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Abstract
We investigate the relationship between three fundamental problems in machine
learning: binary classification, bipartite ranking, and binary class probability esti-
mation (CPE). It is known that a good binary CPE model can be used to obtain a
good binary classification model (by thresholding at 0.5), and also to obtain a good
bipartite ranking model (by using the CPE model directly as a ranking model); it
is also known that a binary classification model does not necessarily yield a CPE
model. However, not much is known about other directions. Formally, these rela-
tionships involve regret transfer bounds. In this paper, we introduce the notion of
weak regret transfer bounds, where the mapping needed to transform a model from
one problem to another depends on the underlying probability distribution (and in
practice, must be estimated from data). We then show that, in this weaker sense, a
good bipartite ranking model can be used to construct a good classification model
(by thresholding at a suitable point), and more surprisingly, also to construct a
good binary CPE model (by calibrating the scores of the ranking model).

1 Introduction
Learning problems with binary labels, where one is given training examples consisting of objects
with binary labels (such as emails labeled spam/non-spam or documents labeled relevant/irrelevant),
are widespread in machine learning. These include for example the three fundamental problems of
binary classification, where the goal is to learn a classification model which, when given a new
object, can predict its label; bipartite ranking, where the goal is to learn a ranking model that can
rank new objects such that those in one category are ranked higher than those in the other; and
binary class probability estimation (CPE), where the goal is to learn a CPE model which, when
given a new object, can estimate the probability of its belonging to each of the two classes. Of
these, binary classification is classical, although several fundamental questions related to binary
classification have been understood only relatively recently [1–4]; bipartite ranking is more recent
and has received much attention in recent years [5–8], and binary CPE, while a classical problem,
also continues to be actively investigated [9,10]. All three problems abound in applications, ranging
from email classification to document retrieval and computer vision to medical diagnosis.

It is well known that a good binary CPE model can be used to obtain a good binary classification
model (in a formal sense that we will detail below; specifically, in terms of regret transfer bounds)
[4, 11]; more recently, it was shown that a good binary CPE model can also be used to obtain a
good bipartite ranking model (again, in terms of regret transfer bounds, to be detailed below) [12].
It is also known that a binary classification model cannot necessarily be converted to a CPE model.1
However, beyond this, not much is understood about the exact relationship between these problems.2

1Note that we start from a single classification model, which rules out the probing reduction of [13].
2There are some results suggesting equivalence between specific boosting-style classification and ranking

algorithms [14, 15], but this does not say anything about relationships between the problems per se.
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Figure 1: (a) Current state of knowledge; (b) State of knowledge after the results of this paper. Here
‘S’ denotes a ‘strong’ regret transfer relationship; ‘W’ denotes a ‘weak’ regret transfer relationship.

In this paper, we introduce the notion of weak regret transfer bounds, where the mapping needed to
transform a model from one problem to another depends on the underlying probability distribution
(and in practice, must be estimated from data). We then show such weak regret transfer bounds
(under mild technical conditions) from bipartite ranking to binary classification, and from bipartite
ranking to binary CPE. Specifically, we show that, given a good bipartite ranking model and access
to either the distribution or a sample from it, one can estimate a suitable threshold and convert the
ranking model into a good binary classification model; similarly, given a good bipartite ranking
model and access to the distribution or a sample, one can ‘calibrate’ the ranking model to construct
a good binary CPE model. Though weak, the regret bounds are non-trivial in the sense that the
sample size required for constructing a good classification or CPE model from an existing ranking
model is smaller than what might be required to learn such models from scratch.

The main idea in transforming a ranking model to a classifier is to find a threshold that minimizes the
expected classification error on the distribution, or the empirical classification error on the sample.
We derive these results for cost-sensitive classification with any cost parameter c. The main idea
in transforming a ranking model to a CPE model is to find a monotonically increasing function
from R to [0, 1] which, when applied to the ranking model, minimizes the expected CPE error on
the distribution, or the empirical CPE error on the sample; this is similar to the idea of isotonic
regression [16–19]. The proof here makes use of a recent result of [20] which relates the squared
error of a calibrated CPE model to classification errors over uniformly drawn costs, and a result
on covering numbers of classes of bounded, monotonically increasing functions on R [21]. As a
by-product of our analysis, we also obtain a weak regret transfer bound from bipartite ranking to
problems involving the area under the cost curve [22] as a performance measure.

The relationships between the three problems – both those previously known and those established
in this paper – are summarized in Figure 1. As noted above, in a weak regret transfer relationship,
given a model for one type of problem, one needs access to a data sample in order to transform this
to a model for another problem. This is in contrast to the previous ‘strong’ relationships, where a
binary CPE model can simply be thresholded at 0.5 (or cost c) to yield a classification model, or can
simply be used directly as a ranking model. Nevertheless, even with the weak relationships, one still
gets that a statistically consistent algorithm for bipartite ranking can be converted into a statistically
consistent algorithm for binary classification or for binary CPE. Moreover, as we demonstrate in our
experiments, if one has access to a good ranking model and only a small additional sample, then
one is better off using this sample to transform the ranking model into a classification or CPE model
rather than using the limited sample to learn a classification or CPE model from scratch.

The paper is structured as follows. We start with some preliminaries and background in Section 2.
Sections 3 and 4 give our main results, namely weak regret transfer bounds from bipartite ranking
to binary classification, and from bipartite ranking to binary CPE, respectively. Section 5 gives
experimental results on both synthetic and real data. All proofs are included in the appendix.

2 Preliminaries and Background

Let X be an instance space and let D be a probability distribution on X × {±1}. For (x, y) ∼ D,
we denote η(x) = P(y = 1 |x) and p = P(y = 1). In the settings we are interested in, given a
training sample S = ((x1, y1), . . . , (xn, yn)) ∈ (X × {±1})n with examples drawn iid from D,
the goal is to learn a binary classification model, a bipartite ranking model, or a binary CPE model.
In what follows, for u ∈ [−∞,∞], we will denote sign(u) = 1 if u > 0 and −1 otherwise, and
sign(u) = 1 if u ≥ 0 and −1 otherwise.
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(Cost-Sensitive) Binary Classification. Here the goal is to learn a model h : X → {±1}. Typically,
one is interested in models h with small expected 0-1 classification error:

er0-1
D [h] = E(x,y)∼D

[
1(h(x) 6= y)

]
,

where 1(·) is 1 if its argument is true and 0 otherwise; this is simply the probability that h misclas-
sifies an instance drawn randomly from D. The optimal 0-1 error (Bayes error) is

er0-1,∗
D = inf

h:X→{±1}
er0-1
D [h] = Ex

[
min

(
η(x), 1− η(x)

)]
;

this is achieved by the Bayes classifier h∗(x) = sign(η(x) − 1
2 ). The 0-1 classification regret of

a classifier h is then regret0-1
D [h] = er0-1

D [h] − er0-1,∗
D . More generally, in a cost-sensitive binary

classification problem with cost parameter c ∈ (0, 1), where the cost of a false positive is c and that
of a false negative is (1− c), one is interested in models h with small cost-sensitive 0-1 error:

er0-1,c
D [h] = E(x,y)∼D

[
(1− c)1

(
y = 1, h(x) = −1

)
+ c1

(
y = −1, h(x) = 1

)]
.

Note that for c = 1
2 , we get er0-1, 12

D [h] = 1
2 er0-1

D [h]. The optimal cost-sensitive 0-1 error for cost
parameter c can then be seen to be

er0-1,c,∗
D = inf

h:X→{±1}
er0-1,c
D [h] = Ex

[
min

(
(1− c)η(x), c(1− η(x))

)]
;

this is achieved by the classifier h∗c(x) = sign(η(x) − c). The c-cost-sensitive regret of a classifier
h is then regret0-1,c

D [h] = er0-1,c
D [h]− er0-1,c,∗

D .

Bipartite Ranking. Here one wants to learn a ranking model f : X → R that assigns higher scores
to positive instances than to negative ones. Specifically, the goal is to learn a ranking function f
with small bipartite ranking error:

errank
D [f ] = E

[
1
(
(y − y′)(f(x)− f(x′)) < 0

)
+ 1

2 1
(
f(x) = f(x′)

) ∣∣ y 6= y′
]
,

where (x, y), (x′, y′) are assumed to be drawn iid from D; this is the probability that a randomly
drawn pair of instances with different labels is mis-ranked by f , with ties broken uniformly at
random. It is known that the ranking error of f is equivalent to one minus the area under the ROC
curve (AUC) of f [5–7]. The optimal ranking error can be seen to be

errank,∗
D = inf

f :X→R
errank
D [f ] =

1

2p(1− p)
Ex,x′

[
min

(
η(x)(1− η(x′)), η(x′)(1− η(x))

)]
;

this is achieved by any function f∗ that is a strictly monotonically increasing transformation of η.
The ranking regret of a ranking function f is given by regretrank

D [f ] = errank
D [f ]− errank,∗

D .

Binary Class Probability Estimation (CPE). The goal here is to learn a class probability estimator
or CPE model η̂ : X → [0, 1] with small squared error (relative to labels converted to {0, 1}):

ersq
D[ η̂ ] = E(x,y)∼D

[(
η̂(x)− y+1

2

)2]
.

The optimal squared error can be seen to be
ersq,∗
D = inf

η̂:X→[0,1]
ersq
D[ η̂ ] = ersq

D[ η ] = Ex
[
η(x)(1− η(x))

]
.

The squared-error regret of a CPE model η̂ can be seen to be
regretsq

D[ η̂ ] = ersq
D[ η̂ ]− ersq,∗

D = Ex
[(
η̂(x)− η(x)

)2]
.

Regret Transfer Bounds. The following (strong) regret transfer results from binary CPE to binary
classification and from binary CPE to bipartite ranking are known:
Theorem 1 ( [4,11]). Let η̂ : X → [0, 1]. Let c ∈ (0, 1). Then the classifier h(x) = sign

(
η̂(x)− c)

obtained by thresholding η̂ at c satisfies
regret0-1,c

D

[
sign ◦ (η̂ − c)

]
≤ Ex

[
|η̂(x)− η(x)|

]
≤
√

regretsq
D[ η̂ ] .

Theorem 2 ( [12]). Let η̂ : X → [0, 1]. Then using η̂ as a ranking model yields

regretrank
D [ η̂ ] ≤ 1

p(1− p)
Ex
[
|η̂(x)− η(x)|

]
≤ 1

p(1− p)

√
regretsq

D[ η̂ ] .

Note that as a consequence of these results, one gets that any learning algorithm that is statistically
consistent for binary CPE, i.e. whose squared-error regret converges in probability to zero as the
training sample size n→∞, can easily be converted into an algorithm that is statistically consistent
for binary classification (with any cost parameter c, by thresholding the CPE models learned by the
algorithm at c), or into an algorithm that is statistically consistent for bipartite ranking (by using the
learned CPE models directly for ranking).
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3 Regret Transfer Bounds from Bipartite Ranking to Binary Classification
In this section, we derive weak regret transfer bounds from bipartite ranking to binary classification.
We derive two bounds. The first holds in an idealized setting where one is given a ranking model f
as well as access to the distribution D for finding a suitable threshold to construct the classifier. The
second bound holds in a setting where one is given a ranking model f and a data sample S drawn
iid from D for finding a suitable threshold; this bound holds with high probability over the draw of
S. Our results will require the following assumption on the distribution D and ranking model f :
Assumption A. Let D be a probability distribution on X × {±1} with marginal distribution µ on
X . Let f : X→R be a ranking model, and let µf denote the induced distribution of scores f(x) ∈ R
when x ∼ µ. We say (D, f) satisfies Assumption A if µf is either discrete, continuous, or mixed
with at most finitely many point masses.

We will find it convenient to define the following set of all increasing functions from R to {±1}:
Tinc =

{
θ : R→{±1} : θ(u) = sign(u− t) or θ(u) = sign(u− t) for some t ∈ [−∞,∞]

}
.

Definition 3 (Optimal classification transform). For any ranking model f : X → R, cost param-
eter c ∈ (0, 1), and probability distribution D over X×{±1} such that (D, f) satisfies Assumption
A, define an optimal classification transform ThreshD,f,c as any increasing function from R to {±1}
such that the classifier h(x) = ThreshD,f,c(f(x)) resulting from composing f with ThreshD,f,c
yields minimum cost-sensitive 0-1 error on D:

ThreshD,f,c ∈ argminθ∈Tinc

{
er0-1,c
D

[
θ ◦ f

]}
. (OP1)

We note that when f is the class probability function η, we have ThreshD,η,c(u) = sign(u− c).
Theorem 4 (Idealized weak regret transfer bound from bipartite ranking to binary classifica-
tion based on distribution). Let (D, f) satisfy Assumption A. Let c ∈ (0, 1). Then the classifier
h(x) = ThreshD,f,c(f(x)) satisfies

regret0-1,c
D

[
ThreshD,f,c ◦ f

]
≤
√

2p(1− p) regretrank
D [f ] .

In practice, one does not have access to the distribution D, and the optimal threshold must be esti-
mated from a data sample. To this end, we define the following:
Definition 5 (Optimal sample-based threshold). For any ranking model f : X → R, cost param-
eter c ∈ (0, 1), and sample S ∈ ∪∞n=1(X×{±1})n, define an optimal sample-based threshold t̂S,f,c
as any threshold on f such that the resulting classifier h(x) = sign(f(x) − t̂S,f,c) yields minimum
cost-sensitive 0-1 error on S:

t̂S,f,c ∈ argmint∈R
{

er0-1,c
S

[
sign ◦

(
f − t

)]}
, (OP2)

where er0-1,c
S [h] denotes the c-cost-sensitive 0-1 error of a classifier h on the empirical distribution

associated with S (i.e. the uniform distribution over examples in S).

Note that given a ranking function f , cost parameter c, and a sample S of size n, the optimal sample-
based threshold t̂S,f,c can be computed inO(n lnn) time by sorting the examples (xi, yi) in S based
on the scores f(xi) and evaluating at most n + 1 distinct thresholds lying between adjacent score
values (and above/below all score values) in this sorted order.
Theorem 6 (Sample-based weak regret transfer bound from bipartite ranking to binary clas-
sification). Let D be any probability distribution on X × {±1} and f : X → R be any fixed
ranking model such that (D, f) satisfies Assumption A. Let S ∈ (X × {±1})n be drawn randomly
according to Dn. Let c ∈ (0, 1). Let 0 < δ ≤ 1. Then with probability at least 1− δ (over the draw
of S ∼ Dn), the classifier h(x) = sign(f(x)− t̂S,f,c) obtained by thresholding f at t̂S,f,c satisfies

regret0-1,c
D

[
sign ◦ (f − t̂S,f,c)

]
≤
√

2p(1− p) regretrank
D [f ] +

√
32
(
2
(

ln(2n) + 1
)

+ ln
(

4
δ

))
n

.

The proof of Theorem 6 involves an application of the result in Theorem 4 together with a standard
VC-dimension based uniform convergence result; specifically, the proof makes use of the fact that
selecting the sample-based threshold in (OP2) is equivalent to empirical risk minimization over Tinc.
Note in particular that the above regret transfer bound, though ‘weak’, is non-trivial in that it suggests
a good classifier can be constructed from a good ranking model using far fewer examples than might
be required for learning a classifier from scratch based on standard VC-dimension bounds.
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Remark 7. We note that, as a consequence of Theorem 6, one can use any learning algorithm that
is statistically consistent for bipartite ranking to construct an algorithm that is consistent for (cost-
sensitive) binary classification as follows: divide the training data into two (say equal) parts, use
one part for learning a ranking model using the consistent ranking algorithm, and the other part for
selecting a threshold on the learned ranking model; both terms in Theorem 6 will then go to zero as
the training sample size increases, yielding consistency for (cost-sensitive) binary classification.
Remark 8. Another implication of the above result is a justification for the use of the AUC as
a surrogate performance measure when learning in cost-sensitive classification settings where the
misclassification costs are unknown during training time [23]. Here, instead of learning a classifier
that minimizes the cost-sensitive classification error for a fixed cost parameter that may turn out to
be incorrect, one can learn a ranking function with good ranking performance (in terms of AUC),
and then later use a small additional sample to select a suitable threshold once the misclassification
costs are known; the above result provides guarantees on the resulting classification performance in
terms of the ranking (AUC) performance of the learned model.

4 Regret Transfer Bounds from Bipartite Ranking to Binary CPE
We now derive weak regret transfer bounds from bipartite ranking to binary CPE. Again, we derive
two bounds: the first holds in an idealized setting where one is given a ranking model f as well as
access to the distribution D for finding a suitable conversion to a CPE model; the second, which is
a high-probability bound, holds in a setting where one is given a ranking model f and a data sample
S drawn iid from D for finding a suitable conversion. We will need the following definition:
Definition 9 (Calibrated CPE model). A binary CPE model η̂ : X → [0, 1] is said to be calibrated
w.r.t. a probability distribution D on X × {±1} if

P(y = 1 | η̂(x) = u) = u, ∀u ∈ range(η̂),
where range(η̂) denotes the range of η̂.

We will make use of the following result, which follows from results in [20] and shows that the
squared error of a calibrated CPE model is related to the expected cost-sensitive error of a classifier
constructed using the optimal threshold in Definition 3, over uniform costs in (0, 1):
Theorem 10 ( [20]). Let η̂ : X → [0, 1] be a binary CPE model that is calibrated w.r.t. D. Then

ersq
D[ η̂ ] = 2Ec∼U(0,1)

[
er0-1,c
D

[
ThreshD,η̂,c ◦ η̂

]]
,

where U(0, 1) is the uniform distribution over (0, 1) and ThreshD,η̂,c is as defined in Definition 3.

The proof of Theorem 10 follows from the fact that for any CPE model η̂ that is calibrated w.r.t. D,
the optimal classification transform is given by ThreshD,η̂,c(u) = sign(u − c), thus generalizing a
similar result noted earlier for the true class probability function η.

We then have the following result, which shows that for a calibrated CPE model η̂ : X→[0, 1], one
can upper bound the squared-error regret in terms of the bipartite ranking regret; this result follows
directly from Theorem 10 and Theorem 4:
Lemma 11 (Regret transfer bound for calibrated CPE models). Let η̂ : X → [0, 1] be a binary
CPE model that is calibrated w.r.t. D. Then

regretsq
D[ η̂ ] ≤

√
8p(1− p) regretrank

D [ η̂ ] .

We are now ready to describe the construction of the optimal CPE transform in the idealized setting.
We will find it convenient to define the following set:

Ginc =
{
g : R→[0, 1] : g is a monotonically increasing function

}
.

Definition 12 (Optimal CPE transform). Let f : X → [a, b] (where a, b ∈ R, a < b) be any
bounded-range ranking model and D be any probability distribution over X × {±1} such that
(D, f) satisfies Assumption A. Moreover assume that µf (see Assumption A), if mixed, does not
have a point mass at the end-points a, b, and that the function ηf : [a, b]→[0, 1] defined as ηf (t) =
P(y = 1 | f(x) = t) is square-integrable w.r.t. the density of the continuous part of µf . Define
an optimal CPE transform CalD,f as any monotonically increasing function from R to [0, 1] such
that the CPE model η̂(x) = CalD,f (f(x)) resulting from composing f with CalD,f yields minimum
squared error on D (see appendix for existence of CalD,f under these conditions):

CalD,f ∈ argming∈Ginc

{
ersq
D

[
g ◦ f

]}
. (OP3)
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Lemma 13 (Properties of CalD,f ). Let (D, f) satisfy the conditions of Definition 12. Then

1. (CalD,f ◦ f) is calibrated w.r.t. D.

2. errank
D

[
CalD,f ◦ f

]
≤ errank

D [f ].

The proof of Lemma 13 is based on equivalent results for the minimizer of a sample version of
(OP3) [24, 25]. Combining this with Lemma 11 immediately gives the following result:
Theorem 14 (Idealized weak regret transfer bound from bipartite ranking to binary CPE
based on distribution). Let (D, f) satisfy the conditions of Definition 12. Then the CPE model
η̂(x) = CalD,f (f(x)) obtained by composing f with CalD,f satisfies

regretsq
D

[
CalD,f ◦ f

]
≤
√

8p(1− p) regretrank
D [f ] .

We now derive a sample version of the above result.
Definition 15 (Optimal sample-based CPE transform). For any ranking model f : X → R
and sample S ∈ ∪∞n=1(X × {±1})n, define an optimal sample-based transform ĈalS,f as any
monotonically increasing function from R to [0, 1] such that the CPE model η̂(x) = ĈalS,f (f(x))

resulting from composing f with ĈalS,f yields minimum squared error on S:

ĈalS,f ∈ argming∈Ginc

{
ersq
S

[
g ◦ f

]}
, (OP4)

where ersq
S [ η̂ ] denotes the squared error of a CPE model η̂ on the empirical distribution associated

with S (i.e. the uniform distribution over examples in S).

The above optimization problem corresponds to the well-known isotonic regression problem and
can be solved in O(n lnn) time using the pool adjacent violators (PAV) algorithm [16] (the PAV
algorithm outputs a score in [0, 1] for each instance in S such that these scores preserve the ordering
of f ; a straightforward interpolation of the scores then yields a monotonically increasing function
of f ).We then have the following sample-based weak regret transfer result:
Theorem 16 (Sample-based weak regret transfer bound from bipartite ranking to binary
CPE). Let D be any probability distribution on X × {±1} and f : X → [a, b] be any fixed
ranking model such that (D, f) satisfies the conditions of Definition 12. Let S ∈ (X × {±1})n
be drawn randomly according to Dn. Let 0 < δ ≤ 1. Then with probability at least 1 − δ (over
the draw of S ∼ Dn), the CPE model η̂(x) = ĈalS,f (f(x)) obtained by composing f with ĈalS,f
satisfies

regretsq
D

[
ĈalS,f ◦ f

]
≤
√

8p(1− p) regretrank
D [f ] + C

( ln(n) + ln
(

1
δ

)
n

)1/3

,

where C is a universal (distribution-independent) constant.

The proof of Theorem 16 involves an application of the idealized result in Theorem 14, together
with a standard uniform convergence argument based on covering numbers applied to the function
class Ginc; for this, we make use of a result on covering numbers of this class [21].
Remark 17. As in the case of binary classification, we note that, as a consequence of Theorem 16,
one can use any learning algorithm that is statistically consistent for bipartite ranking to construct an
algorithm that is consistent for binary CPE as follows: divide the training data into two (say equal)
parts, use one part for learning a ranking model using the consistent ranking algorithm, and the other
part for selecting a CPE transform on the learned ranking model; both terms in Theorem 16 will then
go to zero as the training sample size increases, yielding consistency for binary CPE.
Remark 18. We note a recent result in [19] giving a bound on the empirical squared error of a CPE
model constructed from a ranking model using isotonic regression in terms of the empirical ranking
error of the ranking model. However, this does not amount to a regret transfer bound.

Remark 19. Finally, we note that the quantity Ec∼U(0,1)

[
er0-1,c
D

[
ThreshD,η̂,c ◦ η̂

]]
that appears in

Theorem 10 is also the area under the cost curve [20, 22]; since this quantity is upper bounded in
terms of regretrank

D [f ] by virtue of Theorem 4, we also get a weak regret transfer bound from bipartite
ranking to problems where the area under the cost curve is a performance measure of interest. In
particular, this implies that algorithms that are statistically consistent with respect to AUC can also
be used to construct algorithms that are statistically consistent w.r.t. the area under the cost curve.
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Figure 2: Results on synthetic data. A ranking model was learned using a pairwise linear logistic re-
gression ranking algorithm (which is a consistent ranking algorithm for the distribution used in these
experiments); this was followed by an optimal choice of classification threshold (with c = 1

2 ) or op-
timal CPE transform based on the distribution as outlined in Sections 3 and 4. The plots show (a)
0-1 classification regret of the resulting classification model together with the corresponding upper
bound from Theorem 4; and (b) squared-error regret of the resulting CPE model together with the
corresponding upper bound from Theorem 14. As can be seen, in both cases, the classification/CPE
regret converges to zero as the training sample size increases.

5 Experiments
We conducted two types of experiments to evaluate the results described in this paper: the first
involved synthetic data drawn from a known distribution for which the classification and ranking
regrets could be calculated exactly; the second involved real data from the UCI Machine Learning
Repository. In the first experiment, we learned ranking models using a consistent ranking algorithm
on increasing training sample sizes, converted the learned models using the optimal threshold or
CPE transforms described in Sections 3 and 4 based on the distribution, and verified that this yielded
classification and CPE models with 0-1 classification regret and squared-error regret converging to
zero. In the second experiment, we simulated a setting where a ranking model has been learned
from some data, the original training data is no longer available, and a classification/CPE model is
needed; we investigated whether in such a setting the ranking model could be used in conjunction
with a small additional data sample to produce a useful classification or CPE model.

5.1 Synthetic Data

Our first goal was to verify that using ranking models learned by a statistically consistent ranking
algorithm and applying the distribution-based transformations described in Sections 3 and 4 yields
classification/CPE models with classification/CPE regret converging to zero. For these experiments,
we generated examples in (X = Rd) × {±1} (with d = 100) as follows: each example was
assigned a positive/negative label with equal probability, with the positive instances drawn from a
multivariate Gaussian distribution with mean µ ∈ Rd and covariance matrix Σ ∈ Rd×d, and negative
instances drawn from a multivariate Gaussian distribution with mean −µ and the same covariance
matrix Σ; here µ was drawn uniformly at random from {−1, 1}d, and Σ was drawn from a Wishart
distribution with 200 degrees of freedom and a randomly drawn invertible PSD scale matrix. For this
distribution, the optimal ranking and classification models are linear. Training samples of various
sizes n were generated from this distribution; in each case, a linear ranking model was learned using
a pairwise linear logistic regression algorithm (with regularization parameter set to 1/

√
n), and an

optimal threshold (with c = 1
2 ) or CPE transform was then applied to construct a binary classification

or CPE model. In this case the ranking regret and 0-1 classification regret of a linear model and can
be computed exactly; the squared-error regret for the CPE model was computed approximately by
sampling instances from the distribution. The results are shown in Figure 2. As can be seen, the
classification and squared-error regrets of the classification and CPE models constructed both satisfy
the bounds from Theorems 4 and 14, and converge to zero as the bounds suggest.

5.2 Real Data

Our second goal was to investigate whether good classification and CPE models can be constructed
in practice by applying the data-based transformations described in Sections 3 and 4 to an existing
ranking model. For this purpose, we conducted experiments on several data sets drawn from the UCI
Machine Learning Repository3. We present representative results on two data sets: Spambase (4601

3http://archive.ics.uci.edu/ml/
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Figure 3: Results on real data from the UCI repository. A ranking model was learned using a pair-
wise linear logistic regression ranking algorithm from a part of the data set that was then discarded.
The remaining data was divided into training and test sets. The training data was then used to esti-
mate an empirical (sample-based) classification threshold and CPE transform (calibration) for this
ranking model as outlined in Sections 3 and 4. Using the same training data, a binary classifier and
CPE model were also learned from scratch using a standard linear logistic regression algorithm. The
plots show the resulting test error for both approaches. As can be seen, if only a small amount of
additional data is available, then using this data to convert an existing ranking model into a classifi-
cation/CPE model is more beneficial than learning a classification/CPE model from scratch.

instances, 57 features) and Internet Ads (3279 instances, 1554 features4). Here we divided each
data set into three equal parts. One part was used to learn a ranking model using a pairwise linear
logistic regression algorithm, and was then discarded. This allowed us to simulate a situation where
a (reasonably good) ranking model is available, but the original training data used to learn the model
is no longer accessible. Various subsets of the second part of the data (of increasing size) were then
used to estimate a data-based threshold or CPE transform on this ranking model using the optimal
sample-based methods described in Sections 3 and 4. The performance of the constructed classi-
fication and CPE models on the third part of the data, which was held out for testing purposes, is
shown in Figure 3. For comparison, we also show the performance of binary classification and CPE
models learned directly from the same subsets of the second part of the data using a standard linear
logistic regression algorithm. In each case, the regularization parameter for both standard logistic
regression and pairwise logistic regression was chosen from {10−4, 10−3, 10−2, 10−1, 1, 10, 102}
using 5-fold cross validation on the corresponding training data. As can be seen, when one has
access to a previously learned (or otherwise available) ranking model with good ranking perfor-
mance, and only a small amount of additional data, then one is better off using this data to estimate
a threshold/CPE transform and converting the ranking model into a classification/CPE model, than
learning a classification/CPE model from this data from scratch. However, as can also be seen, the
eventual performance of the classification/CPE model thus constructed is limited by the ranking per-
formance of the original ranking model; therefore, once there is sufficient additional data available,
it is advisable to use this data to learn a new model from scratch.

6 Conclusion

We have investigated the relationship between three fundamental problems in machine learning:
binary classification, bipartite ranking, and binary class probability estimation (CPE). While formal
regret transfer bounds from binary CPE to binary classification and to bipartite ranking are known,
little has been known about other directions. We have introduced the notion of weak regret transfer
bounds that require access to a distribution or data sample, and have established the existence of
such bounds from bipartite ranking to binary classification and to binary CPE. The latter result
makes use of ideas related to calibration and isotonic regression; while these ideas have been used
to calibrate scores from real-valued classifiers to construct probability estimates in practice, to our
knowledge, this is the first use of such ideas in deriving formal regret bounds in relation to ranking.
Our experimental results demonstrate possible uses of the theory developed here.
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On the Relationship Between Binary Classification,
Bipartite Ranking, and Binary Class Probability Estimation

Appendix

A Proof of Theorem 4

Proof. Assume w.l.o.g. that ThreshD,f,c(u) = sign(u − t∗) for some t∗ ∈ [−∞,∞]; a similar
analysis can be shown when ThreshD,f,c(u) = sign(u−t∗) for some t∗. We first recall the following
result of Clémençon et al. [8] (adapted as in [26] to account for ties and conditioning on y 6= y′).

regretrank
D [f ] =

1

2p(1− p)
Ex,x′

[∣∣η(x)− η(x′)
∣∣(1((f(x)− f(x′))(η(x)− η(x′)) < 0

)
+

1

2
1
(
f(x) = f(x′)

))]
.

Next, given a binary classifier h : X → {±1} and a cost parameter c ∈ (0, 1), the cost-sensitive
classification error can be rewritten as

er0-1,c
D [h] = Ex

[
(1− c)η(x)1

(
h(x) = −1

)
+ c
(
1− η(x)

)
1
(
h(x) = 1

)]
and the corresponding regret can be expanded as

regret0-1,c
D [h]

= Ex
[
(1− c)η(x)1

(
h(x) = −1

)
+ c
(
1− η(x)

)
1
(
h(x) = 1

)]
− Ex

[
(1− c)η(x)1

(
η(x) ≤ c

)
+ c
(
1− η(x)

)
1
(
η(x) > c

)]
= Ex

[(
c− η(x)

)
1
(
h(x) = 1, η(x) ≤ c

)]
+ Ex

[(
η(x)− c

)
1
(
h(x) = −1, η(x) > c

)]
.

For h = sign ◦ (f − t∗),

regret0-1,c
D [sign ◦ (f − t∗)]

= Ex
[(
c− η(x)

)
1
(
f(x) > t∗, η(x) ≤ c

)]
+ Ex

[(
η(x)− c

)
1
(
f(x) ≤ t∗, η(x) > c

)]
(1)

= a+ b (say).

We then have

2p(1− p) regretrank
D [f ] ≥ 1

2
Ex,x′

[∣∣η(x)− η(x′)
∣∣(1((f(x)− f(x′))(η(x)− η(x′)) ≤ 0

))]
(getting rid of the term accounting for ties)

≥ 1

2
Ex,x′

[∣∣η(x)− η(x′)
∣∣(1(f(x) ≥ f(x′), η(x) ≤ c, η(x′) > c

)
+1
(
f(x) ≤ f(x′), η(x) > c, η(x′) ≤ c

))]
=

2

2
Ex,x′

[∣∣η(x)− η(x′)
∣∣(1(f(x) ≥ f(x′), η(x) ≤ c, η(x′) > c

))]
= term1 + term2 + term3, (2)

where

term1 = Ex,x′

[∣∣η(x)− η(x′)
∣∣(1(f(x) ≥ f(x′) > t∗, η(x) ≤ c, η(x′) > c

))]
,

term2 = Ex,x′

[∣∣η(x)− η(x′)
∣∣(1(t∗ ≥ f(x) ≥ f(x′), η(x) ≤ c, η(x′) > c

))]
and

term3 = Ex,x′

[∣∣η(x)− η(x′)
∣∣(1(f(x) > t∗, f(x′) ≤ t∗, η(x) ≤ c, η(x′) > c

))]
.

Each of the above terms corresponds to different sets of pairs of instances; term1 corresponds to pairs
where both instances are ranked by f above t∗; term2 corresponds to pairs where both instances are
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ranked by f below (or at the same position as) t∗; term3 corresponds to pairs (x, x′), where x is
ranked by f above t∗, while x′ is ranked below (or at the same position as) t∗. We next bound each
of these terms separately.
term1

= Ex,x′

[∣∣η(x′)− c+ c− η(x)
∣∣(1(f(x) ≥ f(x′) > t∗, η(x) ≤ c, η(x′) > c

))]
≥ Ex,x′

[
2
∣∣η(x′)− c

∣∣∣∣c− η(x)
∣∣(1(f(x) ≥ f(x′) > t∗, η(x) ≤ c, η(x′) > c

))]
(since u+ v ≥ 2

√
uv ≥ 2uv, ∀u, v ∈ [0, 1])

= 2Ex

[∣∣c− η(x)
∣∣1(f(x) > t∗, η(x) ≤ c)Ex′

[∣∣η(x′)− c
∣∣1(t∗ < f(x′) ≤ f(x), η(x′) > c

)]]
.

(3)
By definition, t∗ yields the minimum classification regret among all choices of thresholds t ∈ R:

t∗ = argmin
t∈[−∞,∞]

{
regret0-1,c

D

[
sign ◦

(
f − t

)]}
= argmin

t∈[−∞,∞]

Ex′
[(
η(x′)− c

)
1
(
f(x′) ≤ t, η(x′) > c

)
+
(
c− η(x′)

)
1
(
f(x′) > t, η(x′) ≤ c

)]
(from Eq. (1)).

It can hence be shown that for any t > t∗,
Ex′
[∣∣η(x′)− c

∣∣1(t∗ < f(x′) ≤ t, η(x′) > c
)]
≥ Ex′

[∣∣c− η(x′)
∣∣1(t∗ < f(x′) ≤ t, η(x′) ≤ c

)]
.

Applying the above inequality to Eq. (3) with t = f(x), we have
term1

≥ 2Ex

[∣∣c− η(x)
∣∣1(f(x) > t∗, η(x) ≤ c)Ex′

[∣∣c− η(x′)
∣∣1(t∗ < f(x′) ≤ f(x), η(x′) ≤ c

)]]
≥ 2

2
Ex

[∣∣c− η(x)
∣∣1(f(x) > t∗, η(x) ≤ c)Ex′

[∣∣c− η(x′)
∣∣1(t∗ < f(x′), η(x′) ≤ c

)]]
(since Ex,x′ [g(x, x′)1(f(x) ≤ f(x′))] ≥ 1

2
Ex,x′ [g(x, x′)])

= Ex

[∣∣c− η(x)
∣∣1(f(x) > t∗, η(x) ≤ c)

]
Ex′

[∣∣c− η(x′)
∣∣1(t∗ < f(x′), η(x′) ≤ c

)]
= Ex

[∣∣c− η(x)
∣∣1(f(x) > t∗, η(x) ≤ c)

]2
= a2.

Similarly, one can show

term2 ≥ Ex

[∣∣η(x)− c
∣∣1(f(x) ≤ t∗, η(x) > c)

]2
= b2.

In the case of term3, we have

term3 = Ex,x′

[∣∣η(x′)− c+ c− η(x)
∣∣(1(f(x) > t∗, f(x′) ≤ t∗, η(x) ≤ c, η(x′) > c

))]
≥ Ex,x′

[
2
∣∣η(x′)− c

∣∣∣∣c− η(x)
∣∣(1(f(x) > t∗, f(x′) ≤ t∗, η(x) ≤ c, η(x′) > c

))]
(since u+ v ≥ 2

√
uv ≥ 2uv, ∀u, v ∈ [0, 1])

≥ 2Ex,x′

[∣∣c− η(x)
∣∣1(f(x) > t∗, η(x) ≤ c

)∣∣η(x′)− c
∣∣1(f(x′) ≤ t∗, η(x′) > c

)]
= 2Ex

[∣∣c− η(x)
∣∣1(f(x) > t∗, η(x) ≤ c

)]
Ex′

[∣∣η(x′)− c
∣∣1(f(x′) ≤ t∗, η(x′) > c

)]
= 2ab.

Applying the bounds on term1, term2 and term3 in Eq. (2), we have
2p(1− p) regretrank

D [f ] ≥ a2 + b2 + 2ab

= (a+ b)2

=
(
regret0-1,c

D [sign ◦ (f − t∗)]
)2
.

Hence the proof.
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B Proof of Theorem 6

Proof.

regret0-1,c
D [sign ◦ (f − t̂S,f,c)]

= er0-1,c
D [sign ◦ (f − t̂S,f,c)]− er0-1,c,∗

D

= er0-1,c
D [sign ◦ (f − t̂S,f,c)]− er0-1,c

D [ThreshD,f,c ◦ f ] + er0-1,c
D [ThreshD,f,c ◦ f ]− er0-1,c,∗

D

(where ThreshD,f,c is obtained from (OP1))

=
(

er0-1,c
D [sign ◦ (f − t̂S,f,c)]− er0-1,c

D [ThreshD,f,c ◦ f ]
)

+ regret0-1,c
D [ThreshD,f,c ◦ f ].

(4)

The second term in the above expression can be upper bounded in terms of the ranking regret of
f using Theorem 4. We now derive a bound on the first term by using standard VC-dimension
based uniform convergence result for binary classification. Note that the real-valued function f ,
when applied to each instance drawn from D, induces a distribution over R× {±1}; let us call this
distribution Df . Also, let Sf = {(f(x1), y1), . . . , (f(xn), yn)} be the set constructed by applying
f to each instance in S; given that S is drawn iid from D, it follows that Sf is also iid drawn from
Df . Recall that Tinc is the set of all increasing functions from R to {±1} (see Section 3). One can
now view the optimization problem in (OP1) as risk minimization over Tinc w.r.t. the distributionDf

and the optimization problem in (OP2) as empirical risk minimization over Tinc w.r.t. the training
sample Sf . In other words,

inf
θ∈Tinc

{
er0-1,c
D

[
θ ◦ f

]}
= inf
θ∈Tinc

{
er0-1,c
Df

[
θ
]}

= er0-1,c
Df

[
θ∗
]

and
inf
t∈R

{
er0-1,c
S

[
sign ◦

(
f − t

)]}
= inf
θ∈Tinc

{
er0-1,c
Sf

[
θ
]}

= er0-1,c
Sf

[
θ̂
]
.

Thus the first term in Eq. (4) evaluates to er0-1,c
Df

[
θ̂
]
− er0-1,c

Df

[
θ∗
]
. Using standard results, one can

show that the following upper bound on this quantity holds with probability at least 1− δ:

er0-1,c
Df

[
θ̂
]
− er0-1,c

Df

[
θ∗
]
≤

√
32
(
VC-dim(Tinc)

(
ln(2n) + 1

)
+ ln

(
4
δ

))
n

,

where VC-dim(Tinc) is the VC dimension of Tinc. Thus we have

regret0-1,c
D [sign ◦ (f − t̂S,f,c)]

≤

√
32
(
VC-dim(Tinc)

(
ln(2n) + 1

)
+ ln

(
4
δ

))
n

+
√

2
√
p(1− p) regretrank

D [f ].

It is easy to see that VC-dim(Tinc) = 2; plugging this in the above expression completes the proof.

C Proof of Theorem 10

Our proof for Theorem 10 is simpler than the one in [20] which holds for a more general result. We
first state and prove two lemmas which will be useful in our proof.

Lemma 20. Let D be a distribution over X × {±1}. For any binary class probability estimator
η̂ : X → [0, 1] calibrated w.r.t. D and threshold t ∈ [0, 1],

er0-1,c
D

[
sign ◦ (η̂ − t)] = Esη̂

[
(1− c)sη̂1(sη̂ ≤ t) + c

(
1− sη̂

)
1(sη̂ > t)

]
and

er0-1,c
D

[
sign ◦ (η̂ − t)] = Esη̂

[
(1− c)sη̂1(sη̂ < t) + c

(
1− sη̂

)
1(sη̂ ≥ t)

]
,

where sη̂ is the random variable associated with the score distribution of η̂ over [0, 1].
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Proof. We give a proof for the first part of the result; the second part involving sign can be proved
in a similar manner. For simplicity of notation, we omit the subscript on sη̂ . For any c ∈ (0, 1), we
have

er0-1,c
D

[
sign ◦ (η̂ − t)]

= Ex
[
(1− c)η(x)1(η̂(x) ≤ t) + c

(
1− η(x)

)
1(η̂(x) > t)

]
= Es

[
Ex
[
(1− c)η(x)1(η̂(x) ≤ t) + c

(
1− η(x)

)
1(η̂(x) > t)

∣∣ η̂(x) = s
]]

= Es

[
(1− c)Ex

[
η(x)

∣∣ η̂(x) = s
]
1(s ≤ t) + c

(
1−Ex

[
η(x)

∣∣ η̂(x) = s
])
1(s > t)

]]
= Es

[
(1− c)P(y = 1|s)1(s ≤ t) + c

(
1−P(y = 1|s)

)
1(s > t)

]
(follows from Ex

[
η(x)

∣∣ η̂(x) = s
]

= P(y = 1|s)).

The next lemma states that for any binary class probability estimator η̂ calibrated w.r.t. D and a
given cost parameter c ∈ (0, 1), the optimal classification transform on η̂ that yields minimum
cost-sensitive classification error is simply θ(u) = sign(u− c).
Lemma 21. Let D be a distribution over X × {±1}. For any binary class probability estimator
η̂ : X → [0, 1] calibrated w.r.t. D and cost parameter c ∈ (0, 1),

ThreshD,η̂,c = sign ◦ (η̂ − c).

Proof. Let sη̂ denote the random variable associated with the score distribution of η̂ over [0, 1]; for
simplicity of notation, we omit the subscript on sη̂ . Let us start by considering functions θ ∈ Tinc of
the form θ(u) = sign(u− t) for some t ∈ [0, 1]. For any c ∈ (0, 1), we have

argmint∈[0,1]

{
er0-1,c
D

[
sign ◦ (η̂ − t)]

}
= argmint∈[0,1]

{
Es
[

(1− c)s1(s ≤ t) + c
(
1− s

)
1(s > t)︸ ︷︷ ︸

minimum at t = c

]}
(from Lemma 20)

= c.

The last step follows from the fact that the point-wise minimum is attained at t = c; this implies that
θ(u) = sign(u − c) yields the least possible value of er0-1,c

D

[
θ ◦ η̂

]
over all increasing functions in

Tinc, and hence we have ThreshD,η̂,c = sign ◦ (η̂ − c).

We are now ready to prove Theorem 10. As before, let sη̂ denote the random variable associated
with the score distribution of η̂ over [0, 1]; for simplicity of notation, let us omit the subscript on sη̂ .

Proof of Theorem 10. Starting with the right hand side, we have
2Ec∼U(0,1)

[
er0-1,c
D

[
ThreshD,f,c ◦ f ]

]
= 2Ec∼U(0,1)

[
er0-1,c
D

[
sign ◦ (η̂ − c)]

]
(from Lemma 21)

= 2Ec∼U(0,1)

[
Es
[
(1− c)s1(s ≤ c) + c(1− s)1(s > c)

]]
(from Lemma 20)

= 2Es

[
Ec∼U(0,1)

[
(1− c)s1(s ≤ c)

]
+ Ec∼U(0,1)

[
c(1− s)1(s > c)

]]
(exchanging expectations)

= 2Es

[
s

∫ 1

s

(1− c) dc+ (1− s)
∫ s

0

c dc
]

= Es
[
s(1− s)2 + (1− s)s2

]
= Es

[
P(y = 1|s)(1− s)2 +

(
1−P(y = 1|s)

)
s2
]

(since η̂ is calibrated)

= Ex
[
η(x)(1− η̂(x))2 +

(
1− η(x)

)
η̂(x)2

]
(follows from P(y = 1|s) = Ex

[
η(x)

∣∣ η̂(x) = s
]
)

= ersq
D[η̂].
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D Proof of Lemma 11

Proof. Expanding the left hand side, we have

regretsq
D[η̂] = ersq

D[η̂]− ersq,∗
D = ersq

D[η̂]− ersq
D[η]

= 2Ec∼U(0,1)

[
er0-1,c
D

[
ThreshD,η̂,c ◦ η̂

]]
− 2Ec∼U(0,1)

[
er0-1,c
D

[
ThreshD,η,c ◦ η

]]
(from Theorem 10)

= 2Ec∼U(0,1)

[
er0-1,c
D

[
ThreshD,η̂,c ◦ η̂

]]
− 2Ec∼U(0,1)

[
er0-1,c
D

[
sign ◦ (η − c)

]]
(from Lemma 21)

= 2Ec∼U(0,1)

[
er0-1,c
D

[
ThreshD,η̂,c ◦ η̂

]
− er0-1,c,∗

D

]
≤

√
8p(1− p) regretrank

D [η̂] (from Theorem 4).

E Proof of Lemma 13

We will find it useful to introduce a few notations. For a given ranking model f : X→[a, b] and
distribution D over X × {±1}, define µ̄f (t) = P(f(x) ≤ t) and η̄f (t) = P(y = 1, f(x) ≤ t) for
all t ∈ [a, b]; as before, p = P(y = 1).

We first state a result of [27, 28] that characterizes the minimizer of (OP3).
Theorem 22 ( [27, 28]). Let f : X → [a, b] (where a, b ∈ R, a < b) be any bounded-range ranking
model andD be any probability distribution overX×{±1} such that (D, f) satisfies Assumption A.
Moreover assume that µf (see Assumption A), if mixed, does not have a point mass at the end-points
a, b, and that the function ηf : [a, b]→[0, 1] defined as ηf (t) = P(y = 1 | f(x) = t) is square-
integrable w.r.t. the density of the continuous part of µf . Then the minimizer CalD,f : [a, b]→[0, 1]
of (OP3) exists, and CalD,f (τ) for any τ ∈ (a, b) is given by the right-continuous slope of the largest
convex minorant5 of following graph at t = τ :

G[f ] =
{(
µ̄f (t), η̄f (t)

)
: t ∈ [a, b]

}
. (5)

Moreover, G[CalD,f ◦ f ] is piece-wise linear on all portions where it disagrees with G[f ]; in partic-
ular, there exists a collection of disjoint open intervals {(aα, bα) | α ∈ Λ} in [a, b], where Λ is some
index set, such that CalD,f evaluates to a constant on each such interval (with the constant being
distinct for each interval) and CalD,f is equal to ηf everywhere else in [a, b]:

CalD,f (t) =

{
να if t ∈ (aα, bα), for some α ∈ Λ

ηf (t) otherwise
,

where

να =
η̄f (bα)− η̄f (aα)

µ̄f (bα)− µ̄f (aα)
, (6)

with να 6= να′ for any α 6= α′, α, α′ ∈ Λ.

While the proof for the above result in [27,28] assumes a continuous and strictly positive density µf
over [a, b], it can be extended to handle the slightly more general conditions considered here.

We are now ready to prove the two properties stated for CalD,f in Lemma 13.

Proof of Lemma 13. We shall assume that the score distribution of f over [a, b] is continuous, and
µf denotes the corresponding probability density function; a similar proof can be shown when the
score distribution is discrete or is mixed and satisfies conditions stated in the Lemma. For simplicity
of notation, let us denote CalD,f as Cal.

Proof of (1): We need to show that for any u ∈ range(Cal ◦ f), P(y = 1 | Cal(f(x)) = u) = u.
There are three possible cases that we could consider: (i) u = να, for some unique α ∈ Λ (see

5A real-valued function g1 is a minorant of another real-valued function g2 defined over the same domain,
if g1(z) ≤ g2(z), ∀z; similarly, g1 is a majorant of g2, if g1(z) ≥ g2(z), ∀z.
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Eq. (6)), with Cal(t) = u,∀t ∈ (aα, bα), and Cal(t) 6= u, for all t /∈ (aα, bα); (ii) u 6= να, for any
α ∈ Λ; (iii) u = να for some unique α ∈ Λ, and there exists t /∈ ∪α∈Λ(aα, bα) with Cal(t) = u.

For any u ∈ range(Cal◦f) satisfying case (i), there exists α ∈ Λ s.t. να = u. We have from Eq. (6),

u =
η̄f (bα)− η̄f (aα)

µ̄f (bα)− µ̄f (aα)

=

∫ bα
aα
ηf (s)µf (s)ds∫ bα
aα
µf (s)ds

= P
(
y = 1

∣∣ f(x) ∈ (aα, bα)
)

= P
(
y = 1

∣∣ Cal(f(x)) = u
)
.

The last step follows from the fact that for all t /∈ (aα, bα), Cal(t) 6= u.

For any u ∈ range(Cal ◦ f) satisfying case (ii), there exists no α ∈ Λ with να = u; we thus have
from Theorem 22 that ηf (t) = u for all t with Cal(t) = u. Then

P
(
y = 1

∣∣ Cal(f(x)) = u
)

=

∫
{s : Cal(s)=u} ηf (s)µf (s)ds∫
{s : Cal(s)=u} µf (s)ds

=

∫
{s : Cal(s)=u} uµf (s)ds∫
{s : Cal(s)=u} µf (s)ds

= u.

For any u ∈ range(Cal ◦ f) satisfying case (iii), there exists a unique α ∈ Λ for which να = u, with
Cal(t) = u,∀t ∈ (aα, bα), and there also exists t /∈ ∪α∈Λ(aα, bα), for which Cal(t) = ηf (t) = u.

P
(
y = 1

∣∣ Cal(f(x)) = u
)

=

∫
{s : Cal(s)=u} ηf (s)µf (s)ds∫
{s : Cal(s)=u} µf (s)ds

=

∫ bα
aα
ηf (s)µf (s)ds +

∫
{s : Cal(s)=ηf (s)=u} ηf (s)µf (s)ds∫

{s : Cal(s)=u} µf (s)ds

=
u
∫ bα
aα
µf (s)ds + u

∫
{s : Cal(s)=ηf (s)=u} µf (s)ds∫

{s : Cal(s)=u} µf (s)ds

(applying Eq. (6) to the first integral in the numerator)
= u.

Proof of (2): Recall that for a ranking model f , errank
D [f ] is equivalent to one minus the area under

the ROC curve6 (AUC) of f . It is thus enough to show that the ROC curve of Cal ◦ f is a majorant
for the ROC curve of f . The ROC curve for f can be defined as

ROC[f ] =

{(
P(f(x) ≤ t | y = −1), P(f(x) > t | y = 1)

)
: t ∈ [a, b]

}
=

{(
1

1− p

∫ t

a

(1− ηf (s))µf (s)ds,
1

p

∫ b

t

ηf (s)µf (s)ds

)
: t ∈ [a, b]

}
. (7)

As illustrated in Figure 4, each point in the graphG[f ] (defined in Eq. (5)) has a corresponding point
in ROC[f ]; similarly, each line segment inG[f ] corresponds to a line segment in ROC[f ]. Moreover,
for any two given ranking models f1 and f2, if a line segment in G[f1] is a minorant for a certain
portion of G[f2], the corresponding line segment in ROC[f1] is a majorant for the corresponding
portion of ROC[f2] (see segments AB and A’B’ in Figure 4). Since, from Theorem 22, we have
that G[Cal ◦ f ] is a minorant for G[f ], and G[Cal ◦ f ] is piece-wise linear on all portions where it
disagrees with G[f ], it follows that ROC[Cal ◦ f ] is a majorant for ROC[f ].

6The ROC curve of a ranking model f is the plot of the true positive rate (probability of classifying a
random positive example as positive) against the false positive rate (probability of classifying a random negative
example as positive) of a classifier of the form sign ◦ (f − t) for all thresholds t ∈ [a, b].
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Figure 4: Sample plots illustrating the relationship between the graph G (plot of η̄f (t) against µ̄f (t)
for all t ∈ [a, b]; see Eq. (5)) and the ROC curve (plot of true positive rate TPRf (t) = P(f(x) >
t | y = 1) against false positive rate FPRf (t) = P(f(x) ≤ t | y = −1) for all t ∈ [a, b]; see
Eq. (7)). (a) Graph G for ranking models f1 and f2: the graphs for f1 and f2 agree on all points
except for the portion between points A and B, where the line segment AB in G[f2] is a minorant
for G[f1]. (b) ROC curve for the ranking models f1 and f2: the points A, B and C in the graph G
for f1 and f2 correspond to points A’, B’ and C’ respectively in the ROC curves for f1 and f2; the
line segment AB in G[f2] corresponds to the line segment A’B’ in ROC[f2], which is a majorant for
the corresponding portion in ROC[f1]. Moreover, while G[f2] is a convex minorant for G[f1], the
corresponding ROC curve ROC[f2] is a concave majorant for ROC[f1].

F Proof of Theorem 14

Proof. Using the fact that CalD,f ◦ f is calibrated (property 1 in Lemma 13), we have

regretsq
D[Cal ◦ f ] ≤

√
8p(1− p) regretrank

D [CalD,f ◦ f ] (from Lemma 11)

≤
√

8p(1− p) regretrank
D [f ] (from property 2 in Lemma 13).

G Proof of Theorem 16

Proof.

regretsq
D[ĈalS,f ◦ f ] = ersq

D[ĈalS,f ◦ f ]− ersq
D[η]

= ersq
D[ĈalS,f ◦ f ]− ersq

D[CalD,f ◦ f ] + ersq
D[CalD,f ◦ f ]− ersq

D[η]

=
(

ersq
D[ĈalS,f ◦ f ]− ersq

D[CalD,f ◦ f ]
)

+ regretsq
D[CalD,f ◦ f ] (8)

Using Theorem 14, the second term in the above expression can be upper bounded in terms of the
ranking regret of f . We now focus on upper bounding the first term. As in the proof of Theorem 6,
consider the distribution Df induced by f over R×{±1} and let Sf be the set obtained by applying
f to each instance in S; clearly, Sf is iid drawn from Df . One can then view the optimization
problem in OP4 as empirical risk minimization over Ginc w.r.t. the sample Sf . Using standard
covering number based uniform convergence result for empirical risk minimization over a real-
valued function class with the squared loss, we have for any ε ∈ (0, 1],

PS∼Dn
(

ersq
D[ĈalS,f ◦ f ]− inf

g∈Ginc
ersq
D[g ◦ f ] ≥ ε

)
≤ 4N1

(
ε/32, Ginc, 2n

)
e−nε

2/128,

whereN1

(
ε, G, n

)
is the l1 covering number of function class G for radius ε and number of training

examples n ∈ N. It is known that for the function class Ginc, N1

(
ε, Ginc, n

)
≤ n2/ε (see [21]); one

16



can thus show that the following holds with probability at least 1− δ (over draw of S from D),

ersq
D[ĈalS,f ◦ f ]− inf

g∈Ginc
ersq
D[g ◦ f ] ≤ C

( ln
(

1
δ

)
n

+
ln(n)

n

) 1
3

,

where C is a universal distribution-independent constant. Plugging this into Eq. (8) (along with the
upper bound on the second term) completes the proof.
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