
On the Relationship Between Binary Classification, Bipartite Ranking, and Binary Class Probability Estimation

Harikrishna Narasimhan and Shivani Agarwal

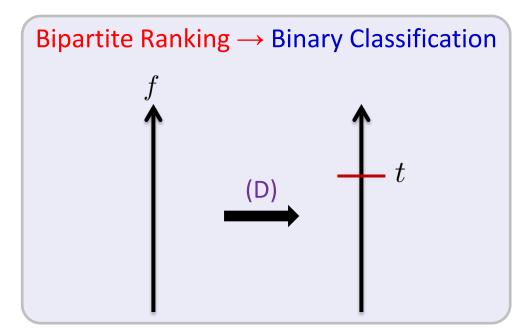
Department of Computer Science and Automation Indian Institute of Science, Bangalore

Binary Classification

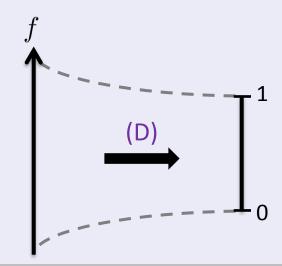
$$h: X \to \{0, 1\}$$

$$\operatorname{er}_{D}^{\operatorname{class}}[h] = \mathbf{E}_{(x,y) \sim D} [\mathbf{1}(h(x) \neq y)]$$

Bipartite Ranking

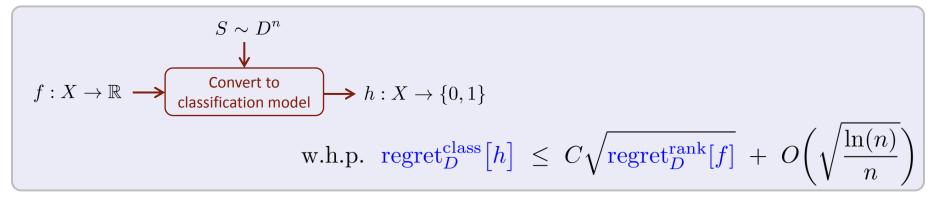

$$f: X \to \mathbb{R}$$

$$\operatorname{er}_{D}^{\operatorname{rank}}[f] = \mathbf{E}_{x,x' \mid y > y'} \left[\mathbf{1} \left(f(x) < f(x') \right) \right]$$


Binary CPE

$$\widehat{\eta}: X \to [0,1]$$

$$\operatorname{er}_{D}^{\operatorname{CPE}}[\widehat{\eta}] = \mathbf{E}_{(x,y)\sim D}[(\widehat{\eta}(x) - y)^{2}]$$



Bipartite Ranking → Binary CPE

Weak Regret Transfer Bounds

Bipartite Ranking → Binary Classification

Bipartite Ranking → Binary CPE

$$f: X \to \mathbb{R} \xrightarrow{\int} Convert \text{ to} \\ CPE \text{ model} \\ w.h.p. \quad regret_D^{CPE} \left[\widehat{\eta} \right] \leq C' \sqrt{\operatorname{regret}_D^{\operatorname{rank}}[f]} + O\left(\left(\frac{\ln(n)}{n} \right)^{1/3} \right)$$

