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Problem Setup

• Instance space     , Label space

• Probability distribution       on  

• ,

• Goal: Given a training sample 

learn a good class probability estimation (CPE)       

model                         



Previous Approaches

• Weighting errors on positive and negative 
examples differently (Provost, 2000; Japkowicz, 2000; 

Chawla et al., 2004; Van Hulse et al., 2007; He & Garcia, 2009)

• Undersampling majority class to balance • Undersampling majority class to balance 
positive and negative examples (King & Zeng, 2001)

• Asymmetric `link’ function based on generalized 

extreme value (GEV) distribution (Wang & Dey, 2010; 

Calabrese & Osmetti, 2011)



Our Work

• We use tools from the theory of proper 

composite losses to design a loss based on the 

GEV link termed GEV-canonical

• GEV-canonical loss is both flexible and convex

• We also propose the GEV-canonical regression 

algorithm for its minimization 
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Loss Functions for CPE

• A CPE loss function                                    assigns

a penalty              for predicting     when the 

true label is y

• Can be defined by its partial losses

and                          , given by                               



Proper Loss Functions

A CPE loss function                                  is     

proper if

and strictly proper if the minimizer is unique
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Example: Logarithmic Loss

Log loss is strictly proper



Link Functions

Let                 A link function

\psi:[0,1]�V 

is any strictly increasing (and therefore 

invertible) function that maps probabilities in invertible) function that maps probabilities in 

[0,1] to real-valued scores in 



Example: Logit Link



Example: Probit Link



Example: Complementary Log-Log Link



Proper Composite Loss Functions 
[Buja et al, 2005; Reid & Williamson, 2009, 2010]

A loss function                                   is said to be         

proper composite if      a proper CPE loss 

and a link \psi:[0,1] s.t.and a link \psi:[0,1] s.t.



Canonical Proper Loss & Link Pairs
[Buja et al, 2005; Reid & Williamson, 2009, 2010]

• For every link function there is a unique 

canonical proper loss function given by:

 



Canonical Proper Loss & Link Pairs
[Buja et al, 2005; Reid & Williamson, 2009, 2010]

• For every link function there is a unique 

canonical proper loss function given by:

• The resulting proper composite loss has some 

nice properties, including convexity.



Example: Logistic Loss

Log Loss  +  Logit Link  = Logistic Loss  

 



Example: Logistic Loss

Log Loss  +  Logit Link  = Logistic Loss  

Canonical pair
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• CDF of GEV distribution with location 

parameter             scale parameter              and 

shape parameter           : 

Generalized Extreme Value (GEV) 

Probability Distribution

shape parameter           : 

• Used for modeling rare events in statistics



GEV Link Family (Parameterized by   -----)
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GEV-Log Loss Effectively Used in
(Wang & Dey, 2010; Calabrese & Osmetti, 2011)

Log Loss  + GEV Link  = GEV-Log Loss  

NOT a canonical pair; results in non-convex lossNOT a canonical pair; results in non-convex loss



Canonical Proper Loss for GEV Link



GEV-Canonical Loss

(Canonical Loss) + GEV Link = GEV-Canonical Loss 
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GEV-Canonical Loss

• Can be tailored for the problem of CPE for varying 
degrees of rarity 

• Not available in closed form. But, the gradient• Not available in closed form. But, the gradient
and Hessian are available in closed form

• Can be efficiently minimized using IRLS type 
algorithm. We term this GEV-canonical regression



GEV-Canonical Regression
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Experiments

• We have conducted experiments with both 

synthetic and real data

• Parameter     selected using a validation set.

• Results averaged over 10 experiments.



Experiments with Synthetic Data

• Evaluation Metric: Root Mean Square Error 

(RMSE)

Dataset 1 : p = 0.0158 Dataset 2 : p = 0.0312 Dataset 3 : p = 0.095



• Experimented with 12 UCI data sets

• Evaluation Metric: Brier Score (Brier, 1950) 

Experiments with Real Data



Summary



Conclusion and Future Work

• Proposed GEV-canonical regression algorithm 

using convex GEV-canonical loss for the 

problem of CPE when one class is rareproblem of CPE when one class is rare

• Future directions: 

– extensions to large scale data

– statistical guarantees


