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Partial Area Under the ROC Curve is critical
to many applications
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SVMpAUC (ICMIL 2013)

Narasimhan, H. and Agarwal, S. “A structural SVM based
approach for optimizing partial AUC”, ICML 2013.
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SVMpAUC (ICMIL 2013)

Narasimhan, H. and Agarwal, S. “A structural SVM based
approach for optimizing partial AUC”, ICML 2013.
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Improved Version of SVMpAUC

Tighter upper bound
Improved accuracy
Better runtime guarantee
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SVMPpAUC (ICMIL 2013)

SVMpAUC: Structural SVM Approach
Narasimhan and Agarwal, 2013
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How does this upper bound look?
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Can we obtain a tighter upper bound?
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Upper bound we want?

1 - pAUC
oc > > 1(faf)— fla;) <0)

negatives 7 in =1
FPR range [, B3]

< Z Z hinge-loss(f(z;") — f(z))
negatives j in =1

FPR range [, 8] pair-Wise hinge loss!
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Rewriting the Partial AUC Loss
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Improved Formulation
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SVMpAUC-tight:
Optimization Problem

max max restricted term capturing
subsets S of negatives ordering matrices (1 — pAUC) + agreement between m and f
of size js of size m X jg for 7 on pairs corresponding to S

N d

L + Regularizer
exponential in size

min —waH? + C¢

w,E>0

s.t. Vze Zs, me Hm,j6 :

/ w' (¢-(8,7) = ¢2(S, 7)) = Ap(n”,w) — ¢

Quadratic program with an exponential number of constraints




SVMpAUC-tight:
Cutting-Plane Solver

Repeat:

min =l § + C¢ 1. Solve OP for a subset of

w,E>
s.t. Vz € Zg, m €My, : constraints.

w (¢:(S,7%) — ¢.(S, 7)) > Ap(n”,m) — & 2. Add the most violated
constraint.
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SVMpAUC-tight:
Cutting-Plane Solver

Repeat:

min =l § + C¢ 1. Solve OP for a subset of

w,E> .
st. Vz€ Zg, €Ty, : constraints.

w (6-(S,7%) — ¢.(S, 7)) > Ap(n’,m) — & 2. Add the most violated

Better Runtime Guarantees:
Maximum number of iterations
Time taken per iteration



SVMpAUC-tight:
Projected Subgradient Solver

Primal formulation;

min { max Ag(r*, m)—w' (éz(S, 77*)_¢z(877r))}

w z€Zg, ﬂ'EHm,jﬁ
S.t.

Jwllz < A



SVMpAUC-tight:
Projected Subgradient Solver

Primal formulation;

min [ max AB(W*,W)—wT(gbz(S, W*)—Cbz(s,ﬂ))}

w ZEZ/@, WEHm’jﬁ
S.t.

Jwllz < A

Repeat:

1. Compute subgradient
and perform update

2. Project on to the
constraint set.



SVMpAUC-tight:
Projected Subgradient Solver

Primal formulation;

min [ max AB(W*,W)—wT(qbz(S, W*)—Cbz(s,ﬁ))}

w ZEZ/@, WEHm’jJB
S.t.

Juwll: < AN

Sparsity-inducing

Repeat: regularizations
1. Compute subgradient LASSO
and perform update Group LASSO

: Elastic-Net
2. Project on to the asHETe

constraint set.
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SVMpAUC-tight Vs SVMpAUC

Partial AUCin [0, 0.1]

. Chem- KDD Cu Ovarian

Leukemia PPl informatics 2001 i Cancer
SVMpAUC-tight 30.44 52.95 65.30 69.91 91.84
SVMpAUC 24.64 51.96 65.28 70.12 91.84
SVMAUC 28.83 39.72 62.78 62.23 92.17

Partial AUC in [0.2s, 0.3s]

KDD Cup 2008
SVMpAUC-tight 53.43
SVMpAUC 51.89
SVMAUC 50.66
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Repeat:

1. Solve OP for a subset of
constraints.

2. Addthe most violated
constraint.



True Positive Rate

Run-time Analysis
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Repeat:
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Run-time Analysis
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Avg. No. of Calls to FindMVC

Repeat:

1. Solve OP for a subset of
constraints.

2. Add the most violated
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Avg. CPU Time (s)

Cutting-Plane vs. Projected Subgradient

N =10000 d =100 N =10000 d =100 N =10000 d =100 N =100 d= 10000 N =100 d= 10000
B=05 =01 B=0.01 B=0.1 B=0.1
(L2 regularizer) (L2 regularizer) (L2 regularizer) (L2 regularizer) (L1 regularizer)
5 5 5
10 — 10 10
) X ) 2
£ £ E Lo - - -9 £
= - [ Y e -,
310 _ E 210 810 _./,'——
© —=—CP © © —=—cCP © g
o - ® —PSG @ 2 g ~ ® —PSG
< -5 < <L -5 — @ —PSG I -5
10 -2 0 2 10 -4 -2 0 10 -2 0 I 2
10 10 10 10 10 10 10 10 10
C o] Cc

Cutting-plane method is faster on high dimensional

data with L2 regularization

Projected subgradient method is faster with

L1 regularization




Sparse and Group Sparse

pAUC(0,0.1)
Cheminformatics | KDD Cup 2001
SVM, 2 ;[0,0.1] 63.25 (100) 77.20  (100)
SVME{Q?}S‘“G“O'OOU (0,0.1] | 63.11  (41.5) 77.52  (41.6)
SVME 5 % V0, 0.1] 56.93  (32.24) | 71.93  (27.6)
SVM_ 5[0, 0.1] 53.63 (11.36) | 66.22 (10.0)
pAUC(0,0.1) | # of groups selected
SVM'2 (;[0, 0.1] 67.09 17
SVM_ L/ 720, 0.1] 65.67 11.3

Sparse models at the cost of decrease in accuracy



Conclusions

A new support vector algorithm for optimizing
partial AUC based on a tight convex upper bound

Cutting-plane solver with better run-time
guarantees

Experiments on several bioinformatics tasks
demonstrate improved accuracy

Projected subgradient solver allows sparse and
group sparse extensions
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