Learning Score Systems for ICU Mortality Prediction via Orthogonal Matching Pursuit

Aadirupa Saha^{*}, Chandrahas Dewangan⁺, **Harikrishna Narasimhan**^{*}, Sriram Sampath[‡], Shivani Agarwal^{*}

*Indian Institute of Science, Bangalore, India
*Veveo India Pvt. Ltd., Bangalore, India
*St. John's Medical College Hospital, Bangalore, India

Predicting Patient Mortality in Intensive Care Units

Estimating probability of patient survival/death in ICUs

- Monitoring quality of care
- Resource allocation
- Comparing ICUs across demographics

St. John's Medical College Hospital, Bangalore, India

Intensive Care Unit patient data

3499 patients with 29 clinical observations (2006-2014)

Applied score systems popular in US and Europe

	AUC
APACHE-II	66%
LOD	63%

Apache-II Score System

Clinical Observations / Features

	4	3	2	1	0	1	2	3	4
Rectal Temp, *C	=41	39.0- 40.9		38.5- 38.9	36.0- 38.4	34.0- 35.9	32.0- 33.9	30.0- 31.9	=29.9
Mean blood pressure, mmHg	=160	130-159	110-129		70-109		50-69		=49
Heart rate	=180	140- 179					55-69	40-54	=39
Respiratory rate	=50	35-49	IUI	lerva	IS T	10-11	6-9		=5
Arterial pH	=7.70	7.60- 7.69		7.50- 7.59	7.33- 7.49		7.25- 7.32	7.15- 7.24	<7.15
Oxygenation		e			۰¢			° °	
If FIO2 > 0.5, use (A - a) DO2	=500	350 499	200- 349		<200				
If FIO2 0.5, use PaO2					>70	61-70		55-60	<55
Serum sodium, meg/L	=180	160- 179	155- 159	150- 154	130- 149		120- 129	111– 119	=110
Serum potassium, meq/L	=7.0	6.0-6.9		5.5-5.9	3.5-5.4	3.0-3.4	2.5-2.9		<2.5
Serum creatinine, mg/dL	=3.5	2.0-3.4	1.5-1.9		0.6-1.4		<0.6		
Hernatocrit	=60		50-59.9	46-49.9	30-45.9		20-29.9		<20
WBC count, 10 ³ /mL	=40		20-39.9	15-19.9	3-14.9		1-2.9		<1

(Knaus et al., Critical Care Medicine, 1985)

Drawbacks of Score Systems

- Not adaptive
 - Often handcrafted by domain experts
 - Tailored to a specific population (Score systems built using western patient data known to perform poorly on Indian patients; e.g., Sampath et al., 1999)
- Fixed set of clinical observations
 - Not all observation available in a hospital

Standard ML Methods?

- Logistic Regression
- Support Vector Machine (+ Platt Scaling)
- Decision Trees

Our Contribution

A ML method for learning score system type models for ICU mortality prediction

- Adaptive!
- Easily interpreted by clinicians

Outline

- Score systems
- Learning score systems using OMP
- Experiments

ICU Mortality Rate Prediction

Patient Training Sample: $((\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N))$

Probability of death:
$$\widehat{\eta}(\mathbf{x}) = \mathbf{P}(y = 1 \,|\, \mathbf{x})$$

Scoro Tablo					
Feature Intervals					
Feature 1	(a ₁ ¹ , a ₂ ¹]	(a ₂ ¹ , a ₃ ¹]	(a ₃ ¹ , a ₄ ¹]	•••	(a _{m1} ¹ , a _(m1+1) ¹]
reature 1	α_1^1	α ₂ ¹	α_3^1	•••	α _{m1} ¹
_	(a ₁ ² , a ₂ ²]	(a ₂ ² , a ₃ ²]	(a ₃ ² , a ₄ ²]	Sc	ores a _(m2+1) ²]
Feature 2	α_1^2	α_2^2	α_3^2	•••	α _{m2} ²
_	(a ₁ ³ , a ₂ ³]	(a ₂ ³ , a ₃ ³]	(a ₃ ³ , a ₄ ³]	•••	(a _{m3} ³ , a _(m3+1) ³]
Feature 3	α_1^{3}	α_2^{3}	α_3^3	•••	$\alpha_{m_3}^{3}$

.

(a ₁ ^d , a ₂ ^d]	(a ₂ ^d , a ₃ ^d]	(a ₃ ^d , a ₄ ^d]	•••	(a _{md} ^d , a _(md+1) ^d]
α_1^d	α_2^{d}	α_3^{d}	•••	α_{md}^{d}

Computing Patient Mortality Rate

Severity score for a patient:

$$f_{\text{severity}}(\mathbf{x}) = \sum_{j=1}^{d} \sum_{k=1}^{m_j} \alpha_k^j \mathbf{1} \left(x_j \in (a_k^j, a_{k+1}^j] \right)$$

Estimated patient mortality:

$$\widehat{\eta}(\mathbf{x}) = \operatorname{sigmoid}[cf_{\operatorname{severity}}(\mathbf{x}) + d]$$

Parameters learnt using logistic regression

Popular Score Systems

- APACHE -II (Knaus et al., Critical Care Medicine, 1985)
- SAPS-II (Le Gall et al., JAMA, 1993)
- MPM-III (Higgins et al., Critical Care Medicine, 2007)
- LOD (Le Gall et al., JAMA, 1996)

. . .

SOFA (Vincent et al., Intensive Care Medicine, 1996)

Not Adaptive!

Outline

- Score systems
- Learning score systems using OMP
- Experiments

Score Table: Reformulation					
Eesture 1	(-∞, a ₁ ¹]	(-∞, a ₂ ¹]	(-∞, a ₃ ¹]	•••	(-∞, a _{m1} ¹]
reature 1	α_1^1	α ₂ ¹	α_3^1	•••	$\alpha_{m_1}^{1}$
	(-∞, a ₁ ²]	(-∞, a₂²]	(-∞, a ₃ ²]	•••	(-∞, a _{m2} ²]
Feature 2	α_1^2	α_2^2	α_3^2	•••	α _{m2} ²
Fosturo 2	(-∞, a ₁ °]	$(-\infty, a_2^{\circ})$	(-∞, a ₃ °]	•••	(-∞,a _{m3} °]
	α ₁ ³	α_2^3	α_3^3	•••	α _{m3} ³
			•		
			•		

Feature d	(-∞, a ₁ ^d]	(-∞, a₂ ^d]	(-∞, a ₃ ^d]	•••	(-∞, a _{md} ^d]
l'eature u	α_1^d	α_2^{d}	α_3^{d}	•••	α_{md}^{d}

•

Score Table: Reformulation

Goal: Find a score table that minimizes logistic loss on training sample

Score Table: Reformulation

Sparse Learning in Blown-up Space

Sparse Learning in Blow-up Space

Original Feature 1

Original Feature d

$$\mathbf{1}(x_1 \le a_1^1) \dots \mathbf{1}(x_1 \le a_1^m) \dots \mathbf{1}(x_d \le a_d^1) \dots \mathbf{1}(x_d \le a_d^m)$$

Orthogonal Matching Pursuit (OMP)

Iterate:

- Compute residual difference between estimated mortality rates and true outcomes
- (Greedily) pick coordinate in blow-up space that best explains this difference
- Solve logistic regression problem over chosen coordinates

LogitOMP-SS

Initialize: $\mathcal{I}_0 = \phi$ Loop $\mathbf{r}_{t}(i) = \eta_{t-1}(i) - \mathbf{1}(y_{i} = 1), \forall i \in [N]$ $(j_{t}, a_{t}) = \underset{(j,a) \in \mathcal{P} \setminus \mathcal{I}_{t-1}}{\operatorname{argmax}} \frac{|\mathbf{b}(j,a)^{\top}\mathbf{r}_{t}|}{||\mathbf{b}(j,a)||_{2}}$ $\mathbf{If}\left(\frac{|\mathbf{b}(j_{t},a_{t})^{\top}\mathbf{r}_{t}|}{||\mathbf{b}(j_{t},a_{t})||_{2}} \leq \epsilon\right)$ **Break End If** $\mathcal{I}_t = \mathcal{I}_{t-1} \cup \{(j_t, a_t)\}$ $(\widehat{\alpha}_{1:t},\widehat{\beta}) =$ $\operatorname{argmin}_{i=1}^{N} \log(1 + e^{-y_i \left(f_{\alpha_{1:t}}(\mathbf{x}_i) + \beta\right)}) + \frac{\lambda}{2} \|\boldsymbol{\alpha}_{1:t}\|_2^2,$ $\boldsymbol{\alpha}_{1:t} \in \mathbb{R}^t, \beta \in \mathbb{R}$ where $f_{\boldsymbol{\alpha}_{1:t}}(\mathbf{x}) = \sum_{\tau=1}^{t} \alpha_{\tau} \mathbf{1} (x_{j_{\tau}} \leq a_{\tau})$ $\eta_t(i) = \sigma_{\text{sigmoid}} (\sum_{\tau=1}^{t} \widehat{\alpha}_{\tau} \mathbf{1} (x_{i,j_{\tau}} \leq a_{\tau}) + \widehat{\beta}), \forall i \in [N]$ t = t + 1**End Loop Output:** $\widehat{\eta}_S(\mathbf{x}) = \sigma_{\text{sigmoid}} \left(\sum_{\tau=1}^{t-1} \widehat{\alpha}_{\tau} \mathbf{1} (x_{j_{\tau}} \leq a_{\tau}) + \widehat{\beta} \right)$

Sparse Learning in Blow-up Space

Original Feature 1

Original Feature d

Outline

- Score systems
- Learning score systems using OMP
- Experiments

Experiments

• Data sets:

- St. John's data (3449 patients, 29 features)

- CinC data / MIMIC-II (4000 patients, 42 features)
- Baseline score systems:
 - APACHE-II
 - SAPS-II
 - SOFA
 - LOD
- Baseline ML methods:
 - Linear/Kernel logistic regression, RankSVM

Comparison with LOD Score System

Methods	AU	C	Brier Sco	re
LogitOMP-SS	70.1	5	0.1639	٦
LOD	63.1	9	0.1724	
Linear Logistic Regression	68.1	5	0.1664	
Kernel Logistic Regression	69.0	0	0.1600	
RankSVM + Platt Scaling	68.9	2	0.1668	

St. John's data

Comparison with APACHE-II Score System

Methods	AUC	Brier Score
LogitOMP-SS	70.47	0.1599
APACHE-II	66.07	0.1673
Linear Logistic Regression	70.47	0.1593
Kernel Logistic Regression	70.69	0.1582
RankSVM + Platt Scaling	70.67	0.1597

St. John's data

Comparison with SAPS-II Score System

Methods	AUC	Brier Score
LogitOMP-SS	94.32	0.0620
SAPS-II	88.02	0.0860
Linear Logistic Regression	91.20	0.0732
Kernel Logistic Regression	93.01	0.0688
RankSVM + Platt Scaling	93.13	0.0692

Cinc Data

Comparison with SOFA Score System

Methods	AUC	Brier Score
LogitOMP-SS	86.67	0.0876
SOFA	81.19	0.0994
Linear Logistic Regression	84.53	0.0946
Kernel Logistic Regression	85.27	0.0921
RankSVM + Platt Scaling	85.49	0.0923

Cinc Data

Group Sparse Variant

- Often desirable to use models that yield good prediction accuracy with a small number of clinical observations
- Pick groups of feature-threshold pairs at each iteration

Group Sparse Variant

No. of Features	AUC	Brier Score
10	63.95	0.1699
15	65.15	0.1684
20	65.93	0.1673
APACHE-II (27 features)	66.07	0.1673

St. John's Data

Conclusion

	Interpretable by Clinicians?	Adaptive?
Static Score Systems		×
Standard ML Methods	×	
Proposed Method	✓	