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Abstract
The area under the ROC curve (AUC) is a widely used
performance measure in machine learning and data
mining. However, in several applications, performance is
measured not in terms of the full AUC, but instead in
terms of the partial AUC between two specified false
positive rates. In recent work, we proposed a structural
SVM based approach for optimizing this performance
measure (Narasimhan and Agarwal, 2013). In this paper,
we develop a new support vector method, SVMpAUC-
tight, that optimizes a tighter convex upper bound on
the partial AUC loss, which leads to improved accuracy
and reduced computational complexity. As with our
previous method, the resulting optimization problem is
solved using a cutting plane method. We demonstrate
the effectiveness of the new method on a variety of
bioinformatics tasks. In addition, using a projected
subgradient solver, we develop extensions of our
method to learn sparse and group sparse models.

Problem Setup

GOAL?  Learn a scoring function

SVMpAUC-struct  (ICML 2013)

Cutting  Plane Solver

Repeat:

1. Solve OP for a subset of 
constraints.

2. Add the most violated 
constraint.
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SVMpAUC-tight:   Improved Formulation

SVMpAUC-struct objective restricted to S

Tighter upper bound: extra term absent

SVMpAUC-tight: Optimization Problem

Better Runtime Guarantee:

Max. number of iterations 
Time taken per iteration

SVMpAUC-tight: Sparse Extensions

Primal Formulation

Projected Subgradient

Repeat:

1. Compute subgradient 
and perform update. 

2. Project on to the 
constraint set.

Sparsity-inducing 
Regularizations:

LASSO
Group LASSO

Elastic-Net

Experimental Results
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SVMpAUC-tight 52.95 65.30 69.91 30.44 91.84

SVMpAUC-struct 51.96 65.28 70.12 24.64 91.84

SVMAUC 39.72 62.78 62.23 28.83 92.17

Partial AUC in [0, 0.1]

KDD Cup 
2008

SVMpAUC-tight 53.43

SVMpAUC-struct 51.89

SVMAUC 50.66

Partial AUC in [0.2s, 0.3s]

Cutting Plane Vs Projected Subgradient  
CP  faster on high dim. data with L2 regularization

PSG faster with L1 regularization

Sparse Extensions
Elastic-net regularization 
yields sparse models with 
pAUC comparable to L2

Exponential number 
of constraints!


