

SVMpAUC-tight: A New Support Vector Method for Optimizing Partial AUC Based on a Tight Convex Upper Bound

Harikrishna Narasimhan and Shivani Agarwal

Department of Computer Science and Automation, Indian Institute of Science, Bangalore

Abstract	Problem Setup	SVMpAUC-tight: Improved Formulation
The area under the ROC curve (AUC) is a widely used performance measure in machine learning and data mining. However, in several applications, performance is measured not in terms of the full AUC, but instead in terms of the <i>partial</i> AUC between two specified false	Positive Instances X_1^+ X_2^+ X_3^+ X_m^+ Negative Instances $X_1^ X_2^ X_3^ X_n^-$ GOAL? Learn a scoring function $f : X \to \mathbb{R}$ Optimize: $(1 - pAUC)$ for f	$ (1-pAUC) \propto \max_{\substack{\text{subsets } S \text{ of negatives} \\ \text{of size } j_{\beta}}} \left(1-pAUC \text{ restricted to negatives in } S \right) $ $ \frac{SVMpAUC-struct \text{ objective restricted to } S}{SVMpAUC-struct \text{ objective restricted to } S} $ $ \max_{\substack{\text{subsets } S \text{ of negatives} \\ \text{of size } j_{\beta}}} \left[\max_{\substack{\text{ordering matrices } \pi \\ \text{of size } m \times j_{\beta}}} \left(\binom{\text{truncated} & \text{term capturing} \\ (1-pAUC) + & \text{agreement between } \pi \text{ and } f \\ \text{for } \pi & \text{on pairs corresponding to } S} \right) \right] $
SVM based approach for optimizing this performance measure (Narasimban and Agarwal 2013). In this paper	Partial AUC	lighter upper bound: extra term absent
we develop a new support vector method, SVMpAUC-		SVMpAUC-tight: Optimization Problem

the partial AUC loss, which leads to *improved accuracy* and reduced computational complexity. As with our previous method, the resulting optimization problem is solved using a cutting plane method. We demonstrate the effectiveness of the new method on a variety of bioinformatics tasks. In addition, using a projected subgradient solver, we develop extensions of our method to learn sparse and group sparse models.

$\min_{w,\xi\geq 0} \; rac{1}{2} w _2^2$	$\xi + C\xi$ Exponential number		
s.t. $\forall z \in \mathcal{Z}_{\beta}, \ \pi \in \Pi_{m,j_{\beta}}$:	of constraints!		
$w^{\top} (\phi_z(S, \pi^*) - \phi_z(S, \pi)) \geq \Delta_{\beta}(\pi^*, \pi) - \xi$			
Cutting Plane Solver			
Repeat:			
1. Solve OP for a subset of /	Better Runtime Guarantee:		
constraints.	Max. number of iterations		
2. Add the most violated	Time taken per iteration		
constraint.			
SVMpAUC-tight: Sparse Extensions			
Primal Formulation			
$\min_{w} \left[\max_{z \in \mathcal{Z}_{\beta}, \ \pi \in \Pi_{m, j_{\beta}}} \Delta_{\beta}(\pi^*, \pi) - w^{\top} \left(\phi_z(S, \pi^*) - \phi_z(S, \pi) \right) \right]$			
$ w _2 \leq$	$\leq \lambda$		
Projected Subgradient	Sparsity-inducing		
Repeat:	Regularizations:		
1 Compute subgradient /			