sets (KDD Cup 2008 and Diabetes);
the results, averaged over 10 random train-test splits, are
shown in Table 2.12 In each case, the AUC optimization
method due to Joachims [13] (SVMAUC) was also included
as a baseline. A single (double) star against a baseline
method indicates a statistically significant difference in per-
formance between SVMtight

pAUC and the baseline method using
the two-sided Wilcoxon test at a 90% (95%) confidence level.
As can be seen, on many of the data sets considered, the
SVMtight

pAUC method achieves statistically significant improve-

ments in partial AUC performance over SVMstruct
pAUC; also, in

most cases, both methods perform better than SVMAUC.

7.3 Run-time Comparisons
Our second set of experiments involved a comparison of

the run-time performance of the different optimization al-
gorithms.13 In order to evaluate the effect of number of
examples and data dimensionality, we used synthetic data
containing N examples in R

d for different N and d; in each
case, 10% of the examples were positive and the rest were
negative. Positive examples were drawn from a multivari-
ate Gaussian distribution N (μ,Σ) with mean μ ∈ R

d and
covariance matrix Σ ∈ R

d×d; negative examples were drawn
from N (−μ,Σ). Here μ was drawn uniformly from {−1, 1}d,
while Σ was drawn from a Wishart distribution.

We first compared the performances of the cutting-plane
solvers used with SVMtight

pAUC and SVMstruct
pAUC methods in terms

of (a) time taken to find the most-violated constraint (MVC),
and (b) the number of calls to this routine, focusing on FPR

parameter ε was set to 10−4. For the PPI and KDD Cup
2001 data sets, the parameter C was selected using the
validation set from the ranges {10−2, 10−1, 1, 10, 102} and
{10−4, 10−3, 10−2, 10−1, 1}, respectively; for the remaining
data sets, C was selected via 5 fold cross-validation (on
the training set) from the ranges {10−4, 10−3, 10−2, 10−1, 1},
{10−2, 10−1, 1, 10, 102}, and {10−6, 10−5, 10−4, 10−3, 10−2},
respectively. For the PPI data set, only a subset of 85 fea-
tures with less than 25% missing values was used.

12The KDD Cup 2008 data set was split into 5%-95% train-
test sets; the Diabetes data set was split into 2:1 train-test
sets; ε was set to 10−4; C was selected via 5-fold cross-
validation (on the train set) from {10−4, 10−3, 10−2, 10−1, 1}
and {10−3, 10−2, 10−1, 1, 102}, respectively.

13All experiments in this section were run on an Intel Xeon
(2.13 GHz) machine with 12 GB RAM.

10
−2

10
0

10
2

10
−5

10
0

10
5

C

A
vg

. C
P

U
 T

im
e

(s
)

N = 10000 d = 100
 β = 0.5
 (L

2
 regularizer)

CP
PSG

10
−2

10
0

10
2

10
−5

10
0

10
5

C

A
vg

. C
P

U
 T

im
e

(s
)

N = 10000 d = 100
 β = 0.1
 (L

2
 regularizer)

CP
PSG

10
−2

10
0

10
2

10
−5

10
0

10
5

C

A
vg

. C
P

U
 T

im
e

(s
)

N = 10000 d = 100
 β = 0.01
 (L

2
 regularizer)

CP
PSG

10
−4

10
−2

10
0

10
−5

10
0

10
5

C

A
vg

. C
P

U
 T

im
e

(s
)

N = 100 d = 10000
 β = 0.1
 (L

2
 regularizer)

CP
PSG

10
−2

10
0

10
2

10
−5

10
0

10
5

C

A
vg

. C
P

U
 T

im
e

(s
)

N = 100 d = 10000
 β = 0.1
 (L

1
 regularizer)

CP
PSG

Figure 3: Timing statistics for SVMtight
pAUC[0, β]: Cutting-plane Method vs. Projected Subgradient Method on

synthetic data.

pAUC(0, 0.1)
Cheminformatics KDD Cup 2001

SVM
�2
pAUC[0, 0.1] 63.25 (100) 77.20 (100)

SVM
elastic-net(0.001)
pAUC [0, 0.1] 63.11 (41.5) 77.52 (41.6)

SVM
elastic-net(0.1)
pAUC [0, 0.1] 56.93 (32.24) 71.93 (27.6)

SVM
�1
pAUC[0, 0.1] 53.63 (11.36) 66.22 (10.0)

Table 3: SVMtight
pAUC with sparsity-inducing regular-

izers on Cheminformatics and KDD Cup 2001 data
sets; % of features selected is reported in brackets.

intervals of the form [0, β]. The data sets used for these ex-
periments were of size N = 105, d = 100; the results, aver-
aged over 10 such randomly generated data sets, are shown
in Figure 2 (C and ε were set to 1 and 0.01 respectively for
both the methods). As expected, the cutting-plane solver for

SVMtight
pAUC was better off than that for SVMstruct

pAUC in both as-
pects. Indeed, consistent with our observations in Section 5,
for the SVMtight

pAUC cutting-plane solver, the time taken to find
the most-violated constraint was found to decrease with β,
while that for the SVMstruct

pAUC cutting-plane solver remained
constant. For both solvers, the number of calls to the rou-
tine for finding the most-violated constraint increased with
decrease in β, though this increase was slower for SVMtight

pAUC.
We also performed a run-time comparison between the

cutting-plane method and the projected subgradient method
in solving the SVMtight

pAUC optimization problem (considering
both 	1 and 	2 regularizations), again focusing on FPR inter-
vals [0, β]. For a fair comparison between the two methods,
similar to [11], we ran the cutting-plane algorithm for a par-
ticular value of C and used the (appropriate) norm of the
learnt weight vector as the value of λ in the projected sub-
gradient method; the projected subgradient method was run
until it reached a primal objective value equal to or lesser
than that attained by the cutting-plane method.14 The aver-
age run times (over 10 random data sets) for different values
of C are shown in Figure 3. With the 	2 regularizer, the pro-
jected subgradient method was found to run faster than the
cutting-plane method on low dimensional data for small val-
ues of β and large values of C; this is because (on low dimen-
sional data) a single iteration of this method requires lesser
running time than a single cutting-plane iteration (which
involves solving a quadratic program). With the 	1 regular-
izer, however, the projected subgradient method was found
to run faster than the cutting-plane method even on high
dimensional data15, motivating us to use the projected sub-
gradient method for the sparse extensions of SVMtight

pAUC.

14The parameter ε was set to 0.01 and 0.1 respectively for the
experiments involving the 	2 and 	1 regularizer, while η0 was
set to λ/10 and λ/100 respectively for these experiments.

15With the 	1 regularizer, each cutting-plane iteration now
involves solving a linear program (LP), which slows down
the algorithm; there has been effort though to reduce the
run time of this method by using specialized LP solvers [31].

pAUC(0, 0.1) # of groups selected

SVM
�2
pAUC[0, 0.1] 67.09 17

SVM
�1/�2
pAUC[0, 0.1] 65.67 11.3

Table 4: Group Sparsity: SVMtight
pAUC (with 	2-

regularizer and 	1/	2-regularizer) on PPI data set.

7.4 Evaluation of Sparse Extensions of SVMtight
pAUC

Our final set of experiments involved evaluating the differ-
ent sparse versions of SVMtight

pAUC on real-world data sets; all
sparse methods were implemented using the projected sub-
gradient method. We evaluated the 	1 and elastic net regu-
larized versions of SVMtight

pAUC on the Cheminformatics (1021
features) and KDD Cup 2001 (139,351 features) drug dis-
covery data sets and compared their performance (in terms
of partial AUC and number of features selected) with that of

the 	2 regularized SVMtight
pAUC. The results, averaged over 10

random train-test splits, are shown in Table 3.16 On both
data sets, the 	2 regularizer does not give sparse models,
while the elastic net regularizer for small values of κ (0.001)
yields models that use only around 40% of the features on
average, but in terms of partial AUC, perform comparable
to the models learnt using the 	2 regularizer. The 	1 regular-
izer on the other hand yields highly sparse models (selecting
around 10% of the features on average), but performs poorly
on partial AUC. We also evaluated the (group) 	1/	2 regu-

larized version of SVMtight
pAUC for the PPI dataset, with all

the 162 features (17 groups) used; the results, averaged over
10 random train-validation-test splits, are shown in Table 4.
The 	1/	2 regularized version picked 11.3 groups on aver-
age, yielding partial AUC values close to the 	2 regularized
version which picked all 17 groups.17,18

8. CONCLUSION
We have developed a new support vector formulation for

optimizing the partial AUC performance measure using a
tighter convex upper bound on the partial AUC loss than a

16We note the partial AUC value reported for the Chemin-
formatics data set using 	2 regularized SVMtight

pAUC with the
projected subgradient method in Table 3 is slightly different
from that reported using 	2 regularized SVMtight

pAUC with the
cutting-plane method in Table 1; this difference is due to
different parameter ranges used for the two experiments.

17We note the partial AUC reported on the PPI data set for
	2 regularized SVMtight

pAUC in Table 4 is higher than that in
Table 1; this is due to the different number of features used.

18For these experiments, we used the same splits as before.
The value of parameter λ (or

√
2λ in the case of the 	2 reg-

ularizer) was chosen from the range {10−4, 10−2, 1, 102, 104}
via cross-validation (or using the validation set); the initial
step-size η0 was set to λ/u, with the value of u chosen from
a range to yield minimum objective value on the train set.

previous structural SVM approach, yielding both improved
accuracy and reduced computational complexity. We pro-
posed two different optimization techniques for solving the
resulting optimization problem. Our experiments on a wide
range of bioinformatics tasks demonstrate the effectiveness
of our approach. We also develop sparse extensions of the
proposed method, often of interest in biological applications.

9. ACKNOWLEDGMENTS
HN thanks P. Balamurugan for discussions on sparsity.

HN thanks Google India for support to attend the confer-
ence. This work is supported in part by a Ramanujan Fel-
lowship from DST to SA.

10. REFERENCES
[1] S. Agarwal. The Infinite Push: A new support vector

ranking algorithm that directly optimizes accuracy at
the absolute top of the list. In SDM, 2011.

[2] S. Agarwal, D. Dugar, and S. Sengupta. Ranking
chemical structures for drug discovery: A new
machine learning approach. Journal of Chemical
Information and Modeling, 50(5):716–731, 2010.

[3] S. Agarwal, T. Graepel, R. Herbrich, S. Har-Peled,
and D. Roth. Generalization bounds for the area
under the ROC curve. Journal of Machine Learning
Research, 6:393–425, 2005.

[4] P. Balamurugan, S. Shevade, and T. Babu. Sequential
alternating proximal method for scalable sparse
structural SVMs. In ICDM, 2012.

[5] D. P. Bertsekas. Nonlinear Programming. Athena
Scientific, Belmont, MA, 1999.

[6] S. Boyd, L. Xiao, and A. Mutapcic. Subgradient
methods. http://www.stanford.edu/class/ee392o/
subgrad_method.pdf, 2003.

[7] T. P. Conrads, M. Zhou, E. F. I. Petricoin, L. Liotta,
and T. D. Veenstra. Cancer diagnosis using proteomic
patterns. Expert Rev. Mol. Diagn., (3):411–420, 2003.

[8] C. Cortes and M. Mohri. AUC optimization vs. error
rate minimization. In NIPS, 2004.

[9] L. E. Dodd and M. S. Pepe. Partial AUC estimation
and regression. Biometrics, 59(3):614–623, 2003.

[10] J. Duchi. Elastic net projections,
http://www.cs.berkeley.edu/~jduchi/projects/

proj_elastic_net.pdf, 2009.

[11] J. Duchi, S. Shalev-Shwartz, Y. Singer, and
T. Chandra. Efficient projections onto the l1-ball for
learning in high dimensions. In ICML, 2008.

[12] T. R. Golub. et al. Molecular classification of cancer:
class discovery and class prediction by gene expression
monitoring. Science, 286(5439):531–537, 1999.

[13] T. Joachims. A support vector method for
multivariate performance measures. In ICML, 2005.

[14] T. Joachims. Training linear SVMs in linear time. In
KDD, 2006.

[15] T. Joachims, T. Finley, and C.-N. J. Yu.
Cutting-plane training of structural SVMs. Machine
Learning, 77(1):27–59, 2009.

[16] R. N. Jorissen and M. K. Gilson. Virtual screening of
molecular databases using a support vector machine.
Journal of Chemical Information and Modeling,
45:549–561, 2005.

[17] O. Komori and S. Eguchi. A boosting method for
maximizing the partial area under the ROC curve.
BMC Bioinformatics, 11:314, 2010.

[18] H. Narasimhan and S. Agarwal. A structural SVM
based approach for optimizing partial AUC. In ICML,
2013.

[19] H. Narasimhan and S. Agarwal. SVMtight
pAUC: A new

support vector method for optimizing partial AUC
based on a tight convex upper bound (full version).
http://clweb.csa.iisc.ernet.in/harikrishna/

Papers/SVMpAUC-tight/kdd-full.pdf, 2013.

[20] M. S. Pepe and M. L. Thompson. Combining
diagnostic test results to increase accuracy.
Biostatistics, 1(2):123–140, 2000.

[21] Y. Qi, Z. Bar-Joseph, and J. Klein-seetharaman.
Evaluation of different biological data and
computational classification methods for use in protein
interaction prediction. Proteins, 63:490–500, 2006.

[22] A. Rakotomamonjy. Sparse support vector infinite
push. In ICML, 2012.

[23] R. B. Rao, O. Yakhnenko, and B. Krishnapuram.
KDD Cup 2008 and the workshop on mining medical
data. SIGKDD Explor. Newsletter, 10(2):34–38, 2008.

[24] M. T. Ricamato and F. Tortorella. Partial AUC
maximization in a linear combination of dichotomizers.
Pattern Recognition, 44(10-11):2669–2677, 2011.

[25] C. Rudin. The p-norm push: A simple convex ranking
algorithm that concentrates at the top of the list.
Journal of Machine Learning Research, 10:2233–2271,
2009.

[26] Y. Singer and N. Srebro. Pegasos: Primal estimated
sub-gradient solver for SVM. In ICML, 2007.

[27] T. Takenouchi, O. Komori, and S. Eguchi. An
extension of the receiver operating characteristic curve
and AUC-optimal classification. Neural Computation,
24(10):2789–2824, 2012.

[28] R. Tibshirani. Regression shrinkage and selection via
the lasso. Journal of the Royal Statistical Society,
Series B, 58:267–288, 1994.

[29] E. van den Berg, M. Schmidt, M. P. Friedlander, and
K. Murphy. Group sparsity via linear-time projection.
Technical Report TR-2008-09, UBC, 2008.

[30] Z. Wang and Y.-C. Chang. Marker selection via
maximizing the partial area under the ROC curve of
linear risk scores. Biostatistics, 12(2):369–385, 2011.

[31] Z. Wang and J. Shawe-Taylor. Large-margin
structured prediction via linear programming. In
AISTATS, 2009.

[32] S.-H. Wu, K.-P. Lin, C.-M. Chen, and M.-S. Chen.
Asymmetric support vector machines: low
false-positive learning under the user tolerance. In
KDD, 2008.

[33] M. Yuan, M. Yuan, Y. Lin, and Y. Lin. Model
selection and estimation in regression with grouped
variables. Journal of the Royal Statistical Society,
Series B, 68:49–67, 2006.

[34] J. Zhu, E. P. Xing, and B. Zhang. Primal sparse
max-margin markov networks. In KDD, 2009.

[35] H. Zou and T. Hastie. Regularization and variable
selection via the elastic net. Journal of the Royal
Statistical Society, Series B, 67:301–320, 2005.

