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Predicting Patient Mortality in 
Intensive Care Units 

Estimating probability of 
patient survival/death in ICUs 

• Monitoring quality of care 

• Resource allocation 

• Comparing ICUs across 
demographics 

• … 



St. John’s Medical College Hospital, 
Bangalore, India 

AUC 

APACHE-II 66% 

LOD 63% 

Intensive Care Unit patient data 
– 3499 patients with 29 clinical 

observations (2006-2014) 

Applied score systems popular in US 
and Europe 

 



(Knaus et al., Critical Care Medicine, 1985) 

Apache-II Score System 
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Drawbacks of Score Systems 

• Not adaptive 

– Often handcrafted by domain experts 

– Tailored to a specific population (Score systems built 
using western patient data known to perform poorly 
on Indian patients; e.g., Sampath et al., 1999) 
 

• Fixed set of clinical observations 

– Not all observation available in a hospital 

 



• Logistic Regression 

• Support Vector Machine (+ Platt Scaling) 

• Decision Trees 

• … 

Standard ML Methods? 

Representation 
different from 
what clinicians 

prefer! 



 A ML method for learning score system type 
models for ICU mortality prediction 

– Adaptive! 

– Easily interpreted by clinicians 

Our Contribution 



Outline 

• Score systems 

• Learning score systems using OMP 

• Experiments 



ICU Mortality Rate Prediction 

Patient Training Sample: 

Probability of death: 
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Severity score for a patient: 

Estimated patient mortality: 

Computing Patient Mortality Rate 

Parameters learnt using logistic regression 



 

 

APACHE -II (Knaus et al., Critical Care Medicine, 1985) 

SAPS-II  (Le Gall et al., JAMA, 1993) 

MPM-III  (Higgins et al., Critical Care Medicine, 2007) 

LOD  (Le Gall et al., JAMA, 1996) 

SOFA  (Vincent et al., Intensive Care Medicine, 1996) 

… 

Popular Score Systems 

Not Adaptive! 



Outline 

• Score systems 

• Learning score systems using OMP 

• Experiments 
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Score Table: Reformulation Thresholds 



Score Table: Reformulation 

Scores/Coefficients Thresholds 

Goal: Find a score table that minimizes 
logistic loss on training sample 



Score Table: Reformulation 

Thresholds 

Obtained by 
clustering each 

feature into intervals 

? 

Scores/Coefficients 



Sparse Learning in Blown-up Space 

Original  Feature 1 Original Feature  d 

Sparse Logistic Regression 



Sparse Learning in Blow-up Space 
Original  Feature 1 Original Feature  d 

Orthogonal Matching Pursuit (OMP) 

Iterate: 

– Compute residual difference between estimated mortality 
rates and true outcomes 

– (Greedily) pick coordinate in blow-up space that best 
explains this difference 

– Solve logistic regression problem over chosen coordinates 

 Lozano et al. , AISTATS 2011 



LogitOMP-SS 



Sparse Learning in Blow-up Space 

Original  Feature 1 Original Feature  d 

Learned scores/coefficients 



Outline 

• Score systems 

• Learning score systems using OMP 

• Experiments 



Experiments 

• Data sets: 
– St. John’s data (3449 patients, 29 features) 

– CinC data / MIMIC-II (4000 patients, 42 features) 

• Baseline score systems: 
– APACHE-II 

– SAPS-II 

– SOFA 

– LOD 

• Baseline ML methods: 
– Linear/Kernel logistic regression, RankSVM 

 

 



St. John’s data 

Methods AUC Brier Score 

LogitOMP-SS 70.15 0.1639 

LOD 63.19 0.1724 

Linear Logistic Regression 68.15 0.1664  

Kernel Logistic Regression 69.00 0.1600 

RankSVM + Platt Scaling 68.92 0.1668 

Comparison with LOD Score System 



Methods AUC Brier Score 

LogitOMP-SS 70.47 0.1599 

APACHE-II 66.07 0.1673 

Linear Logistic Regression 70.47 0.1593 

Kernel Logistic Regression 70.69 0.1582 

RankSVM + Platt Scaling 70.67 0.1597 

St. John’s data 

Comparison with APACHE-II Score System 



Cinc Data 

Comparison with SAPS-II Score System 

Methods AUC Brier Score 

LogitOMP-SS 94.32 0.0620 

SAPS-II 88.02 0.0860 

Linear Logistic Regression 91.20 0.0732 

Kernel Logistic Regression 93.01 0.0688 

RankSVM + Platt Scaling 93.13 0.0692 



Comparison with SOFA Score System 

Methods AUC Brier Score 

LogitOMP-SS 86.67 0.0876 

SOFA 81.19 0.0994 

Linear Logistic Regression 84.53 0.0946 

Kernel Logistic Regression 85.27 0.0921 

RankSVM + Platt Scaling 85.49 0.0923 

Cinc Data 



Group Sparse Variant 

• Often desirable to use models that yield good 
prediction accuracy with a small number of 
clinical observations 

• Pick groups of feature-threshold pairs at each 
iteration 



St. John’s Data 

No. of Features AUC Brier Score 

10 63.95 0.1699 

15 65.15 0.1684 

20 65.93 0.1673 

APACHE-II   (27 features) 66.07 0.1673 

Group Sparse Variant 



Conclusion 

Interpretable  by 
Clinicians? 

Adaptive? 

Static Score Systems ✓ ✗ 
Standard ML Methods ✗ ✓ 

Proposed Method ✓ ✓ 


