SVMpAUC-tight: A new algorithm for optimizing partial AUC based on a tight convex upper bound

Harikrishna Narasimhan and Shivani Agarwal

Department of Computer Science and Automation Indian Institute of Science, Bangalore

Binary Classification

Vs.

Binary Classification

Bipartite Ranking

Partial AUC?

Full AUC

Partial AUC?

Ranking

learning to rank

Search

About 216,000,000 results (0.23 seconds)

Web Images

Maps

Videos

News

More

Learning to rank - Wikipedia, the free encyclopedia en.wikipedia.org/wiki/Learning to rank

Learning to rank or machine-learned ranking (MLR) is a type of supervised or semisupervised machine learning problem in which the goal is to automatically ...

Applications - Feature vectors - Evaluation measures - Approaches

Yahoo! Learning to Rank Challenge

learningtorankchallenge.yahoo.com/ - United States

Learning to Rank Challenge is closed! Close competition, innovative ideas, and fierce determination were some of the highlights of the first ever Yahoo!

Bangalore, Karnataka

Change location

The web

Pages from India

More search tools

[PDF] Learning to Rank for Information Retrieval This Tutorial

www2009.org/.../T7A-LEARNING%20TO%20RANK%20TUTORIA...

File Format: PDF/Adobe Acrobat - Quick View

12 Apr 2009 - Learning to Rank for Information Retrieval. Tie-Yan Liu. Microsoft Research Asia. A tutorial at WWW 2009. This Tutorial. • Learning to rank for ...

LETOR: A Benchmark Collection for Research on Learning to Rank ...

research.microsoft.com/~letor/

This website is designed to facilitate research in LEarning TO Rank (LETOR). Much information about learning to rank can be found in the website, including ...

[PDF] Large Scale Learning to Rank

www.eecs.tufts.edu/~dscullev/papers/large-scale-rank.pdf

File Format: PDF/Adobe Acrobat - Quick View by D Sculley - Cited by 19 - Related articles

Pairwise learning to rank methods such as RankSVM give good performance, ... In this paper, we are concerned with learning to rank methods that can learn on ...

[PDF] Metric Learning to Rank

www.icml2010.org/papers/504.pdf

File Format: PDF/Adobe Acrobat - Quick View

by B McFee - Cited by 21 - Related articles

Metric Learning to Rank. Brian McFee bmcfee@cs.ucsd.edu. Department of Computer Science and Engineering, University of California, San Diego, CA 92093 ...

[PDF] Yahoo! Learning to Rank Challenge Overview

imlr.csail.mit.edu/proceedings/papers/v14/.../chapelle11a.pdf

File Format: PDF/Adobe Acrobat - Quick View by O Chapelle - Cited by 23 - Related articles

Learning to rank for information retrieval has gained a lot of interest in the ... field in which machine learning algorithms are used to learn this ranking function.

[PDF] Future directions in learning to rank

imlr.csail.mit.edu/proceedings/papers/v14/.../chapelle11b.pdf

Ranking

Google

learning to rank

Search

About 216,000,000 results (0.23 seconds)

Web

Images

Maps

Videos

News More

Bangalore, Karnataka

Change location

The web

Pages from India

More search tools

Learning to rank - Wikipedia, the free encyclopedia

en.wikipedia.org/wiki/Learning to rank

Learning to rank or machine-learned ranking (MLR) is a type of supervised or semisupervised machine learning problem in which the goal is to automatically ...

Applications - Feature vectors - Evaluation measures - Approaches

Yahoo! Learning to Rank Challenge

learningtorankchallenge.yahoo.com/ - United States

Learning to Rank Challenge is closed! Close competition, innovative ideas, and fierce determination were some of the highlights of the first ever Yahoo!

[PDF] Learning to Rank for Information Retrieval This Tutorial

www2009.org/.../T7A-LEARNING%20TO%20RANK%20TUTORIA... File Format: PDF/Adobe Acrobat - Quick View

12 Apr 2009 - Learning to Rank for Information Retrieval. Tie-Yan Liu. Microsoft Research Asia, A tutorial at WWW 2009, This Tutorial, . Learning to rank for ...

LETOR: A Benchmark Collection for Research on Learning to Rank ...

research.microsoft.com/~letor/

This website is designed to facilitate research in LEarning TO Rank (LETOR), Much information about learning to rank can be found in the website, including ...

[PDF] Large Scale Learning to Rank

www.eecs.tufts.edu/~dscullev/papers/large-scale-rank.pdf

File Format: PDF/Adobe Acrobat - Quick View by D Sculley - Cited by 19 - Related articles

Pairwise learning to rank methods such as RankSVM give good performance, ... In this paper, we are concerned with learning to rank methods that can learn on ...

[PDF] Metric Learning to Rank

www.icml2010.org/papers/504.pdf

File Format: PDF/Adobe Acrobat - Quick View by B McFee - Cited by 21 - Related articles

Metric Learning to Rank. Brian McFee bmcfee@cs.ucsd.edu. Department of Computer Science and Engineering, University of California, San Diego, CA 92093 ...

[PDF] Yahoo! Learning to Rank Challenge Overview

imlr.csail.mit.edu/proceedings/papers/v14/.../chapelle11a.pdf

File Format: PDF/Adobe Acrobat - Quick View by O Chapelle - Cited by 23 - Related articles

Learning to rank for information retrieval has gained a lot of interest in the ... field in which machine learning algorithms are used to learn this ranking function.

[PDF] Future directions in learning to rank jmlr.csail.mit.edu/proceedings/papers/v14/.../chapelle11b.pdf

Frue Positive Rate False Positive Rate

Medical Diagnosis

Medical Diagnosis

Bioinformatics

http://en.wikipedia.org/wiki http://commons.wikimedia.org/ http://www.google.com/imghp

Bioinformatics

http://en.wikipedia.org/wiki http://commons.wikimedia.org/ http://www.google.com/imghp

Partial Area Under the ROC Curve is critical to many applications

SVMpAUC (ICML 2013)

Narasimhan, H. and Agarwal, S. "A structural SVM based approach for optimizing partial AUC", ICML 2013.

SVMpAUC (ICML 2013)

Narasimhan, H. and Agarwal, S. "A structural SVM based approach for optimizing partial AUC", ICML 2013.

Improved Version of SVMpAUC

Tighter upper bound
Improved accuracy
Better runtime guarantee

Outline

- Overview of SVMpAUC
- Upper Bound Optimized by SVMpAUC
- Improved Formulation: SVMpAUC-tight
- Optimization Methods
- Experiments

Positive Instances

Training Set

$$X_1$$

GOAL? Learn a scoring function $f:X o\mathbb{R}$

Positive Instances X_1^{\dagger} X_2^{\dagger} X_3^{\dagger} X_n^{\dagger} Training Set

GOAL? Learn a scoring function $f:X\to\mathbb{R}$

 X_3^+ **Positive Instances** X_1^+ X_m Training Set **Negative Instances** *X*₃ **GOAL?** Learn a scoring function $f:X\to\mathbb{R}$ **Build a classifier** Quality of scoring function? Rank objects X_5^{\dagger} X_5 X_3 **Threshold True Positive Rate** or X_1^{-} X_1^{-} **Threshold Assignment** X_6^+ X_6^+

0

False Positive Rate

$$\beta = 0.5$$

Top 3 negatives!

(1 - pAUC) for f

Convex Upper Bound (1 - pAUC) for f

Convex Upper Bound
$$(1 - pAUC) for f + Regularizer$$

Ordering of training examples:

Narasimhan and Agarwal, 2013

Ordering of training examples:

Scoring function f

Ordering of training examples:

Scoring function f

$$\begin{array}{c} (1-\mathrm{pAUC}) \\ \text{for } \pi \end{array} + \begin{array}{c} \operatorname{term\ capturing} \\ \text{agreement\ between} \ \pi \ \text{and} \ f \\ \text{on\ all\ pairs} \end{array}$$

SVMpAUC: Structural SVM Approach
Narasimhan and Agarwal, 2013

Ordering of training examples:

Scoring function f

$$\max_{\substack{\text{ordering matrices } \pi \\ \text{of size } m \times n}} \left((1 - \text{pAUC}) + \underset{\text{on all pairs}}{\text{term capturing}} + \underset{\text{on all pairs}}{\text{term capturing}} \right)$$

SVMpAUC: Structural SVM Approach
Narasimhan and Agarwal, 2013

Convex Upper Bound

$$(1-pAUC)$$
 for f + Regularizer

$$\max_{\substack{\text{ordering matrices } \pi \\ \text{of size } m \times n}} \left((1 - \text{pAUC}) \atop \text{for } \pi \right) + \text{agreement between } \pi \text{ and } f \atop \text{on all pairs} \right)$$

$$\max_{\substack{\text{ordering matrices } \pi \\ \text{of size } m \times n}} \left((1 - \text{pAUC}) + \underset{\text{on all pairs}}{\text{term capturing}} + \underset{\text{on all pairs}}{\text{term capturing}} \right)$$

How does this upper bound look?

Convex Upper Bound
$$(1 - pAUC) for f + Regularizer$$

$$\max_{\substack{\text{ordering matrices } \pi \\ \text{of size } m \times n}} \left((1 - \text{pAUC}) + \text{agreement between } \pi \text{ and } f \right)$$

Can we obtain a tighter upper bound?

Outline

- Overview of SVMpAUC
- Upper Bound Optimized by SVMpAUC
- Improved Formulation: SVMpAUC-tight
- Optimization Methods
- Experiments

1 - pAUC

```
\sum_{\substack{\text{negatives } j \text{ in} \\ \text{FPR range } [\alpha, \beta]}}^{n} \left(\text{no. of positives below } j^{\text{th}} \text{ negative}\right)
```

1 - pAUC

1 - pAUC

1 - pAUC

$$\underset{\text{negatives } j \text{ in } i=1}{\overset{m}{\sum}} \sum_{i=1}^{m} \mathbf{1} \left(f(x_i^+) - f(x_j^-) \le 0 \right)$$

$$\underset{\text{FPR range } [\alpha, \beta]}{\overset{m}{\sum}} \sum_{i=1}^{m} \mathbf{1} \left(f(x_i^+) - f(x_j^-) \le 0 \right)$$

$$\leq \sum_{\text{negatives } j \text{ in }}^{n} \sum_{i=1}^{m} \frac{\text{hinge-loss}(f(x_i^+) - f(x_j^-))}{\text{hinge-loss}(f(x_i^+) - f(x_j^-))}$$

FPR range $[\alpha, \beta]$ pair-wise hinge loss!

$$\max_{\substack{\text{ordering matrices } \pi \\ \text{of size } m \times n}} \left((1 - \text{pAUC}) + \text{agreement between } \pi \text{ and } f \right)$$

$$\max_{\substack{\text{ordering matrices } \pi \\ \text{of size } m \times n}} \left((1 - \text{pAUC}) \atop \text{for } \pi \right) + \text{agreement between } \pi \text{ and } f \atop \text{on all pairs} \right)$$

Subset of pairs of positive-negative examples $\max_{\substack{\text{ordering matrices } \pi \\ \text{of size } m \times n}} \left(\frac{(1 - \text{pAUC})}{\text{for } \pi} + \text{agreement between } \frac{\pi}{\pi} \text{ and } f \right)$

Subset of pairs of positive-negative examples $\max_{\substack{\text{ordering matrices } \pi \\ \text{of size } m \times n}} \left(\frac{(1-\text{pAUC})}{\text{for } \pi} + \text{agreement between } \frac{1}{\pi} \text{ and } f \right)$

$$\frac{\max}{\text{ordering matrices } \pi} \left((1 - \text{pAUC}) + \frac{\text{term capturing}}{\text{agreement between } \pi \text{ and } f} \right) \\
\text{for } \pi + \frac{\text{on all pairs}}{\text{on all pairs}}$$

$$\max_{\substack{\text{ordering matrices } \pi \\ \text{of size } m \times n}} \left((1 - \text{pAUC}) + \underset{\text{on all pairs}}{\text{term capturing}} + \underset{\text{on all pairs}}{\text{term capturing}} \right)$$

approx. pair-wise hinge loss + extra term

$$\max_{\substack{\text{ordering matrices } \pi \\ \text{of size } m \times n}} \left((1 - \text{pAUC}) + \underset{\text{on all pairs}}{\text{term capturing}} + \underset{\text{on all pairs}}{\text{term capturing}} \right)$$

 \leq

approx. pair-wise hinge loss + extra term

$$\max_{\substack{\text{ordering matrices } \pi \\ \text{of size } m \times n}} \left((1 - \text{pAUC}) \atop \text{for } \pi \right) + \text{agreement between } \pi \text{ and } f \atop \text{on all pairs} \right)$$

 \leq

Outline

- Overview of SVMpAUC
- Upper Bound Optimized by SVMpAUC
- Improved Formulation: SVMpAUC-tight
- Optimization Methods
- Experiments

$$\alpha = 0$$
, $\beta = 0.5$

$$3 + 2 + 2 = 7$$

 $\alpha = 0$, $\beta = 0.5$

$$3 + 2 + 2 = 7$$

 $2 + 2 + 1 = 5$

$$3 + 2 + 2 = 7$$
 $2 + 2 + 1 = 5$
 \cdot
 \cdot
 $1 + 1 + 1 = 3$

$$(1-pAUC) \propto \max_{\substack{\text{subsets } S \text{ of negatives} \\ \text{of size } j_{\beta}}} \left(1-\text{AUC restricted to negatives in } S\right)$$

$$(1-\text{pAUC}) \propto \max_{\substack{\text{subsets } S \text{ of negatives} \\ \text{of size } j_{\beta}}} \left(\frac{1-\text{AUC restricted to negatives in } S}{1-\text{AUC restricted to negatives in } S} \right)$$

$$(1-pAUC) \propto \max_{\substack{\text{subsets } S \text{ of negatives} \\ \text{of size } j_{\beta}}} \left(1-pAUC \text{ restricted to negatives in } S\right)$$

$$(1-\text{pAUC}) \propto \max_{\substack{\text{subsets } S \text{ of negatives} \\ \text{of size } j_{\beta}}} \left(\frac{1-\text{pAUC restricted to negatives in } S}{1-\text{pAUC restricted to negatives in } S}\right)$$

 $\max_{ \substack{ \textbf{subsets} \ S \ \text{of negatives} \\ \text{of size} \ j_{\beta} } }$

SVMpAUC objective restricted to S

$$\max_{\substack{\text{subsets } S \text{ of negatives} \\ \text{of size } j_{\beta}}} \left[\max_{\substack{\text{ordering matrices } \pi \\ \text{of size } m \times j_{\beta}}} \left((1 - \text{AUC}) + \underset{\text{on pairs corresponding to } S}{\text{term capturing}} \right] \right]$$


```
\max_{\substack{\text{subsets } S \text{ of negatives} \\ \text{of size } j_{\beta}}} \left[ \max_{\substack{\text{ordering matrices } \pi \\ \text{of size } m \times j_{\beta}}} \left( \max_{\substack{\text{for } \pi \\ \text{for } \pi \text{ on pairs corresponding to } S} \right) \right]
```


approx. pair-wise hinge loss + extra term

$$\max_{\substack{\text{subsets } S \text{ of negatives} \\ \text{of size } j_{\beta}}} \begin{bmatrix} \max_{\substack{\text{ordering matrices } \pi \\ \text{of size } m \times j_{\beta}}} \begin{pmatrix} \text{restricted} & \text{term capturing} \\ (1 - \text{pAUC}) + \text{agreement between } \pi \text{ and } f \\ \text{for } \pi & \text{on pairs corresponding to } S \end{pmatrix}$$

 \leq

Outline

- Overview of SVMpAUC
- Upper Bound Optimized by SVMpAUC
- Improved Formulation: SVMpAUC-tight
- Optimization Methods
- Experiments

SVMpAUC-tight: Optimization Problem

$$\max_{\substack{\textbf{subsets } S \text{ of negatives} \\ \text{of size } j_{\beta}}} \max_{\substack{\textbf{ordering matrices} \\ \text{of size } m \times j_{\beta}}} \left(\begin{array}{c} \text{restricted} \\ (1-\text{pAUC}) + \text{agreement between } \pi \text{ and } f \\ \text{for } \pi & \text{on pairs corresponding to } S \end{array} \right)$$

+ Regularizer

SVMpAUC-tight: Optimization Problem

$$\max_{\substack{\text{subsets } S \text{ of negatives} \\ \text{of size } j_{\beta}}} \max_{\substack{\text{ordering matrices } \pi \\ \text{of size } m \times j_{\beta}}} \begin{pmatrix} \text{restricted} & \text{term capturing} \\ (1 - \text{pAUC}) + \text{agreement between } \pi \text{ and } f \\ \text{for } \pi & \text{on pairs corresponding to } S \end{pmatrix}$$

exponential in size

+ Regularizer

$$\min_{w,\xi \geq 0} \frac{1}{2} ||w||_2^2 + C\xi$$
s.t. $\forall z \in \mathcal{Z}_{\beta}, \ \pi \in \Pi_{m,j_{\beta}}:$

$$w^{\top} \left(\phi_z(S, \pi^*) - \phi_z(S, \pi)\right) \geq \Delta_{\beta}(\pi^*, \pi) - \xi$$

Quadratic program with an exponential number of constraints

SVMpAUC-tight: Cutting-Plane Solver

$$\min_{w,\xi \ge 0} \frac{1}{2} ||w||_2^2 + C\xi$$

s.t.
$$\forall z \in \mathcal{Z}_{\beta}, \ \pi \in \Pi_{m,j_{\beta}}$$
:

$$w^{ op}ig(\phi_z(S,\pi^*)-\phi_z(S,\pi)ig)\ \geq \Delta_eta(\pi^*,\pi)-\xi$$

- Solve OP for a subset of constraints.
- 2. Add the most violated constraint.

SVMpAUC-tight: Cutting-Plane Solver

$\min_{w,\xi \ge 0} \frac{1}{2} ||w||_2^2 + C\xi$

s.t. $\forall z \in \mathcal{Z}_{\beta}, \ \pi \in \Pi_{m,j_{\beta}}$:

$$w^{\top} (\phi_z(S, \pi^*) - \phi_z(S, \pi)) \ge \Delta_{\beta}(\pi^*, \pi) - \xi$$

- Solve OP for a subset of constraints.
- 2. Add the most violated constraint.

SVMpAUC-tight: Cutting-Plane Solver

Repeat:

$$\min_{w,\xi \ge 0} \; \frac{1}{2} ||w||_2^2 + C\xi$$

s.t. $\forall z \in \mathcal{Z}_{\beta}, \ \pi \in \Pi_{m,j_{\beta}}$:

$$w^{\top} (\phi_z(S, \pi^*) - \phi_z(S, \pi)) \ge \Delta_{\beta}(\pi^*, \pi) - \xi$$

- Solve OP for a subset of constraints.
- Add the most violated constraint.

Better Runtime Guarantees:

Maximum number of iterations
Time taken per iteration

SVMpAUC-tight: Projected Subgradient Solver

Primal formulation:

$$\min_{w} \left[\max_{z \in \mathcal{Z}_{\beta}, \ \pi \in \Pi_{m,j_{\beta}}} \Delta_{\beta}(\pi^*, \pi) - w^{\top} \left(\phi_{z}(S, \pi^*) - \phi_{z}(S, \pi) \right) \right]$$
s.t.
$$||w||_{2} \leq \lambda$$

SVMpAUC-tight: Projected Subgradient Solver

Primal formulation:

$$\min_{w} \left[\max_{z \in \mathcal{Z}_{\beta}, \ \pi \in \Pi_{m,j_{\beta}}} \ \Delta_{\beta}(\pi^*, \pi) - w^{\top} (\phi_{z}(S, \pi^*) - \phi_{z}(S, \pi)) \right]$$
s.t.

$$||w||_2 \le \lambda$$

- Compute subgradient and perform update
- 2. Project on to the constraint set.

SVMpAUC-tight: Projected Subgradient Solver

Primal formulation:

$$\min_{w} \left[\max_{z \in \mathcal{Z}_{\beta}, \ \pi \in \Pi_{m,j_{\beta}}} \ \Delta_{\beta}(\pi^*, \pi) - w^{\top} \left(\phi_{z}(S, \pi^*) - \phi_{z}(S, \pi) \right) \right]$$
s.t.

$$||w||_2 \le \lambda$$

Repeat:

- Compute subgradient and perform update
- 2. Project on to the constraint set.

Sparsity-inducing regularizations

LASSO Group LASSO Elastic-Net

Outline

- Overview of SVMpAUC
- Upper Bound Optimized by SVMpAUC
- Improved Formulation: SVMpAUC-tight
- Optimization Methods
- Experiments

SVMpAUC-tight Vs **SVMpAUC**

Partial AUC in [0, 0.1]

	Leukemia	PPI	Chem- informatics	KDD Cup 2001	Ovarian Cancer
SVMpAUC-tight	30.44	52.95	65.30	69.91	91.84
SVMpAUC	24.64	51.96	65.28	70.12	91.84
SVMAUC	28.83	39.72	62.78	62.23	92.17

Partial AUC in [0.2s, 0.3s]

	KDD Cup 2008	
SVMpAUC-tight	53.43	
SVMpAUC	51.89	
SVMAUC	50.66	

Run-time Analysis

- Solve OP for a subset of constraints.
- Add the most violated constraint.

Run-time Analysis

- 1. Solve OP for a subset of constraints.
- Add the most violated constraint.

Run-time Analysis

Cutting-Plane vs. Projected Subgradient

Cutting-plane method is faster on high dimensional data with L2 regularization

Projected subgradient method is faster with L1 regularization

Sparse and Group Sparse Extensions

	pAUC(0, 0.1)			
	Cheminformatics		KDD Cup 2001	
$SVM_{pAUC}^{\ell_2}[0, 0.1]$	63.25	(100)	77.20	(100)
$\mathrm{SVM}_{\mathrm{pAUC}}^{\mathrm{elastic-net}(0.001)}[0, 0.1]$	63.11	(41.5)	77.52	(41.6)
$\mathrm{SVM}_{\mathrm{pAUC}}^{\mathrm{elastic-net}(0.1)}[0, 0.1]$	56.93	(32.24)	71.93	(27.6)
$SVM_{pAUC}^{\ell_1}[0, 0.1]$	53.63	(11.36)	66.22	(10.0)

	pAUC(0, 0.1)	# of groups selected
$SVM_{pAUC}^{\ell_2}[0, 0.1]$	67.09	17
$SVM_{pAUC}^{\ell_1/\ell_2}[0, 0.1]$	65.67	11.3

Sparse models at the cost of decrease in accuracy

Conclusions

- A new support vector algorithm for optimizing partial AUC based on a tight convex upper bound
- Cutting-plane solver with better run-time guarantees
- Experiments on several bioinformatics tasks demonstrate improved accuracy
- Projected subgradient solver allows sparse and group sparse extensions

Questions?