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Abstract

Class imbalance situations, where one class is
rare compared to the other, arise frequently
in machine learning applications. It is well
known that the usual misclassification error is
ill-suited for measuring performance in such
settings. A wide range of performance mea-
sures have been proposed for this problem.
However, despite the large number of studies
on this problem, little is understood about
the statistical consistency of the algorithms
proposed with respect to the performance
measures of interest. In this paper, we study
consistency with respect to one such perfor-
mance measure, namely the arithmetic mean
of the true positive and true negative rates
(AM), and establish that some practically
popular approaches, such as applying an em-
pirically determined threshold to a suitable
class probability estimate or performing an
empirically balanced form of risk minimiza-
tion, are in fact consistent with respect to
the AM (under mild conditions on the un-
derlying distribution). Experimental results
confirm our consistency theorems.

1. Introduction

Classification problems with class imbalance – where
one class is rare compared to another – arise in several
machine learning applications, ranging from medical
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diagnosis and text retrieval to credit risk prediction
and fraud detection. Due to their practical impor-
tance, such class imbalance settings have been widely
studied in several fields, including machine learning,
data mining, artificial intelligence, and several oth-
ers (Cardie & Howe, 1997; Kubat & Matwin, 1997;
Japkowicz, 2000; Elkan, 2001; Japkowicz & Stephen,
2002; Chawla et al., 2002; 2003; Zadrozny et al., 2003;
Chawla et al., 2004; Drummond & Holte, 2005; 2006;
Van Hulse et al., 2007; Chawla et al., 2008; Qiao &
Liu, 2009; Gu et al., 2009; He & Garcia, 2009; Liu &
Chawla, 2011; Wallace et al., 2011).

The usual misclassification error is ill-suited as a per-
formance measure in class imbalance settings, since
a default classifier predicting the majority class does
well under this measure. A variety of performance
measures have been proposed for evaluating binary
classifiers in such settings; these include for example
the arithmetic, geometric, and harmonic means of the
true positive and true negative rates, which attempt to
balance the errors on the two classes, and related mea-
sures based on the recall (true positive rate) and pre-
cision (see Table 1). Several algorithmic approaches
have also been proposed, for example under-sampling
the majority class, over-sampling the minority class,
changing the decision threshold of a score-based classi-
fier, and modifying algorithms to incorporate different
weights for errors on positive and negative examples.

Despite the large number of studies on the class imbal-
ance problem, surprisingly little is understood about
the statistical consistency of the algorithms proposed
with respect to the performance measures of interest,
i.e. about whether the algorithms converge to the op-
timal value of the performance measure in the large
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Table 1. Performance measures that have been used to evaluate binary classifiers in class imbalance settings. Here TPR,
TNR, FPR, and FNR denote the true positive, true negative, false positive, and false negative rates, respectively; and Prec
denotes precision. Note that AUC-ROC/AUC-PR apply not to a classifier but to a scoring function (or more generally, to
a family of classifiers; a scoring function yields a family of classifiers via different thresholds); we include these measures
here since some studies have used these with the aim of evaluating binary classification methods under class imbalance.

Measure Definition References

A-Mean (AM) (TPR + TNR)/2 (Chan & Stolfo, 1998; Powers et al., 2005; Gu et al., 2009)
KDD Cup 2001 challenge (Cheng et al., 2002)

G-Mean (GM)
√

TPR · TNR (Kubat & Matwin, 1997; Daskalaki et al., 2006)

H-Mean (HM) 2/( 1
TPR + 1

TNR ) (Kennedy et al., 2009)

Q-Mean (QM) 1− ((FPR)2 + (FNR)2)/2 (Lawrence et al., 1998)

F1 2/( 1
Prec + 1

TPR ) (Lewis & Gale, 1994; Gu et al., 2009)

G-TP/PR
√

TPR · Prec (Daskalaki et al., 2006)

AUC-ROC Area under ROC curve (Ling et al., 1998)

AUC-PR Area under precision-recall curve (Davis & Goadrich, 2006; Liu & Chawla, 2011)

sample limit. In this paper, we study this question for
one such performance measure that is widely used in
class imbalance settings, namely the arithmetic mean
of the true positive and true negative rates (AM). The
usual Bayes optimal classifier that minimizes the clas-
sification error rate is not optimal for this measure,
and therefore standard binary classification algorithms
that are designed to converge to the Bayes error are not
consistent with respect to this measure. We show con-
sistency with respect to the AM measure (under mild
conditions on the underlying distribution) of two sim-
ple families of algorithms that have been used in class
imbalance settings in practice: (1) algorithms that ap-
ply a suitable threshold (determined from the empiri-
cal class ratio) to a class probability estimate obtained
by minimizing an appropriate strongly proper loss, and
(2) algorithms that minimize a suitably weighted form
of an appropriate classification-calibrated loss (with
the weights determined from the empirical class ratio).

Our results build on several recent tools that have
been developed for studying consistency of learning
algorithms: regret bounds for standard binary clas-
sification using classification-calibrated losses (Zhang,
2004; Bartlett et al., 2006), proper and strongly proper
losses (Reid & Williamson, 2009; 2010; Agarwal, 2013),
balanced losses that have been used recently to un-
derstand consistency in ranking problems (Kotlowski
et al., 2011), and regret bounds for cost-sensitive clas-
sification (Scott, 2012). In addition, a key tool we
introduce is a decomposition lemma that allows us
to reduce the problem of analyzing the AM regret
for class imbalance settings to analyzing an empirical
cost-sensitive regret, in which the cost parameter is de-
termined from the empirical class ratio. For each of the
above two families of algorithms, we then show that

under suitable conditions, this empirical cost-sensitive
regret converges in probability to zero, thus establish-
ing consistency with respect to the AM measure.

The paper is organized as follows. Section 2 contains
preliminaries and background; Section 3 contains our
decomposition lemma. Sections 4–5 give consistency
results for the above two families of algorithms, respec-
tively. Section 6 contains our experimental results.

2. Preliminaries and Background

2.1. Problem Setup and Notation

Let X be any instance space. Given a training sample
S = ((x1, y1), . . . , (xn, yn)) ∈ (X × {±1})n, the goal
is to learn a binary classifier hS : X→{±1} to clas-
sify new instances in X . Assume all examples (both
training examples and future test examples) are drawn
iid according to some unknown probability distribu-
tion D on X × {±1}. Let η(x) = P(y = 1|x), and
let p = P(y = 1) (both under D).We shall assume
p ∈ (0, 1). In the class imbalance setting, p departs
significantly from 1

2 ; by convention, we assume the
positive class is rare, so that p is small.

For any candidate classifier h : X→{±1}, we can de-
fine the true positive rate (TPR), true negative rate
(TNR), false positive rate (FPR), false negative rate
(FNR), and precision (Prec) of h w.r.t. D as follows:

TPRD[h] = P(h(x) = 1 | y = 1)

TNRD[h] = P(h(x) = −1 | y = −1)

FPRD[h] = P(h(x) = 1 | y = −1) = 1− TNRD[h]

FNRD[h] = P(h(x) = −1 | y = 1) = 1− TPRD[h]

PrecD[h] = P(y = 1 |h(x) = 1)
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As noted in Section 1, a variety of performance mea-
sures that combine the above quantities and seek to
balance errors on the two classes have been proposed
for classification with class imbalance (see Table 1).
In this work, we focus on the arithmetic mean of the
TPR and TNR (AM):

AMD[h] =
TPRD[h] + TNRD[h]

2
.

In particular, we would like to find a classifier that has
AM performance close to the optimal:

AM∗D = sup
h:X→{±1}

AMD[h] .

More precisely, define the AM-regret of h as

regretAM
D [h] = AM∗D −AMD[h] .

Then we would like an algorithm to be AM-consistent,
i.e. we would like the AM-regret of the learned classi-
fier hS to converge in probability to zero:1

regretAM
D [hS ]

P−→ 0 .

Next we recall various notions related to loss functions
that will be used in our study.

2.2. Loss Functions

A binary loss function on a prediction space Ŷ ⊆ R̄
is a function ` : {±1} × Ŷ→R̄+ that defines a penalty

`(y, ŷ) incurred on predicting ŷ ∈ Ŷ when the true
label is y ∈ {±1} (here R̄ = [−∞,∞], R̄+ = [0,∞]).

The `-error of a function f : X→Ŷ w.r.t. D is then

er`D[f ] = E(x,y)∼D
[
`(y, f(x))

]
.

The optimal `-error w.r.t. D is

er`,∗D = inf
f :X→Ŷ

er`D[f ] ,

and the `-regret of f w.r.t. D is

regret`D[f ] = er`D[f ]− er`,∗D .

As an example, for Ŷ = {±1}, the familiar 0-1 loss
`0-1 : {±1} × {±1}→R̄+ takes the form

`0-1(y, ŷ) = 1(ŷ 6= y) ,

where 1(·) denotes the indicator function with value 1
if its argument is true and 0 otherwise, and the `0-1-
error of h : X→{±1} w.r.t. D takes the form

er0-1
D [h] = E(x,y)∼D

[
1(h(x) 6= y)

]
.

1Recall φ(S) converges in probability to a ∈ R, written

φ(S)
P−→ a, if ∀ε > 0, PS∼Dn(|φ(S)− a| > ε)→ 0 as n→∞.

In this case the optimal `0-1-error er0-1,∗
D is the usual

Bayes classification error.

For any loss ` : {±1} × Ŷ→R̄+, the conditional `-risk

L` : [0, 1]× Ŷ→R̄+ is defined as2

L`(η, ŷ) = η `(1, ŷ) + (1− η) `(−1, ŷ) ,

and the conditional Bayes `-risk H` : [0, 1]→R̄+ is
defined as

H`(η) = inf
ŷ∈Ŷ

L`(η, ŷ) .

Cost-Sensitive Losses. For any base loss ` : {±1}×
Ŷ→R̄+ and c ∈ (0, 1), the cost-sensitive `-loss with

cost parameter c, `(c) : {±1} × Ŷ→R̄+, is defined as

`(c)(y, ŷ) =
(

(1− c) 1(y = 1) + c1(y = −1)
)
· `(y, ŷ) .

Note that for the 0-1 loss `0-1, the cost-sensitive loss

`
(c)
0-1 with cost parameter c simply assigns a cost of c to

false positives and 1− c to false negatives:

`
(c)
0-1(y, ŷ) = (1−c) 1(y = 1, ŷ = −1)+c1(y = −1, ŷ = 1) .

It is well known that for any η ∈ [0, 1], L
(c)
0-1(η, ŷ) is

minimized by ŷ∗ = sign(η − c), and therefore an opti-

mal classifier w.r.t. the `
(c)
0-1-error is given by h∗c(x) =

sign(η(x)− c) (Elkan, 2001).3

Balanced Losses. For any base loss ` : {±1} ×
Ŷ→R̄+ and distribution D with p = P(y = 1) ∈ (0, 1),

the balanced `-loss `bal : {±1} × Ŷ→R̄+ is defined as

`bal(y, ŷ) =
(1(y = 1)

2p
+

1(y = −1)

2(1− p)

)
· `(y, ŷ) .

Note that a balanced loss depends on the underlying
distribution D via p and therefore typically cannot be
evaluated directly; however it is a useful analytical tool
that has been used recently to analyze consistency of
ranking algorithms in (Kotlowski et al., 2011), and will
be useful for our purposes as well.

Classification-Calibrated Losses. Let c ∈
(0, 1). A loss ` : {±1} × R̄→R̄+ is said to be
classification-calibrated at c (Bartlett et al., 2006; Reid
& Williamson, 2010; Scott, 2012) if ∀η ∈ [0, 1], η 6= c,

inf
f∈R̄:f(η−c)≤0

L`(η, f) > H`(η) .

This condition ensures that ∀η ∈ [0, 1], if f∗ ∈ R̄ is
a minimizer of L`(η, f), then ŷ∗ = sign(f∗) is a min-

imizer of L
(c)
0-1(η, ŷ) (see cost-sensitive losses above).

For c = 1
2 , this ensures if f∗ is a minimizer of L`(η, f),

then ŷ∗ = sign(f∗) is a minimizer of L0-1(η, ŷ).

2We overload η here to denote a number in [0, 1] rather
than a function; the usage should be clear from context.

3Here sign(z) = 1 if z > 0 and −1 otherwise.
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Proper and Strongly Proper Losses. Proper
losses in their basic form are defined on Ŷ = [0, 1]
and facilitate class probability estimation. A loss
` : {±1} × [0, 1]→R̄+ is said to be proper (Reid &
Williamson, 2009; 2010) if ∀η ∈ [0, 1],

L`(η, η) = H`(η) .

This condition ensures that ∀η ∈ [0, 1], the set of min-
imizers of L`(η, η̂) (over η̂) includes the right value η.
A proper loss is said to be strongly proper (Agarwal,
2013) if ∃κ > 0 such that ∀η, η̂ ∈ [0, 1],

L`(η, η̂)−H`(η) ≥ κ(η̂ − η)2 .

This condition ensures that ∀η ∈ [0, 1], η is the unique
minimizer of L`(η, η̂) (over η̂), and moreover H`(η) =
L`(η, η) is well separated from L`(η, η̂) for η̂ 6= η.

A loss ` : {±1}×Ŷ→R̄+ on a general prediction space

Ŷ ⊆ R is said to be (strongly) proper composite (Reid
& Williamson, 2010; Agarwal, 2013) if ∃ a (strongly)
proper loss γ : {±1} × [0, 1]→R̄+ and invertible ‘link’

function ψ : [0, 1]→Ŷ such that ∀y ∈ {±1}, ŷ ∈ Ŷ,

`(y, ŷ) = γ(y, ψ−1(ŷ)) .

3. Decomposition Lemma

We now prove a key decomposition lemma that will
allow us to reduce the problem of analyzing the AM-
regret of a classifier hS learned from a sample S to the
problem of analyzing a certain empirical cost-sensitive
regret derived from S (for distributions D satisfying a
mild assumption, namely Assumption A below). We
start with the following simple equivalence between the
AM measure and (one minus) the balanced 0-1 error:

Proposition 1. For any h : X→{±1},

AMD[h] = 1− er0-1,bal
D [h] .

Proof. We have,

er0-1,bal
D [h] = E(x,y)∼D

[
`bal
0-1(y, h(x))

]
= E(x,y)∼D

[(1(y = 1)

2p
+

1(y = −1)

2(1− p)

)
· 1(h(x) 6= y)

]
=

P(y = 1, h(x) = −1)

2p
+

P(y = −1, h(x) = 1)

2(1− p)

=
P(h(x) = −1 | y = 1)

2
+

P(h(x) = 1 | y = −1)

2

=
FNRD[h] + FPRD[h]

2
= 1−AMD[h] .

In particular, the above result implies that the AM-
regret is equal to the balanced 0-1 regret:

regretAM
D [h] = er0-1,bal

D [h]− er0-1,bal,∗
D (1)

The lemma below will need the following assumption:

Assumption A. We say a probability distribution D
on X×{±1} with η(x) = P(y = 1|x) and p = P(y = 1)
satisfies assumption A if the cumulative distribution
functions of the random variable η(x) conditioned on
y = 1 and on y = −1, Fη(x)|y=1(z) = P(η(x) ≤ z |
y = 1) and Fη(x)|y=−1(z) = P(η(x) ≤ z | y = −1), are
continuous at z = p.

We note that the above assumption is quite mild, in
that it holds for any distribution D for which the ran-
dom variable η(x) conditioned on y = 1 and on y = −1
is continuous, and also for any distribution D for which
η(x) conditioned on y = 1 and on y = −1 is mixed or
discrete as long as p is not a point of discontinuity.

The decomposition lemma below requires an empirical
estimator p̂S of p = P(y = 1) that lies in (0, 1) and
converges in probability to p; while we can use any
such estimator, for concreteness, we will consider the
following simple estimator in our study:

p̂S =


n+
S

n if 0 < n+
S < n

1
n if n+

S = 0
n−1
n if n+

S = n

; n+
S =

n∑
i=1

1(yi = 1) .

(2)

It is easy to verify that p̂S ∈ (0, 1) and p̂S
P−→ p.

Lemma 2 (Decomposition Lemma). Let D be a
probability distribution on X × {±1} satisfying As-
sumption A. Let hS : X→{±1} denote the classifier
learned by an algorithm from training sample S, and
let p̂S denote any estimator of p = P(y = 1) satisfying

p̂S ∈ (0, 1) and p̂S
P−→ p. If the empirical cost-sensitive

0-1 regret of hS with cost parameter c = p̂S satisfies

regret
0-1,(p̂S)
D [hS ]

P−→ 0 ,

then
regretAM

D [hS ]
P−→ 0 .

Proof. From Eq. (1), for any training sample S, we
may express the AM-regret of hS as:

regretAM
D [hS ] = er0-1,bal

D [hS ]− er0-1,bal,∗
D

=

(
er0-1,bal
D [hS ]− 1

2p̂S(1− p̂S)
er

0-1,(p̂S)
D [hS ]

)
+

1

2p̂S(1− p̂S)

(
er

0-1,(p̂S)
D [hS ]− er

0-1,(p̂S),∗
D

)
+

(
1

2p̂S(1− p̂S)
er

0-1,(p̂S),∗
D − er0-1,bal,∗

D

)
.
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If regret
0-1,(p̂S)
D [hS ]

P−→ 0, then the second term in
the above decomposition converges in probability to

1
2p(1−p) · 0 = 0. We will show that under the given

conditions, the other two terms also converge in prob-
ability to zero, thereby establishing the result.

For the first term, we have

er0-1,bal
D [hS ]− 1

2p̂S(1− p̂S)
er

0-1,(p̂S)
D [hS ]

= E(x,y)∼D

[( 1

2p
− 1

2p̂S

)
1
(
y = 1, hS(x) = −1

)
+
( 1

2(1− p)
− 1

2(1− p̂S)

)
1
(
y = −1, hS(x) = 1

)]
=

1

2

(
1− p

p̂S

)
· FNRD[hS ]

+
1

2

(
1− 1− p

1− p̂S

)
· FPRD[hS ]

P−→ 0 ,

since p̂S
P−→ p and since 0 ≤ FNRD[hS ],FPRD[hS ] ≤ 1.

Now, let h∗p̂S (x) = sign(η(x) − p̂S) and let h∗p(x) =
sign(η(x)− p). Then for the third term in the decom-
position, it can be seen that

1

2p̂S(1− p̂S)
er

0-1,(p̂S),∗
D − er0-1,bal,∗

D

=
1

2p̂S(1− p̂S)
er

0-1,(p̂S)
D [h∗p̂S ]− er0-1,bal

D [h∗p]

=
1

2

( p
p̂S

FNRD[h∗p̂S ]− FNRD[h∗p]
)

+
1

2

( 1− p
1− p̂S

FPRD[h∗p̂S ]− FPRD[h∗p]
)
.

Now, FNRD[h∗p̂S ] = P
(
η(x) ≤ p̂S | y = 1

) P−→P
(
η(x) ≤

p | y = 1
)

= FNRD[h∗p] , since p̂S
P−→ p and by con-

tinuity of the cumulative distribution function of
η(x) given y = 1 at p (Assumption A). Similarly,

FPRD[h∗p̂S ]
P−→ FPRD[h∗p] . Combining with the above

and the fact that p̂S
P−→ p then yields that the third

term above also converges in probability to zero.

Thus, to show AM consistency of an algorithm (for
distributions satisfying Assumption A), it suffices to
show the empirical cost-sensitive regret in the above
lemma converges to zero. Note that this cannot be
achieved by a direct application of results for cost-
sensitive learning, since the costs there have to be fixed
in advance. In the next two sections we show AM
consistency for two families of algorithms that have
often been used in class imbalance settings in practice.

Algorithm 1 Plug-in with Empirical Threshold

1: Input: S = ((x1, y1), . . . , (xn, yn)) ∈ (X ×{±1})n

2: Select: (a) Proper (composite) loss ` : {±1} ×
R̄→R̄+, with link function ψ : [0, 1]→R̄; (b) RKHS
FK with positive definite kernel K : X × X→R;
(c) regularization parameter λn > 0

3: fS ∈ argminf∈FK

{
1
n

∑n
i=1 `(yi, f(xi)) + λn‖f‖2K

}
4: η̂S = ψ−1 ◦ fS
5: p̂S = (as in Eq. (2))

6: Output: Classifier hS(x) = sign(η̂S(x)− p̂S)

4. Consistency of Plug-in Rules with an
Empirical Threshold

From Proposition 1, it follows that an optimal classifier
w.r.t. the AM measure has the form

h∗p(x) = sign(η(x)− p) .

Therefore if p were known, one could use a class prob-
ability estimate η̂S(x), such as one obtained by suit-
ably regularized empirical risk minimization (ERM)
using a proper loss, and construct a plug-in classifier
sign(η̂S(x) − p). In the absence of knowledge of p,
a natural approach is to use an estimate p̂S , yield-
ing a plug-in classifier with an empirical threshold,
sign(η̂S(x) − p̂S); see Algorithm 1 for a prototype us-
ing proper losses in a reproducing kernel Hilbert space
(RKHS). The following establishes general conditions
under which such algorithms are AM-consistent:

Theorem 3. Let D be a probability distribution on
X ×{±1} satisfying Assumption A. Let p̂S denote any
estimator of p = P(y = 1) satisfying p̂S ∈ (0, 1) and

p̂S
P−→ p. Let η̂S : X→[0, 1] denote any class probability

estimator satisfying Ex

[
|η̂S(x)− η(x)|r

] P−→ 0 for some
r ≥ 1, and let hS(x) = sign(η̂S(x)− p̂S). Then

regretAM
D [hS ]

P−→ 0 .

The proof makes use of the following lemma:

Lemma 4. Let c ∈ (0, 1) and r ≥ 1. For any η̂ :
X→[0, 1] and h(x) = sign(η̂(x)− c),

regret
0-1,(c)
D [h] ≤

(
Ex

[
|η̂(x)− η(x)|r

])1/r
.

Lemma 4 follows directly from a result of (Scott, 2012);
see the supplementary material for details.

Proof of Theorem 3. By Lemma 4, we have

regret
0-1,(p̂S)
D [hS ] ≤

(
Ex

[
|η̂S(x)− η(x)|r

])1/r
P−→ 0 (by assumption) .

The result follows from Lemma 2.
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Table 2. Examples of loss functions satisfying conditions of
Theorems 5 and 6. Here z+ = max(0, z).

Loss `(y, f) Theorem 5 Theorem 6
Logistic ln(1 + e−yf ) X X
Exponential e−yf X X
Square (1− yf)2 X X
Sq. Hinge ((1− yf)+)2 X X
Hinge (1− yf)+ × X

As a special case, for η̂S(x) obtained by minimizing a
suitable strongly proper loss, we have the following:

Theorem 5 (Consistency of Algorithm 1 with
certain strongly proper losses). Let D be a proba-
bility distribution on X × {±1} satisfying Assumption
A. Let ` : {±1}× R̄→R̄+ be a strongly proper compos-
ite loss, and let fS , hS denote the real-valued function
and classifier learned by Algorithm 1 from a training
sample S using this loss. If the kernel K and regular-
ization parameter sequence λn can be chosen such that

regret`D[fS ]
P−→ 0 , then

regretAM
D [hS ]

P−→ 0 .

The proof of Theorem 5 involves showing that under
the conditions of the theorem, the class probability es-
timator η̂S(x) in Algorithm 1 satisfies the conditions
of Theorem 3 with r = 2; this follows as a direct con-
sequence of the definition of strongly proper losses.
Details can be found in the supplementary material.

Table 2 shows several examples of strongly proper com-
posite losses; see (Agarwal, 2013) for more details. For
each of these losses, (Zhang, 2004) gives prescriptions
for K and λn satisfying the conditions of Theorem 5;
with these choices, Algorithm 1 is AM-consistent.

5. Consistency of Empirically Balanced
ERM Algorithms

Given the result of Proposition 1, another approach to
optimize the AM measure is to minimize a balanced
surrogate of the 0-1 loss; however this requires knowl-
edge of p. Again, a natural approach is to use an
empirical estimate p̂S . This leads to a second family
of algorithms that involves minimizing an empirically
balanced loss; see Algorithm 2 for a prototype. The
following establishes conditions under which such an
algorithm is AM-consistent:

Theorem 6 (Consistency of Algorithm 2 with
certain convex classification-calibrated losses).
Let D be a probability distribution on X × {±1} satis-
fying Assumption A. Let ` : {±1} × R̄→R̄+ be a loss
that is convex in its second argument, classification-
calibrated at 1

2 , and for which ∃α > 0, r ≥ 1 such
that ∀η ∈ [0, 1], L`(η, 0) − H`(η) ≥ α|η − 1

2 |
r , and

Algorithm 2 Empirically Balanced ERM

1: Input: S = ((x1, y1), . . . , (xn, yn)) ∈ (X ×{±1})n

2: Select: (a) Loss ` : {±1} × R̄→R̄+; (b) RKHS
FK with positive definite kernel K : X × X→R;
(c) regularization parameter λn > 0

3: p̂S = (as in Eq. (2))

4: fS ∈ argminf∈FK

{
1

2p̂Sn

∑
i:yi=1 `(1, f(xi))

+ 1
2(1−p̂S)n

∑
j:yj=−1 `(−1, f(xj)) + λn‖f‖2K

}
5: Output: Classifier hS(x) = sign(fS(x))

moreover L`(
1
2 , 0) = H`(

1
2 ). Let fS , hS denote the real-

valued function and classifier learned by Algorithm 2
from a training sample S using this loss. If the ker-
nel K and regularization parameter sequence λn can

be chosen such that regret
`,(p̂S)
D [fS ]

P−→ 0 , then

regretAM
D [hS ]

P−→ 0 .

The proof makes use of the following lemma:4

Lemma 7. Let ` : {±1}× R̄→R̄+ be convex in its sec-
ond argument and classification-calibrated at 1

2 , and
suppose ∃α > 0, r ≥ 1 s.t. ∀η ∈ [0, 1], L`(η, 0) −
H`(η) ≥ α|η − 1

2 |
r , and L`(

1
2 , 0) = H`(

1
2 ). Let

c ∈ (0, 1). For any f : X→R̄ and h(x) = sign(f(x)),

regret
0-1,(c)
D [h] ≤ 2

α1/r

(
regret

`,(c)
D [f ]

)1/r

.

The proof of Lemma 7 makes use of some results of
(Scott, 2012); details can be found in the supplemen-
tary material. The proof of Theorem 6 then follows by
an application of Lemma 7 with c = p̂S , which gives

regret
0-1,(p̂S)
D [hS ]

P−→ 0; by Lemma 2, this then implies
the result. Details are in the supplementary material.

Table 2 gives examples of convex classification-
calibrated losses for which ∃α > 0, r ≥ 1 such that
∀η ∈ [0, 1], L`(η, 0)−H`(η) ≥ α|η− 1

2 |
r , and moreover

L`(
1
2 , 0) = H`(

1
2 ); see (Zhang, 2004; Bartlett et al.,

2006) for more details. For each of these losses, it is
possible to show thatK and λn can be chosen to satisfy
the conditions of Theorem 6, yielding AM-consistency
of Algorithm 2. The proof, which involves a detailed
stability analysis extending the analyses in (Zhang,
2004; Bousquet & Elisseeff, 2002), is heavily techni-
cal and beyond the scope of the current paper; details
will be provided in a longer version of the paper.

4We note that (Scott, 2012) gives a more general cost-
sensitive regret bound than Lemma 7; however the bound
there has an implicit dependence on c. In our case, we
need a bound with an explicit dependence on c which when
applied to c = p̂S and hS(x) = sign(fS(x)), yields that if

regret
`,(p̂S)
D [fS ]

P−→ 0, then regret
0-1,(p̂S)
D [hS ]

P−→ 0.
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Figure 1. Experiments on synthetic data: AM-regret as a function of number of training examples, using various algorithms
in conjunction with the logistic loss, for various values of class imbalance parameter p (see Section 6.1).

6. Experiments

We conducted two types of experiments to evaluate
the algorithms studied in the previous sections: the
first involved synthetic data from a known distribu-
tion for which the AM-regret could be calculated ex-
actly; the second involved a large range of real data
sets. We compared the algorithms with the standard
underlying ERM algorithms (which seek to minimize
the usual misclassification error), and also with under-
sampling and over-sampling methods that seek to ‘bal-
ance’ imbalanced data sets and have been highly pop-
ular in class imbalance settings in practice: these in-
clude random under-sampling, in which examples from
the majority class are randomly sub-sampled to equal
the number of minority class examples; random over-
sampling, in which examples from the minority class
are randomly over-sampled to equal the number of ma-
jority class examples; and synthetic over-sampling us-
ing the SMOTE technique, in which synthetic exam-
ples from the minority class are generated along lines
joining pairs of actual minority class examples in the
data set (Chawla et al., 2002); in each case, the under-
sampled/over-sampled data set was then given as in-
put to the standard regularized ERM algorithm.

6.1. Synthetic Data

Our first goal was to evaluate the behavior of the AM-
regret for different algorithms in a setting where it
could be calculated exactly. For these experiments, we
generated data in X = Rd (d = 10) with varying de-
grees of class imbalance (p = 0.5, 0.1, 0.05, 0.01). In
each case, examples in Rd×{±1} were generated as fol-
lows: each example was positive with probability p and
negative with probability 1−p, with positive instances
drawn from a multivariate Gaussian distribution with
mean µ ∈ Rd and covariance matrix Σ ∈ Rd×d, and
negative instances drawn from a multivariate Gaus-
sian distribution with mean −µ and the same covari-
ance matrix Σ; here µ was drawn uniformly at random
from {−1, 1}d, and Σ was drawn from a Wishart dis-
tribution with 20 degrees of freedom and a randomly

drawn invertible PSD scale matrix. In these exper-
iments we used the logistic loss as a prototype of a
loss that satisfies the conditions of both Theorem 5
and Theorem 6. For the distributions considered, the
AM-optimal classifier is linear, as are the real-valued
functions minimizing the expected values of the logis-
tic and empirically balanced logistic losses; this both
makes it sufficient to learn a linear function, (i.e. to use
a linear kernel), and simplifies the subsequent calcula-
tion of the AM-regret of the learned classifiers under
these distributions (see supplementary material).

Figure 1 shows plots of the AM-regret as a function
of the number of training examples n for different val-
ues of p for all the algorithms (all using the logistic
loss; in all cases, the regularization parameter was set
to λn = 1/

√
n). For p = 0.5, which corresponds to

a perfectly balanced distribution, the AM-regret for
all methods converges to zero. For p < 0.5, when
the classes are imbalanced, as expected, the AM-regret
of the standard logistic regression algorithm does not
converge to zero; on the other hand, for both the em-
pirical plug-in and empirically balanced algorithms,
the AM-regret converges to zero. The AM-regret for
the sampling methods also converges to zero; how-
ever the under-sampling method has slower conver-
gence (since it throws away information), while the
over-sampling methods are computationally expensive
(since they blow up the training sample size).

6.2. Real Data

Our second goal was to evaluate the performance of
the class imbalance algorithms studied here on a wide
range of real data. We used 17 data sets with varying
degrees of class imbalance, taken from the UCI reposi-
tory (Frank & Asuncion, 2010) and other sources; due
to space constraints, we discuss results on 3 of these
here in detail (see Table 3; full results for all 17 data
sets are included in the supplementary material).

In this case we evaluated all the above algorithms (ex-
cept the random over-sampling algorithm, which for
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Figure 2. Results on the three data sets summarized in Table 3, using various algorithms in conjunction with different
loss functions, in terms of AM (top panel) and GM (bottom panel); higher values are better (see Section 6.2).

Table 3. Summary of 3 data sets discussed here in detail;
see supplementary material for details of all 17 data sets.

Data set # examples # features p = P(y = 1)
satimage 6435 36 0.0973
chemo-a1a 2142 1021 0.0233
thyroid 7200 21 0.0231

ERM-based algorithms is similar to empirical balanc-
ing but computationally more expensive), using all the
five loss functions given in Table 2. In all experiments,
we learned a linear function with `2 regularization; in
each case, the regularization parameter λ was selected
by 5-fold cross-validation on the training sample from
the range {2−20, . . . , 24} (the value of λ maximizing
the average AM value on the validation folds was se-
lected). For the empirical plug-in algorithm with logis-
tic, exponential, square, and square hinge losses, which
are all proper (composite) losses, class probability esti-
mates were obtained using the standard ψ−1 transform
based on the link function associated with the proper
loss (Reid & Williamson, 2010; Agarwal, 2013); for
hinge loss, we used Platt scaling (Platt, 1999).

The results, averaged over 10 random 80%-20% train-
test splits for each data set (and 5 random sam-
pling runs for the under-/over-sampling methods), are
shown in Figure 2 (see supplementary material for re-
sults on additional data sets). Performance is shown
in terms of AM (top panel) as well as GM (bottom
panel). As expected, the standard ERM algorithms
do not give good AM performance, while the empir-
ical plug-in, empirically balanced ERM, and under-
/over-sampling algorithms are mostly similar and all
give good AM performance. A detailed rank analysis
across the full 17 data sets suggests the empirically bal-

anced ERM method wins overall (see supplementary
material). Among loss functions, we see similar perfor-
mance overall. The main exception is the square loss,
which sometimes gives poor performance; this may be
due to the fact that unlike other losses, it penalizes
predictions with a large positive margin yf , suggest-
ing the other losses may be preferable. Performance
on the GM measure shows similar trends as for AM.

We also point out that when performance is measured
in terms of AUC-ROC, we see no significant differ-
ence between the standard ERM algorithms and other
methods (see supplementary material), consistent with
the observation made in Table 1 that the AUC-ROC
applies to a scoring function and not to a classifier, and
therefore sampling and other class imbalance methods
do not significantly impact the AUC-ROC.

7. Conclusion

We have studied the problem of binary classification
under class imbalance, and have given the first for-
mal consistency analysis for this problem that we are
aware of. In particular, we have focused on the AM
performance measure, and have shown that under cer-
tain conditions, some simple algorithms such as plug-in
rules with an empirical threshold and empirically bal-
anced ERM algorithms are AM-consistent. Our exper-
iments confirm these findings. This suggests that at
least when the AM performance measure is of interest,
it may be unnecessary to throw away information as is
done in under-sampling, or to incur additional compu-
tational cost as in over-sampling. A natural next step
is to conduct a similar analysis for other performance
measures used in class imbalance settings.
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Supplementary Material

Proof of Lemma 4

The proof uses the following result of (Scott, 2012):

Lemma 8 ((Scott, 2012)). Let c ∈ (0, 1). For any
h : X→{±1},

regret
0-1,(c)
D [h] = Ex

[
|η(x)−c|·1

(
h(x) 6= sign(η(x)−c)

)]
.

Proof of Lemma 4. The proof follows from Lemma 8
by a straightforward application of Jensen’s inequality.
In particular, we have,

regret
0-1,(c)
D [h]

≤ Ex

[∣∣η(x)− c
∣∣ · 1((η̂(x)− c)(η(x)− c)) ≤ 0

)]
,

by Lemma 8 and definition of h

≤ Ex

[∣∣η̂(x)− η(x)
∣∣] ,

since (η̂(x)− c)(η(x)− c) ≤ 0 =⇒
|η(x)− c| ≤ |η̂(x)− η(x)|

=
((

Ex

[∣∣η̂(x)− η(x)
∣∣])r)1/r

≤
(
Ex

[∣∣η̂(x)− η(x)
∣∣r])1/r

,

where the last inequality follows by convexity of the
function g(z) = zr (r ≥ 1) and Jensen’s inequality.

Proof of Theorem 5

Proof. Let γ : {±1} × [0, 1]→R̄+ be an underlying
strongly proper loss such that

`(y, f) = γ(y, ψ−1(f)) .

Then we have,

Ex

[(
η̂S(x)− η(x)

)2]
= Ex

[(
ψ−1(fS(x))− η(x)

)2]
,

by definition of η̂S (see Algorithm 1)

≤ 1

κ
Ex

[
Lγ(η(x), ψ−1(fS(x)))−Hγ(η(x))

]
,

for some κ > 0, by strong properness of γ

=
1

κ
Ex

[
L`(η(x), fS(x))−H`(η(x))

]
,

since L`(η, f) = Lγ(η, ψ−1(f)) and

since H`(η) = Hγ(η) (easy to verify)

=
1

κ
regret`D[fS ] .

Thus, if K and λn can be chosen such that

regret`D[fS ]
P−→ 0, then Ex

[(
η̂S(x) − η(x)

)2] P−→ 0. The
result then follows from Theorem 3.

Proof of Lemma 7

We will need the following results of (Scott, 2012):

Lemma 9 ((Scott, 2012)). Let ` : {±1} × R̄→R̄+ be
any loss and let c ∈ (0, 1). Let wc : [0, 1]→(0, 1) be
defined as

wc(η) = η(1− c) + (1− η)c.

Then for any η ∈ [0, 1] and f ∈ R̄,

L
(c)
` (η, f) = wc(η) · L`

(
η(1− c)
wc(η)

, f

)
.

Lemma 10 ((Scott, 2012)). Let ` : {±1}× R̄→R̄+ be
classification-calibrated at 1

2 and let c ∈ (0, 1). Then

`(c) is classification-calibrated at c.

Proof of Lemma 7. We first show that under the given
condition on `, we have ∀η ∈ [0, 1],

L
(c)
` (η, 0)−H(c)

` (η) ≥ α

2r
∣∣η − c∣∣r . (3)

To see this, note that for any η ∈ [0, 1],

L
(c)
` (η, 0)−H(c)

` (η)

= wc(η) ·
(
L`

(
η(1− c)
wc(η)

, 0

)
−H`

(
η(1− c)
wc(η)

))
,

by Lemma 9

≥ wc(η) · α
∣∣∣∣η(1− c)
wc(η)

− 1

2

∣∣∣∣r , by assumption

= wc(η) · α
∣∣∣∣ η − c2wc(η)

∣∣∣∣r
=

α

2r
|η − c|r

(wc(η))r−1

≥ α

2r
∣∣η − c∣∣r ,

where wc(η) is as defined in Lemma 9 and the last
inequality follows since wc(η) = η(1− c) + (1− η)c ≤
(1 − c) + c = 1 and r − 1 ≥ 0. This proves the claim
in Eq. (3).

Next, we claim that for all η ∈ [0, 1] and f ∈ R̄,

f(η − c) ≤ 0 =⇒ L
(c)
` (η, 0) ≤ L

(c)
` (η, f) . (4)

To see this, let η ∈ [0, 1], and let f ∈ R̄ be such that
f(η− c) ≤ 0. Let f∗ denote any minimizer of Lc`(η, f).
Since ` is classification-calibrated at 1

2 , we have by

Theorem 10 that `(c) is classification-calibrated at c,
and therefore f∗(η − c) > 0. Moreover, since ` is con-
vex in its second argument, we have that `(c) is convex

in its second argument, which in turn implies L
(c)
` is

convex in its second argument. We consider the fol-
lowing three cases:
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1. η > c: Then f ≤ 0 and f∗ > 0. Therefore, by

convexity of L
(c)
` in its second argument, we have

L
(c)
` (η, 0) ≤ max

(
L

(c)
` (η, f), L

(c)
` (η, f∗)

)
= L

(c)
` (η, f) .

2. η < c: Then f ≥ 0 and f∗ < 0. Again, by con-

vexity of L
(c)
` in its second argument, we have

L
(c)
` (η, 0) ≤ max

(
L

(c)
` (η, f), L

(c)
` (η, f∗)

)
= L

(c)
` (η, f) .

3. η = c: In this case, wc(η) = 2c(1− c), and so

L
(c)
` (η, f) = 2c(1− c) · L`

(
1
2 , f

)
,

which is minimized by f∗ = 0 (by the assumption
that L`(

1
2 , 0) = H`(

1
2 )). This gives

L
(c)
` (η, 0) = L

(c)
` (η, f∗) ≤ L

(c)
` (η, f) .

This proves the claim in Eq. (4).

Putting everything together, we have for any f : X→R̄
and h(x) = sign(f(x)):

regret
0-1,(c)
D [h]

≤ Ex

[
|η(x)− c| · 1

(
f(x)(η(x)− c) ≤ 0

)]
,

by Lemma 8 and definition of h

=
((

Ex

[
|η(x)− c| · 1

(
f(x)(η(x)− c) ≤ 0

)])r)1/r

≤
(
Ex

[
|η(x)− c|r · 1

(
f(x)(η(x)− c) ≤ 0

)])1/r

,

by convexity of the function g(z) = zr (r ≥ 1)

and Jensen’s inequality

≤ 1

α1/r

(
Ex

[(
L

(c)
` (η(x), 0)−H(c)

` (η(x))
)
·

1
(
f(x)(η(x)− c) ≤ 0

)])1/r

,

by Eq. (3)

≤ 1

α1/r

(
Ex

[(
L

(c)
` (η(x), f(x))−H(c)

` (η(x))
)])1/r

,

by Eq. (4)

=
1

α1/r

(
regret

`,(c)
D [f ]

)1/r

.

This proves the lemma.

Proof of Theorem 6

Proof. By Lemma 7, we have

regret
0-1,(p̂S)
D [hS ] ≤ 2

α1/r

(
regret

`,(p̂S)
D [fS ]

)1/r

.

Thus, if K and λn can be chosen such that

regret
`,(p̂S)
D [fS ]

P−→ 0, then regret
0-1,(p̂S)
D [hS ]

P−→ 0. The
result then follows from Lemma 2.

Calculation of AM-Regret for Synthetic Data

Let D be a probability distribution on Rd×{±1}, with
P(y = 1) = p for some p ∈ (0, 1), and under which pos-
itive instances are drawn according to a multivariate
Gaussian distribution N (µ,Σ) and negative instances
are drawn according to N (−µ,Σ), where Σ ∈ Rd×d is
a symmetric positive definite matrix and µ ∈ Rd.

Then the AM measure of a classifier h : Rd→{±1}
w.r.t. D is given by

AMD[h] =
TPRD[h] + TNRD[h]

2
.

For any linear classifier h(x) = sign(w>x + b), where
w ∈ Rd and b ∈ R, this can be written as

AMD[h] =
1

2

[ ∫
{x|w>x > b}

f+(x) dx

+

∫
{x|w>x ≤ b}

f−(x) dx
]
,

where f+ is the pdf corresponding to the distribution
N (µ,Σ) and f− is the pdf corresponding to N (−µ,Σ).
This in turn can be converted to an expression involv-
ing one-dimensional integrations:

AMD[h] =
1

2

[ ∫ ∞
b

g+(z) dz +

∫ b

−∞
g−(z) dz

]
,

where g+ is the pdf corresponding to the distribution
N (w>µ, w>Σw) and g− is the pdf corresponding to
N (−w>µ, w>Σw).

Moreover, for a distribution of the above form, it can
be verified that the optimal classifier with respect to
the AM measure, h∗p : Rd → {±1} given by h∗p(x) =
sign(η(x) − p) where η(x) = P(y = 1|x), is a linear
classifier. In particular, from standard results, we have

η(x) =
pf+(x)

pf+(x) + (1− p)f−(x)
=

1

1 + e−f(x)
,

where

f(x) = ln

(
pf+(x)

(1− p)f−(x)

)
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Figure 3. Results on the three data sets summarized in Table 3, using various algorithms in conjunction with different
loss functions, in terms of AUC-ROC; higher values are better (see Section 6.2).

= −1

2
(x− µ)>Σ−1(x− µ)

+
1

2
(x+ µ)>Σ−1(x+ µ) + ln

( p

1− p

)
= 2µ>Σ−1x+ ln

( p

1− p

)
.

This can be seen to yield

h∗p(x) = sign

(
1

1 + e−f(x)
− p
)

= sign
(
f(x)− ln

( p

1− p

))
= sign

(
2µ>Σ−1x

)
= sign(w>x) , where w = Σ−1µ.

Thus the optimal AM value, AM∗D = AMD[h∗p], can
be computed similarly as for any other linear classifier
above, using w = Σ−1µ and b = 0. The AM-regret of
any linear classifier h w.r.t. D can then be computed
as

regretAM
D [h] = AMD[h∗p]−AMD[h] .

Additional Results on Real Data

Table 4 summarizes all 17 real data sets used in our
experiments described in Section 6.2. Tables 5, 6, and
7 give results with all algorithms on all data sets, in
terms of the AM, GM, and AUC-ROC performance
measures, respectively. Tables 8, 9, and 10 give the av-
erage ranks of different algorithms (for each loss func-
tion) over the 17 data sets, based on mean AM, GM,
and AUC-ROC performance, respectively. The AUC-
ROC performance of all algorithms on the 3 data sets
discussed in detail in Section 6.2 is also shown in the
form of plots in Figure 3.

Table 4. Summary of 17 real data sets.

Data set # examples # features p = P(y = 1)
abalone 4177 8 0.0077
car 1728 8 0.0376
chemo-a1a 2142 1021 0.0233
chemo-pde5 2142 1021 0.0233
covtype-binary 38501 54 0.0713
german 1000 24 0.3000
kddcup08 102294 117 0.0061
kddcup98 191779 15 0.0507
letter 20000 16 0.0367
optdigits 5620 64 0.0986
pendigits 10992 16 0.0960
satimage 6435 36 0.0973
segment 2310 19 0.1429
shuttle 58000 9 0.0004
spambase 4601 57 0.3940
splice 3190 61 0.2404
thyroid 7200 21 0.0231

Table 8. Average ranks for all algorithms (for each loss function)
based on mean AM performance. Lower ranks are better.

Algorithm Logistic Exp Square Sq-Hinge Hinge
ERM 4.78 4.68 4.42 4.63 4.47
Plugin 2.94 1.89 3.78 2.94 2.68
Balanced ERM 1.94 2.36 1.89 1.94 2.10
Undersample 2.94 3.31 2.68 2.84 3.26
SMOTE 2.21 2.52 1.84 2.36 2.42

Table 9. Average ranks for all algorithms (for each loss function)
based on mean GM performance. Lower ranks are better.

Algorithm Logistic Exp Square Sq-Hinge Hinge
ERM 4.78 4.68 4.47 4.68 4.52
Plugin 3.0 1.89 3.73 3.0 2.63
Balanced ERM 1.89 2.42 1.89 2.0 2.31
Undersample 2.94 3.21 2.68 2.89 3.10
SMOTE 2.15 2.57 1.84 2.31 2.36

Table 10. Average ranks for all algorithms (for each loss function)
based on mean AUC-ROC performance. Lower ranks are better.

Algorithm Logistic Exp Square Sq-Hinge Hinge
ERM 2.68 2.31 3.47 2.78 3.21
Plugin 2.52 1.68 3.15 3.10 2.73
Balanced ERM 2.15 2.36 2.15 2.26 2.42
Undersample 4.05 4.78 3.42 3.73 3.63
SMOTE 2.42 2.63 2.36 2.42 2.68
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Table 5. Results for all algorithms on all data sets, in terms of AM. For each loss function, the ranks of different algorithms are displayed
in parentheses (i.e. ranks are column-relative within each data set block). Higher AM values are better; lower ranks are better.

Dataset Algorithm Logistic Exp Square Sq-Hinge Hinge
ERM 0.4999± 0.0003 (5) 0.4996± 0.0004 (5) 0.5000± 0.0000 (5) 0.5000± 0.0000 (5) 0.5000± 0.0000 (5)
Plugin 0.6846± 0.0804 (4) 0.7363± 0.0872 (1) 0.7618± 0.0594 (1) 0.7052± 0.0689 (4) 0.5348± 0.0688 (4)

abalone Balanced ERM 0.7570± 0.0701 (1) 0.7357± 0.0859 (2) 0.7295± 0.0851 (3) 0.7375± 0.0790 (1) 0.7694± 0.0618 (1)
Undersample 0.7333± 0.0724 (2) 0.7117± 0.0856 (4) 0.7306± 0.0750 (2) 0.7284± 0.0821 (2) 0.7564± 0.0723 (2)
SMOTE 0.7300± 0.0804 (3) 0.7185± 0.0704 (3) 0.7135± 0.0709 (4) 0.7140± 0.0904 (3) 0.7180± 0.0853 (3)
ERM 0.9285± 0.0496 (5) 0.9245± 0.0594 (5) 0.5000± 0.0000 (5) 0.9400± 0.0509 (5) 0.9481± 0.0641 (5)
Plugin 0.9938± 0.0027 (3) 0.9947± 0.0028 (1) 0.7794± 0.0135 (4) 0.9929± 0.0044 (3) 0.9901± 0.0081 (3)

car Balanced ERM 0.9944± 0.0027 (1) 0.9947± 0.0028 (1) 0.9318± 0.0064 (2) 0.9940± 0.0033 (1) 0.9911± 0.0036 (2)
Undersample 0.9711± 0.0116 (4) 0.9710± 0.0119 (4) 0.9243± 0.0131 (3) 0.9752± 0.0109 (4) 0.9856± 0.0144 (4)
SMOTE 0.9944± 0.0026 (1) 0.9941± 0.0032 (3) 0.9326± 0.0062 (1) 0.9936± 0.0037 (2) 0.9937± 0.0038 (1)
ERM 0.8274± 0.1060 (5) 0.8464± 0.0887 (5) 0.8140± 0.0771 (4) 0.8511± 0.0754 (5) 0.8986± 0.0575 (3)
Plugin 0.9155± 0.0558 (1) 0.9085± 0.0578 (1) 0.8108± 0.0312 (5) 0.9223± 0.0572 (1) 0.9019± 0.0573 (2)

chemo-a1a Balanced ERM 0.8987± 0.0651 (3) 0.9044± 0.0592 (2) 0.8937± 0.0607 (3) 0.8842± 0.0524 (4) 0.9416± 0.0314 (1)
Undersample 0.9058± 0.0427 (2) 0.9008± 0.0475 (3) 0.9048± 0.0549 (1) 0.9096± 0.0388 (2) 0.8934± 0.0543 (4)
SMOTE 0.8918± 0.0395 (4) 0.8765± 0.0425 (4) 0.9021± 0.0575 (2) 0.9089± 0.0526 (3) 0.8667± 0.0480 (5)
ERM 0.9164± 0.0689 (5) 0.9082± 0.0557 (5) 0.9064± 0.0775 (4) 0.9314± 0.0627 (4) 0.9348± 0.0621 (3)
Plugin 0.9621± 0.0385 (1) 0.9351± 0.0609 (1) 0.8119± 0.0384 (5) 0.9633± 0.0334 (1) 0.9550± 0.0516 (1)

chemo-pde5 Balanced ERM 0.9441± 0.0540 (2) 0.9315± 0.0654 (2) 0.9497± 0.0422 (2) 0.9416± 0.0580 (2) 0.9404± 0.0452 (2)
Undersample 0.9285± 0.0374 (4) 0.9241± 0.0353 (4) 0.9271± 0.0349 (3) 0.9275± 0.0358 (5) 0.9283± 0.0413 (5)
SMOTE 0.9408± 0.0597 (3) 0.9278± 0.0743 (3) 0.9516± 0.0392 (1) 0.9380± 0.0592 (3) 0.9318± 0.0718 (4)
ERM 0.7157± 0.0113 (5) 0.7078± 0.0104 (5) 0.5882± 0.0058 (5) 0.7080± 0.0134 (5) 0.7232± 0.0104 (5)
Plugin 0.8790± 0.0047 (4) 0.8840± 0.0048 (2) 0.8204± 0.0039 (4) 0.8752± 0.0054 (4) 0.8559± 0.0070 (4)

covtype-binary Balanced ERM 0.8846± 0.0042 (3) 0.8842± 0.0050 (1) 0.8801± 0.0046 (2) 0.8845± 0.0041 (1) 0.8842± 0.0042 (3)
Undersample 0.8853± 0.0046 (1) 0.8828± 0.0049 (4) 0.8799± 0.0047 (3) 0.8845± 0.0046 (1) 0.8848± 0.0044 (2)
SMOTE 0.8851± 0.0038 (2) 0.8835± 0.0049 (3) 0.8807± 0.0049 (1) 0.8843± 0.0035 (3) 0.8859± 0.0042 (1)
ERM 0.6832± 0.0283 (5) 0.6788± 0.0239 (5) 0.6776± 0.0215 (5) 0.6839± 0.0225 (5) 0.6796± 0.0277 (5)
Plugin 0.7118± 0.0266 (2) 0.7030± 0.0335 (4) 0.7107± 0.0295 (2) 0.7139± 0.0332 (2) 0.7191± 0.0257 (1)

german Balanced ERM 0.7079± 0.0337 (4) 0.7042± 0.0365 (3) 0.7058± 0.0347 (3) 0.7066± 0.0331 (4) 0.7059± 0.0370 (3)
Undersample 0.7094± 0.0351 (3) 0.7151± 0.0290 (1) 0.7031± 0.0364 (4) 0.7070± 0.0362 (3) 0.7044± 0.0328 (4)
SMOTE 0.7176± 0.0316 (1) 0.7080± 0.0313 (2) 0.7199± 0.0285 (1) 0.7193± 0.0287 (1) 0.7132± 0.0258 (2)
ERM 0.6326± 0.0162 (5) 0.6349± 0.0260 (5) 0.5004± 0.0012 (5) 0.5891± 0.0154 (5) 0.6224± 0.0150 (5)
Plugin 0.8452± 0.0174 (1) 0.8294± 0.0226 (2) 0.7336± 0.0149 (4) 0.8396± 0.0182 (1) 0.8269± 0.0146 (1)

kddcup08 Balanced ERM 0.8255± 0.0171 (3) 0.8259± 0.0149 (3) 0.8244± 0.0120 (2) 0.8288± 0.0179 (3) 0.8266± 0.0151 (2)
Undersample 0.8056± 0.0183 (4) 0.8025± 0.0168 (4) 0.8120± 0.0162 (3) 0.8080± 0.0199 (4) 0.8030± 0.0197 (4)
SMOTE 0.8296± 0.0169 (2) 0.8311± 0.0214 (1) 0.8272± 0.0139 (1) 0.8289± 0.0189 (2) 0.8243± 0.0188 (3)
ERM 0.5000± 0.0000 (5) 0.5000± 0.0000 (5) 0.5000± 0.0000 (5) 0.5000± 0.0000 (5) 0.5000± 0.0000 (4)
Plugin 0.5861± 0.0054 (1) 0.5855± 0.0068 (1) 0.5845± 0.0055 (3) 0.5849± 0.0055 (2) 0.4897± 0.0216 (5)

kddcup98 Balanced ERM 0.5853± 0.0060 (2) 0.5854± 0.0066 (2) 0.5853± 0.0063 (1) 0.5855± 0.0064 (1) 0.5816± 0.0063 (1)
Undersample 0.5851± 0.0065 (3) 0.5848± 0.0062 (4) 0.5848± 0.0061 (2) 0.5848± 0.0061 (3) 0.5814± 0.0069 (2)
SMOTE 0.5840± 0.0071 (4) 0.5849± 0.0065 (3) 0.5845± 0.0075 (3) 0.5839± 0.0071 (4) 0.5810± 0.0062 (3)
ERM 0.8302± 0.0185 (5) 0.8196± 0.0192 (5) 0.5000± 0.0000 (5) 0.8281± 0.0162 (5) 0.8354± 0.0195 (5)
Plugin 0.9386± 0.0149 (4) 0.9478± 0.0078 (3) 0.7590± 0.0048 (4) 0.9369± 0.0131 (4) 0.9229± 0.0174 (4)

letter Balanced ERM 0.9527± 0.0059 (2) 0.9475± 0.0093 (4) 0.9387± 0.0059 (1) 0.9526± 0.0056 (2) 0.9540± 0.0060 (3)
Undersample 0.9519± 0.0052 (3) 0.9484± 0.0071 (2) 0.9371± 0.0070 (3) 0.9524± 0.0051 (3) 0.9541± 0.0058 (2)
SMOTE 0.9547± 0.0056 (1) 0.9494± 0.0076 (1) 0.9378± 0.0071 (2) 0.9536± 0.0060 (1) 0.9559± 0.0061 (1)
ERM 0.9877± 0.0084 (5) 0.9872± 0.0080 (5) 0.9863± 0.0093 (4) 0.9864± 0.0075 (5) 0.9886± 0.0063 (4)
Plugin 0.9893± 0.0055 (3) 0.9896± 0.0066 (1) 0.8722± 0.0041 (5) 0.9873± 0.0052 (4) 0.9908± 0.0064 (1)

optdigits Balanced ERM 0.9900± 0.0066 (1) 0.9892± 0.0067 (2) 0.9925± 0.0035 (1) 0.9902± 0.0070 (1) 0.9895± 0.0073 (3)
Undersample 0.9886± 0.0059 (4) 0.9880± 0.0077 (4) 0.9923± 0.0033 (3) 0.9888± 0.0065 (3) 0.9882± 0.0071 (5)
SMOTE 0.9898± 0.0070 (2) 0.9884± 0.0071 (3) 0.9924± 0.0043 (2) 0.9899± 0.0065 (2) 0.9898± 0.0069 (2)
ERM 0.9186± 0.0134 (5) 0.9047± 0.0152 (5) 0.6573± 0.0145 (5) 0.9160± 0.0152 (5) 0.9220± 0.0135 (5)
Plugin 0.9556± 0.0075 (4) 0.9499± 0.0062 (3) 0.8032± 0.0072 (4) 0.9511± 0.0067 (4) 0.9508± 0.0095 (4)

pendigits Balanced ERM 0.9597± 0.0049 (2) 0.9495± 0.0059 (4) 0.9336± 0.0043 (2) 0.9596± 0.0054 (1) 0.9602± 0.0052 (2)
Undersample 0.9574± 0.0056 (3) 0.9518± 0.0072 (1) 0.9327± 0.0054 (3) 0.9583± 0.0055 (3) 0.9589± 0.0061 (3)
SMOTE 0.9598± 0.0061 (1) 0.9515± 0.0043 (2) 0.9345± 0.0047 (1) 0.9591± 0.0064 (2) 0.9615± 0.0057 (1)
ERM 0.5111± 0.0040 (5) 0.5075± 0.0051 (5) 0.5000± 0.0000 (5) 0.5041± 0.0036 (5) 0.5000± 0.0000 (5)
Plugin 0.7133± 0.0127 (4) 0.7321± 0.0137 (1) 0.7156± 0.0079 (4) 0.7275± 0.0089 (2) 0.6460± 0.0337 (4)

satimage Balanced ERM 0.7319± 0.0134 (1) 0.7320± 0.0136 (2) 0.7306± 0.0138 (1) 0.7312± 0.0140 (1) 0.7306± 0.0110 (1)
Undersample 0.7288± 0.0188 (3) 0.7288± 0.0185 (4) 0.7272± 0.0172 (3) 0.7265± 0.0177 (3) 0.7223± 0.0128 (3)
SMOTE 0.7312± 0.0135 (2) 0.7312± 0.0139 (3) 0.7281± 0.0132 (2) 0.7260± 0.0172 (4) 0.7261± 0.0126 (2)
ERM 0.9962± 0.0049 (4) 0.9962± 0.0049 (2) 0.9970± 0.0039 (1) 0.9970± 0.0040 (2) 0.9984± 0.0030 (1)
Plugin 0.9962± 0.0049 (4) 0.9961± 0.0048 (3) 0.9802± 0.0065 (5) 0.9975± 0.0032 (1) 0.9973± 0.0036 (3)

segment Balanced ERM 0.9978± 0.0035 (1) 0.9961± 0.0052 (3) 0.9970± 0.0039 (1) 0.9970± 0.0040 (2) 0.9978± 0.0036 (2)
Undersample 0.9969± 0.0042 (2) 0.9961± 0.0046 (3) 0.9970± 0.0038 (1) 0.9970± 0.0046 (2) 0.9957± 0.0041 (5)
SMOTE 0.9969± 0.0039 (2) 0.9963± 0.0043 (1) 0.9970± 0.0038 (1) 0.9968± 0.0038 (5) 0.9971± 0.0043 (4)
ERM 0.5410± 0.0451 (5) 0.5000± 0.0000 (5) 0.5000± 0.0000 (5) 0.5000± 0.0000 (5) 0.5300± 0.0483 (5)
Plugin 0.6241± 0.0638 (2) 0.6388± 0.0648 (3) 0.5901± 0.0695 (4) 0.6146± 0.0559 (4) 0.6163± 0.0880 (3)

shuttle Balanced ERM 0.6156± 0.0802 (3) 0.6389± 0.0649 (2) 0.6449± 0.0552 (2) 0.6379± 0.0650 (3) 0.6340± 0.0607 (2)
Undersample 0.6548± 0.0825 (1) 0.6578± 0.0910 (1) 0.6474± 0.0939 (1) 0.6467± 0.0960 (1) 0.6602± 0.0913 (1)
SMOTE 0.5954± 0.0694 (4) 0.6312± 0.0630 (4) 0.6384± 0.0539 (3) 0.6392± 0.0550 (2) 0.6156± 0.0998 (4)
ERM 0.9181± 0.0058 (5) 0.9081± 0.0094 (5) 0.8674± 0.0124 (5) 0.9171± 0.0069 (5) 0.9213± 0.0083 (5)
Plugin 0.9247± 0.0066 (3) 0.9179± 0.0068 (2) 0.9034± 0.0086 (1) 0.9232± 0.0073 (3) 0.9269± 0.0082 (1)

spambase Balanced ERM 0.9252± 0.0065 (2) 0.9180± 0.0067 (1) 0.9010± 0.0073 (3) 0.9244± 0.0063 (2) 0.9233± 0.0078 (4)
Undersample 0.9227± 0.0074 (4) 0.9153± 0.0074 (4) 0.8996± 0.0076 (4) 0.9214± 0.0074 (4) 0.9246± 0.0074 (3)
SMOTE 0.9256± 0.0068 (1) 0.9174± 0.0067 (3) 0.9028± 0.0063 (2) 0.9252± 0.0063 (1) 0.9253± 0.0068 (2)
ERM 0.9681± 0.0080 (2) 0.9666± 0.0062 (2) 0.9671± 0.0073 (1) 0.9701± 0.0073 (2) 0.9664± 0.0096 (5)
Plugin 0.9630± 0.0088 (4) 0.9659± 0.0071 (3) 0.8907± 0.0104 (5) 0.9586± 0.0081 (5) 0.9702± 0.0072 (1)

splice Balanced ERM 0.9664± 0.0076 (3) 0.9657± 0.0071 (4) 0.9600± 0.0070 (3) 0.9670± 0.0065 (3) 0.9686± 0.0078 (3)
Undersample 0.9620± 0.0067 (5) 0.9612± 0.0067 (5) 0.9584± 0.0054 (4) 0.9640± 0.0057 (4) 0.9677± 0.0086 (4)
SMOTE 0.9691± 0.0060 (1) 0.9674± 0.0069 (1) 0.9615± 0.0063 (2) 0.9706± 0.0064 (1) 0.9700± 0.0079 (2)
ERM 0.8491± 0.0326 (5) 0.8497± 0.0323 (5) 0.6237± 0.0429 (5) 0.8515± 0.0300 (5) 0.8518± 0.0303 (5)
Plugin 0.9669± 0.0144 (4) 0.9762± 0.0172 (1) 0.8302± 0.0062 (4) 0.9727± 0.0134 (4) 0.9838± 0.0045 (1)

thyroid Balanced ERM 0.9766± 0.0186 (1) 0.9746± 0.0183 (2) 0.9747± 0.0078 (1) 0.9741± 0.0144 (2) 0.9759± 0.0188 (2)
Undersample 0.9721± 0.0138 (2) 0.9717± 0.0162 (3) 0.9598± 0.0143 (3) 0.9743± 0.0155 (1) 0.9725± 0.0122 (3)
SMOTE 0.9681± 0.0214 (3) 0.9648± 0.0201 (4) 0.9729± 0.0110 (2) 0.9736± 0.0167 (3) 0.9608± 0.0232 (4)
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Table 6. Results for all algorithms on all data sets, in terms of GM. For each loss function, the ranks of different algorithms are displayed
in parentheses (i.e. ranks are column-relative within each data set block). Higher GM values are better; lower ranks are better.

Dataset Algorithm Logistic Exp Square Sq-Hinge Hinge
ERM 0.0000± 0.0000 (5) 0.0000± 0.0000 (5) 0.0000± 0.0000 (5) 0.0000± 0.0000 (5) 0.0000± 0.0000 (5)
Plugin 0.6761± 0.0787 (4) 0.7286± 0.0926 (1) 0.7405± 0.0501 (1) 0.6972± 0.0598 (4) 0.4238± 0.2115 (4)

abalone Balanced ERM 0.7528± 0.0707 (1) 0.7281± 0.0913 (2) 0.7216± 0.0906 (3) 0.7307± 0.0831 (1) 0.7661± 0.0604 (1)
Undersample 0.7268± 0.0739 (2) 0.7039± 0.0893 (4) 0.7236± 0.0772 (2) 0.7216± 0.0843 (2) 0.7502± 0.0731 (2)
SMOTE 0.7207± 0.0886 (3) 0.7115± 0.0757 (3) 0.7045± 0.0777 (4) 0.7015± 0.1017 (3) 0.7053± 0.0982 (3)
ERM 0.9247± 0.0542 (5) 0.9196± 0.0671 (5) 0.0000± 0.0000 (5) 0.9369± 0.0555 (5) 0.9444± 0.0723 (5)
Plugin 0.9938± 0.0027 (3) 0.9947± 0.0028 (1) 0.7474± 0.0179 (4) 0.9929± 0.0044 (3) 0.9900± 0.0082 (3)

car Balanced ERM 0.9944± 0.0027 (1) 0.9947± 0.0028 (1) 0.9292± 0.0068 (2) 0.9939± 0.0033 (1) 0.9911± 0.0036 (2)
Undersample 0.9706± 0.0119 (4) 0.9704± 0.0123 (4) 0.9211± 0.0142 (3) 0.9749± 0.0112 (4) 0.9855± 0.0147 (4)
SMOTE 0.9944± 0.0027 (1) 0.9941± 0.0032 (3) 0.9301± 0.0066 (1) 0.9936± 0.0037 (2) 0.9937± 0.0039 (1)
ERM 0.7998± 0.1326 (5) 0.8263± 0.1076 (5) 0.7882± 0.1002 (5) 0.8337± 0.0915 (5) 0.8929± 0.0628 (3)
Plugin 0.9121± 0.0597 (1) 0.9051± 0.0618 (1) 0.7927± 0.0308 (4) 0.9195± 0.0609 (1) 0.8973± 0.0618 (2)

chemo-a1a Balanced ERM 0.8952± 0.0687 (3) 0.9014± 0.0617 (2) 0.8888± 0.0671 (3) 0.8803± 0.0557 (4) 0.9409± 0.0316 (1)
Undersample 0.9038± 0.0440 (2) 0.8989± 0.0486 (3) 0.9028± 0.0562 (1) 0.9083± 0.0391 (2) 0.8893± 0.0620 (4)
SMOTE 0.8882± 0.0427 (4) 0.8703± 0.0492 (4) 0.8970± 0.0640 (2) 0.9060± 0.0558 (3) 0.8604± 0.0530 (5)
ERM 0.9097± 0.0773 (5) 0.9018± 0.0622 (5) 0.8980± 0.0867 (4) 0.9267± 0.0687 (4) 0.9305± 0.0681 (3)
Plugin 0.9610± 0.0403 (1) 0.9321± 0.0650 (1) 0.7953± 0.0371 (5) 0.9625± 0.0351 (1) 0.9533± 0.0559 (1)

chemo-pde5 Balanced ERM 0.9418± 0.0581 (2) 0.9278± 0.0705 (2) 0.9484± 0.0438 (2) 0.9390± 0.0623 (2) 0.9388± 0.0470 (2)
Undersample 0.9270± 0.0381 (4) 0.9226± 0.0359 (3) 0.9260± 0.0356 (3) 0.9264± 0.0366 (5) 0.9266± 0.0425 (4)
SMOTE 0.9379± 0.0638 (3) 0.9222± 0.0826 (4) 0.9501± 0.0410 (1) 0.9352± 0.0632 (3) 0.9264± 0.0810 (5)
ERM 0.6629± 0.0168 (5) 0.6524± 0.0160 (5) 0.4229± 0.0137 (5) 0.6509± 0.0205 (5) 0.6733± 0.0154 (5)
Plugin 0.8781± 0.0045 (4) 0.8836± 0.0047 (2) 0.8065± 0.0041 (4) 0.8737± 0.0051 (4) 0.8547± 0.0067 (4)

covtype-binary Balanced ERM 0.8841± 0.0041 (3) 0.8839± 0.0049 (1) 0.8791± 0.0045 (2) 0.8839± 0.0040 (1) 0.8834± 0.0040 (3)
Undersample 0.8848± 0.0045 (1) 0.8824± 0.0047 (4) 0.8789± 0.0046 (3) 0.8839± 0.0044 (1) 0.8843± 0.0043 (2)
SMOTE 0.8846± 0.0037 (2) 0.8832± 0.0048 (3) 0.8798± 0.0048 (1) 0.8838± 0.0034 (3) 0.8855± 0.0041 (1)
ERM 0.6505± 0.0360 (5) 0.6442± 0.0322 (5) 0.6402± 0.0278 (5) 0.6502± 0.0301 (5) 0.6449± 0.0365 (5)
Plugin 0.7109± 0.0267 (2) 0.7017± 0.0333 (4) 0.7074± 0.0275 (2) 0.7114± 0.0316 (2) 0.7178± 0.0258 (1)

german Balanced ERM 0.7071± 0.0337 (4) 0.7029± 0.0364 (3) 0.7047± 0.0342 (3) 0.7056± 0.0328 (4) 0.7047± 0.0372 (3)
Undersample 0.7082± 0.0348 (3) 0.7140± 0.0291 (1) 0.7020± 0.0360 (4) 0.7059± 0.0359 (3) 0.7032± 0.0329 (4)
SMOTE 0.7163± 0.0322 (1) 0.7063± 0.0321 (2) 0.7192± 0.0282 (1) 0.7185± 0.0288 (1) 0.7120± 0.0264 (2)
ERM 0.5147± 0.0312 (5) 0.5182± 0.0528 (5) 0.0087± 0.0276 (5) 0.4209± 0.0372 (5) 0.4945± 0.0299 (5)
Plugin 0.8434± 0.0185 (1) 0.8261± 0.0245 (2) 0.7149± 0.0158 (4) 0.8349± 0.0197 (1) 0.8253± 0.0153 (1)

kddcup08 Balanced ERM 0.8239± 0.0181 (3) 0.8232± 0.0160 (3) 0.8229± 0.0129 (2) 0.8268± 0.0191 (2) 0.8248± 0.0163 (2)
Undersample 0.8052± 0.0187 (4) 0.8022± 0.0171 (4) 0.8114± 0.0164 (3) 0.8076± 0.0202 (4) 0.8026± 0.0199 (4)
SMOTE 0.8261± 0.0184 (2) 0.8272± 0.0231 (1) 0.8257± 0.0147 (1) 0.8257± 0.0202 (3) 0.8208± 0.0204 (3)
ERM 0.0000± 0.0000 (5) 0.0000± 0.0000 (5) 0.0000± 0.0000 (5) 0.0000± 0.0000 (5) 0.0000± 0.0000 (5)
Plugin 0.5856± 0.0059 (1) 0.5850± 0.0072 (1) 0.5838± 0.0052 (3) 0.5842± 0.0052 (2) 0.4174± 0.0722 (4)

kddcup98 Balanced ERM 0.5846± 0.0065 (2) 0.5848± 0.0071 (2) 0.5846± 0.0068 (1) 0.5848± 0.0070 (1) 0.5798± 0.0070 (3)
Undersample 0.5844± 0.0070 (3) 0.5840± 0.0067 (3) 0.5840± 0.0066 (2) 0.5841± 0.0066 (3) 0.5808± 0.0069 (1)
SMOTE 0.5833± 0.0076 (4) 0.5840± 0.0073 (3) 0.5838± 0.0080 (3) 0.5832± 0.0076 (4) 0.5805± 0.0061 (2)
ERM 0.8134± 0.0228 (5) 0.8004± 0.0241 (5) 0.0000± 0.0000 (5) 0.8107± 0.0199 (5) 0.8194± 0.0238 (5)
Plugin 0.9383± 0.0148 (4) 0.9477± 0.0078 (3) 0.7197± 0.0067 (4) 0.9368± 0.0130 (4) 0.9227± 0.0174 (4)

letter Balanced ERM 0.9526± 0.0058 (2) 0.9473± 0.0092 (4) 0.9376± 0.0058 (1) 0.9525± 0.0055 (2) 0.9539± 0.0059 (3)
Undersample 0.9517± 0.0051 (3) 0.9482± 0.0070 (2) 0.9359± 0.0069 (3) 0.9522± 0.0050 (3) 0.9540± 0.0057 (2)
SMOTE 0.9546± 0.0056 (1) 0.9493± 0.0075 (1) 0.9368± 0.0070 (2) 0.9535± 0.0060 (1) 0.9558± 0.0060 (1)
ERM 0.9876± 0.0085 (5) 0.9871± 0.0081 (5) 0.9862± 0.0094 (4) 0.9863± 0.0076 (5) 0.9885± 0.0064 (4)
Plugin 0.9893± 0.0056 (3) 0.9895± 0.0067 (1) 0.8628± 0.0048 (5) 0.9873± 0.0053 (4) 0.9908± 0.0065 (1)

optdigits Balanced ERM 0.9899± 0.0067 (1) 0.9892± 0.0067 (2) 0.9925± 0.0035 (1) 0.9902± 0.0071 (1) 0.9895± 0.0073 (3)
Undersample 0.9885± 0.0059 (4) 0.9880± 0.0078 (4) 0.9923± 0.0033 (3) 0.9887± 0.0065 (3) 0.9881± 0.0071 (5)
SMOTE 0.9898± 0.0070 (2) 0.9883± 0.0072 (3) 0.9924± 0.0043 (2) 0.9899± 0.0065 (2) 0.9898± 0.0070 (2)
ERM 0.9158± 0.0145 (5) 0.9008± 0.0166 (5) 0.5619± 0.0259 (5) 0.9129± 0.0165 (5) 0.9193± 0.0146 (5)
Plugin 0.9555± 0.0075 (4) 0.9498± 0.0061 (3) 0.7790± 0.0090 (4) 0.9509± 0.0066 (4) 0.9507± 0.0095 (4)

pendigits Balanced ERM 0.9596± 0.0049 (2) 0.9495± 0.0059 (4) 0.9316± 0.0044 (2) 0.9595± 0.0053 (1) 0.9601± 0.0052 (2)
Undersample 0.9573± 0.0056 (3) 0.9517± 0.0072 (1) 0.9306± 0.0056 (3) 0.9582± 0.0055 (3) 0.9589± 0.0061 (3)
SMOTE 0.9597± 0.0061 (1) 0.9514± 0.0043 (2) 0.9326± 0.0048 (1) 0.9590± 0.0064 (2) 0.9615± 0.0057 (1)
ERM 0.1520± 0.0311 (5) 0.1252± 0.0536 (5) 0.0000± 0.0000 (5) 0.0792± 0.0476 (5) 0.0000± 0.0000 (5)
Plugin 0.6868± 0.0128 (4) 0.7180± 0.0132 (1) 0.6683± 0.0087 (4) 0.6923± 0.0060 (4) 0.5893± 0.0895 (4)

satimage Balanced ERM 0.7178± 0.0129 (1) 0.7179± 0.0131 (2) 0.7149± 0.0138 (1) 0.7167± 0.0135 (1) 0.6981± 0.0078 (3)
Undersample 0.7131± 0.0213 (3) 0.7133± 0.0211 (4) 0.7086± 0.0190 (3) 0.7084± 0.0192 (3) 0.7158± 0.0124 (2)
SMOTE 0.7168± 0.0134 (2) 0.7167± 0.0138 (3) 0.7100± 0.0138 (2) 0.7105± 0.0162 (2) 0.7230± 0.0117 (1)
ERM 0.9962± 0.0049 (4) 0.9962± 0.0049 (2) 0.9970± 0.0039 (1) 0.9969± 0.0040 (3) 0.9984± 0.0031 (1)
Plugin 0.9962± 0.0049 (4) 0.9960± 0.0048 (4) 0.9800± 0.0065 (5) 0.9975± 0.0032 (1) 0.9973± 0.0036 (3)

segment Balanced ERM 0.9978± 0.0035 (1) 0.9960± 0.0052 (4) 0.9970± 0.0039 (1) 0.9969± 0.0040 (3) 0.9978± 0.0037 (2)
Undersample 0.9969± 0.0043 (2) 0.9961± 0.0046 (3) 0.9970± 0.0038 (1) 0.9970± 0.0046 (2) 0.9957± 0.0041 (5)
SMOTE 0.9969± 0.0039 (2) 0.9963± 0.0043 (1) 0.9970± 0.0038 (1) 0.9968± 0.0038 (5) 0.9971± 0.0043 (4)
ERM 0.2014± 0.2147 (5) 0.0000± 0.0000 (5) 0.0000± 0.0000 (5) 0.0000± 0.0000 (5) 0.1342± 0.2160 (5)
Plugin 0.5653± 0.2060 (3) 0.6163± 0.0787 (2) 0.5846± 0.0719 (4) 0.6052± 0.0613 (3) 0.5934± 0.0839 (3)

shuttle Balanced ERM 0.5838± 0.1125 (2) 0.6163± 0.0788 (2) 0.6199± 0.0705 (2) 0.6046± 0.0953 (4) 0.5954± 0.0914 (2)
Undersample 0.6407± 0.0931 (1) 0.6443± 0.0979 (1) 0.6353± 0.1075 (1) 0.6334± 0.1089 (1) 0.6470± 0.0999 (1)
SMOTE 0.5594± 0.0970 (4) 0.6027± 0.0815 (4) 0.6146± 0.0673 (3) 0.6154± 0.0686 (2) 0.5646± 0.1839 (4)
ERM 0.9175± 0.0060 (5) 0.9073± 0.0097 (5) 0.8630± 0.0132 (5) 0.9164± 0.0071 (5) 0.9206± 0.0085 (5)
Plugin 0.9247± 0.0066 (3) 0.9178± 0.0069 (2) 0.9033± 0.0086 (1) 0.9231± 0.0073 (3) 0.9268± 0.0082 (1)

spambase Balanced ERM 0.9251± 0.0065 (2) 0.9179± 0.0067 (1) 0.9005± 0.0073 (3) 0.9243± 0.0063 (2) 0.9231± 0.0080 (4)
Undersample 0.9227± 0.0074 (4) 0.9152± 0.0074 (4) 0.8991± 0.0077 (4) 0.9213± 0.0074 (4) 0.9245± 0.0074 (3)
SMOTE 0.9256± 0.0069 (1) 0.9174± 0.0068 (3) 0.9024± 0.0063 (2) 0.9252± 0.0063 (1) 0.9251± 0.0069 (2)
ERM 0.9680± 0.0081 (2) 0.9665± 0.0063 (2) 0.9670± 0.0073 (1) 0.9700± 0.0074 (2) 0.9662± 0.0096 (5)
Plugin 0.9629± 0.0088 (4) 0.9658± 0.0071 (3) 0.8847± 0.0112 (5) 0.9585± 0.0082 (5) 0.9702± 0.0072 (1)

splice Balanced ERM 0.9664± 0.0077 (3) 0.9657± 0.0070 (4) 0.9597± 0.0070 (3) 0.9670± 0.0065 (3) 0.9685± 0.0078 (3)
Undersample 0.9618± 0.0066 (5) 0.9610± 0.0067 (5) 0.9580± 0.0055 (4) 0.9638± 0.0057 (4) 0.9677± 0.0086 (4)
SMOTE 0.9691± 0.0060 (1) 0.9674± 0.0069 (1) 0.9613± 0.0063 (2) 0.9706± 0.0064 (1) 0.9699± 0.0080 (2)
ERM 0.8352± 0.0390 (5) 0.8360± 0.0383 (5) 0.4906± 0.0883 (5) 0.8382± 0.0358 (5) 0.8385± 0.0361 (5)
Plugin 0.9667± 0.0144 (4) 0.9761± 0.0175 (1) 0.8127± 0.0076 (4) 0.9726± 0.0134 (4) 0.9837± 0.0045 (1)

thyroid Balanced ERM 0.9765± 0.0190 (1) 0.9745± 0.0185 (2) 0.9746± 0.0078 (1) 0.9740± 0.0146 (2) 0.9757± 0.0190 (2)
Undersample 0.9720± 0.0139 (2) 0.9716± 0.0164 (3) 0.9597± 0.0144 (3) 0.9742± 0.0157 (1) 0.9724± 0.0123 (3)
SMOTE 0.9678± 0.0220 (3) 0.9644± 0.0208 (4) 0.9728± 0.0109 (2) 0.9734± 0.0169 (3) 0.9601± 0.0240 (4)
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Table 7. Results for all algorithms on all data sets, in terms of AUC-ROC. For each loss function, the ranks of different algorithms are
displayed in parentheses (i.e. ranks are column-relative within each data set block). Higher AUC values are better; lower ranks are better.

Dataset Algorithm Logistic Exp Square Sq-Hinge Hinge
ERM 0.7860± 0.0794 (4) 0.7943± 0.0712 (3) 0.8519± 0.0583 (1) 0.7839± 0.0912 (5) 0.6121± 0.0873 (4)
Plugin 0.7696± 0.0640 (5) 0.7980± 0.0661 (1) 0.8498± 0.0560 (2) 0.7921± 0.0857 (4) 0.6075± 0.1185 (5)

abalone Balanced ERM 0.8082± 0.0654 (1) 0.7963± 0.0619 (2) 0.8228± 0.0570 (3) 0.8086± 0.0607 (2) 0.8217± 0.0628 (1)
Undersample 0.7942± 0.0717 (3) 0.7806± 0.0789 (5) 0.8130± 0.0614 (5) 0.8117± 0.0695 (1) 0.8184± 0.0666 (2)
SMOTE 0.8018± 0.0612 (2) 0.7826± 0.0638 (4) 0.8169± 0.0536 (4) 0.8033± 0.0608 (3) 0.8104± 0.0648 (3)
ERM 0.9985± 0.0011 (1) 0.9985± 0.0012 (1) 0.9961± 0.0020 (4) 0.9984± 0.0013 (3) 0.9979± 0.0009 (3)
Plugin 0.9984± 0.0011 (4) 0.9985± 0.0012 (1) 0.9964± 0.0022 (3) 0.9984± 0.0011 (3) 0.9980± 0.0011 (2)

car Balanced ERM 0.9985± 0.0010 (1) 0.9985± 0.0012 (1) 0.9980± 0.0015 (1) 0.9985± 0.0011 (1) 0.9981± 0.0019 (1)
Undersample 0.9936± 0.0051 (5) 0.9933± 0.0051 (5) 0.9937± 0.0051 (5) 0.9935± 0.0061 (5) 0.9957± 0.0038 (5)
SMOTE 0.9985± 0.0010 (1) 0.9984± 0.0012 (4) 0.9965± 0.0026 (2) 0.9985± 0.0010 (1) 0.9979± 0.0016 (3)
ERM 0.9717± 0.0324 (4) 0.9762± 0.0272 (3) 0.9315± 0.0604 (5) 0.9818± 0.0213 (1) 0.9803± 0.0213 (2)
Plugin 0.9842± 0.0175 (1) 0.9796± 0.0123 (1) 0.9701± 0.0288 (3) 0.9817± 0.0206 (2) 0.9807± 0.0174 (1)

chemo-a1a Balanced ERM 0.9768± 0.0132 (3) 0.9759± 0.0130 (4) 0.9769± 0.0120 (2) 0.9750± 0.0116 (4) 0.9791± 0.0112 (3)
Undersample 0.9685± 0.0144 (5) 0.9633± 0.0265 (5) 0.9665± 0.0293 (4) 0.9688± 0.0189 (5) 0.9677± 0.0147 (5)
SMOTE 0.9796± 0.0104 (2) 0.9765± 0.0069 (2) 0.9830± 0.0116 (1) 0.9807± 0.0120 (3) 0.9721± 0.0098 (4)
ERM 0.9845± 0.0267 (2) 0.9876± 0.0247 (1) 0.9615± 0.0486 (5) 0.9880± 0.0239 (1) 0.9852± 0.0233 (1)
Plugin 0.9868± 0.0260 (1) 0.9801± 0.0321 (3) 0.9784± 0.0366 (4) 0.9817± 0.0438 (3) 0.9829± 0.0303 (2)

chemo-pde5 Balanced ERM 0.9802± 0.0321 (3) 0.9796± 0.0326 (4) 0.9828± 0.0284 (1) 0.9821± 0.0315 (2) 0.9803± 0.0315 (4)
Undersample 0.9785± 0.0253 (5) 0.9778± 0.0252 (5) 0.9797± 0.0248 (3) 0.9797± 0.0249 (5) 0.9793± 0.0248 (5)
SMOTE 0.9798± 0.0316 (4) 0.9828± 0.0293 (2) 0.9818± 0.0286 (2) 0.9812± 0.0307 (4) 0.9815± 0.0253 (3)
ERM 0.9472± 0.0031 (5) 0.9483± 0.0031 (1) 0.9298± 0.0037 (5) 0.9475± 0.0033 (4) 0.9396± 0.0038 (4)
Plugin 0.9482± 0.0032 (4) 0.9483± 0.0029 (1) 0.9299± 0.0038 (4) 0.9475± 0.0033 (4) 0.9386± 0.0040 (5)

covtype-binary Balanced ERM 0.9489± 0.0027 (1) 0.9483± 0.0029 (1) 0.9451± 0.0027 (2) 0.9486± 0.0026 (1) 0.9475± 0.0027 (1)
Undersample 0.9485± 0.0027 (3) 0.9477± 0.0030 (5) 0.9449± 0.0026 (3) 0.9481± 0.0027 (3) 0.9466± 0.0029 (3)
SMOTE 0.9487± 0.0026 (2) 0.9482± 0.0029 (4) 0.9452± 0.0025 (1) 0.9484± 0.0025 (2) 0.9469± 0.0027 (2)
ERM 0.7835± 0.0305 (2) 0.7841± 0.0313 (1) 0.7834± 0.0308 (4) 0.7831± 0.0314 (4) 0.7803± 0.0324 (3)
Plugin 0.7851± 0.0286 (1) 0.7824± 0.0293 (2) 0.7852± 0.0300 (1) 0.7855± 0.0298 (1) 0.7840± 0.0319 (1)

german Balanced ERM 0.7835± 0.0321 (2) 0.7806± 0.0304 (3) 0.7845± 0.0313 (3) 0.7840± 0.0310 (3) 0.7828± 0.0317 (2)
Undersample 0.7787± 0.0327 (5) 0.7799± 0.0254 (4) 0.7788± 0.0324 (5) 0.7809± 0.0321 (5) 0.7801± 0.0270 (5)
SMOTE 0.7816± 0.0279 (4) 0.7797± 0.0309 (5) 0.7850± 0.0272 (2) 0.7841± 0.0282 (2) 0.7802± 0.0246 (4)
ERM 0.9218± 0.0138 (2) 0.9128± 0.0163 (4) 0.8681± 0.0150 (5) 0.9216± 0.0137 (2) 0.9083± 0.0139 (3)
Plugin 0.9220± 0.0112 (1) 0.9161± 0.0183 (1) 0.8720± 0.0125 (4) 0.9230± 0.0128 (1) 0.9106± 0.0168 (1)

kddcup08 Balanced ERM 0.9102± 0.0139 (4) 0.9136± 0.0148 (3) 0.9084± 0.0133 (2) 0.9132± 0.0140 (4) 0.9073± 0.0139 (4)
Undersample 0.8898± 0.0153 (5) 0.8867± 0.0126 (5) 0.8930± 0.0120 (3) 0.8924± 0.0155 (5) 0.8844± 0.0154 (5)
SMOTE 0.9153± 0.0160 (3) 0.9153± 0.0169 (2) 0.9089± 0.0122 (1) 0.9160± 0.0154 (3) 0.9098± 0.0121 (2)
ERM 0.6147± 0.0076 (1) 0.6148± 0.0077 (1) 0.6145± 0.0076 (3) 0.6145± 0.0076 (2) 0.5110± 0.0439 (5)
Plugin 0.6147± 0.0078 (1) 0.6145± 0.0081 (3) 0.6146± 0.0077 (2) 0.6145± 0.0076 (2) 0.5328± 0.0222 (4)

kddcup98 Balanced ERM 0.6143± 0.0077 (3) 0.6146± 0.0080 (2) 0.6147± 0.0076 (1) 0.6147± 0.0077 (1) 0.6092± 0.0071 (3)
Undersample 0.6142± 0.0071 (4) 0.6136± 0.0070 (4) 0.6136± 0.0069 (4) 0.6136± 0.0069 (4) 0.6096± 0.0072 (1)
SMOTE 0.6119± 0.0089 (5) 0.6124± 0.0083 (5) 0.6124± 0.0089 (5) 0.6120± 0.0088 (5) 0.6094± 0.0069 (2)
ERM 0.9866± 0.0041 (5) 0.9882± 0.0023 (3) 0.9741± 0.0045 (4) 0.9864± 0.0040 (4) 0.9823± 0.0061 (4)
Plugin 0.9867± 0.0042 (4) 0.9883± 0.0026 (1) 0.9741± 0.0045 (4) 0.9863± 0.0043 (5) 0.9823± 0.0061 (4)

letter Balanced ERM 0.9884± 0.0023 (1) 0.9882± 0.0027 (3) 0.9847± 0.0020 (2) 0.9883± 0.0021 (1) 0.9874± 0.0022 (1)
Undersample 0.9877± 0.0021 (3) 0.9877± 0.0022 (5) 0.9846± 0.0019 (3) 0.9876± 0.0020 (3) 0.9864± 0.0022 (3)
SMOTE 0.9884± 0.0022 (1) 0.9883± 0.0025 (1) 0.9848± 0.0020 (1) 0.9883± 0.0022 (1) 0.9870± 0.0023 (2)
ERM 0.9992± 0.0010 (5) 0.9992± 0.0008 (4) 0.9997± 0.0003 (1) 0.9992± 0.0008 (4) 0.9995± 0.0005 (3)
Plugin 0.9995± 0.0005 (2) 0.9994± 0.0006 (2) 0.9997± 0.0003 (1) 0.9991± 0.0008 (5) 0.9997± 0.0004 (1)

optdigits Balanced ERM 0.9995± 0.0006 (2) 0.9994± 0.0007 (2) 0.9996± 0.0004 (3) 0.9995± 0.0007 (2) 0.9995± 0.0006 (3)
Undersample 0.9995± 0.0006 (2) 0.9991± 0.0010 (5) 0.9996± 0.0003 (3) 0.9995± 0.0007 (2) 0.9993± 0.0008 (5)
SMOTE 0.9997± 0.0002 (1) 0.9995± 0.0006 (1) 0.9996± 0.0004 (3) 0.9997± 0.0002 (1) 0.9996± 0.0004 (2)
ERM 0.9911± 0.0023 (4) 0.9900± 0.0015 (4) 0.9835± 0.0032 (5) 0.9910± 0.0025 (4) 0.9892± 0.0041 (5)
Plugin 0.9913± 0.0021 (1) 0.9901± 0.0016 (2) 0.9842± 0.0035 (4) 0.9913± 0.0022 (1) 0.9901± 0.0036 (3)

pendigits Balanced ERM 0.9912± 0.0016 (3) 0.9901± 0.0016 (2) 0.9869± 0.0026 (1) 0.9911± 0.0015 (2) 0.9907± 0.0016 (1)
Undersample 0.9909± 0.0017 (5) 0.9895± 0.0018 (5) 0.9863± 0.0028 (3) 0.9907± 0.0016 (5) 0.9901± 0.0016 (3)
SMOTE 0.9913± 0.0016 (1) 0.9906± 0.0015 (1) 0.9868± 0.0025 (2) 0.9911± 0.0016 (2) 0.9905± 0.0017 (2)
ERM 0.7754± 0.0134 (1) 0.7662± 0.0146 (1) 0.7554± 0.0117 (1) 0.7742± 0.0144 (1) 0.7197± 0.0182 (4)
Plugin 0.7532± 0.0166 (2) 0.7275± 0.0098 (2) 0.7377± 0.0107 (2) 0.7723± 0.0066 (2) 0.7154± 0.0105 (5)

satimage Balanced ERM 0.7274± 0.0098 (3) 0.7274± 0.0099 (4) 0.7291± 0.0127 (5) 0.7275± 0.0098 (5) 0.7660± 0.0111 (1)
Undersample 0.7270± 0.0099 (5) 0.7269± 0.0099 (5) 0.7309± 0.0162 (4) 0.7349± 0.0187 (3) 0.7350± 0.0195 (2)
SMOTE 0.7274± 0.0094 (3) 0.7275± 0.0094 (2) 0.7312± 0.0154 (3) 0.7341± 0.0181 (4) 0.7273± 0.0095 (3)
ERM 0.9999± 0.0003 (1) 0.9999± 0.0003 (1) 0.9977± 0.0047 (5) 0.9999± 0.0003 (1) 0.9998± 0.0006 (1)
Plugin 0.9999± 0.0003 (1) 0.9999± 0.0003 (1) 0.9979± 0.0047 (4) 0.9999± 0.0003 (1) 0.9998± 0.0006 (1)

segment Balanced ERM 0.9999± 0.0003 (1) 0.9999± 0.0003 (1) 0.9982± 0.0047 (1) 0.9998± 0.0005 (3) 0.9994± 0.0017 (4)
Undersample 0.9997± 0.0008 (5) 0.9997± 0.0008 (5) 0.9982± 0.0046 (1) 0.9997± 0.0008 (5) 0.9996± 0.0011 (3)
SMOTE 0.9999± 0.0004 (1) 0.9999± 0.0003 (1) 0.9981± 0.0045 (3) 0.9998± 0.0004 (3) 0.9993± 0.0021 (5)
ERM 0.5813± 0.1313 (4) 0.7525± 0.0678 (1) 0.5667± 0.1468 (4) 0.5667± 0.1468 (4) 0.5839± 0.1536 (4)
Plugin 0.5640± 0.1076 (5) 0.6832± 0.1305 (2) 0.5586± 0.1339 (5) 0.5586± 0.1339 (5) 0.5698± 0.1477 (5)

shuttle Balanced ERM 0.6729± 0.1217 (2) 0.6826± 0.1268 (3) 0.6628± 0.1633 (2) 0.6961± 0.1351 (1) 0.7091± 0.1098 (1)
Undersample 0.6745± 0.1388 (1) 0.6734± 0.1412 (4) 0.6816± 0.1360 (1) 0.6751± 0.1376 (2) 0.6754± 0.1490 (2)
SMOTE 0.6292± 0.1145 (3) 0.6311± 0.1405 (5) 0.6424± 0.1488 (3) 0.6415± 0.1480 (3) 0.6689± 0.1475 (3)
ERM 0.9714± 0.0047 (2) 0.9697± 0.0046 (1) 0.9507± 0.0065 (4) 0.9712± 0.0048 (1) 0.9716± 0.0053 (2)
Plugin 0.9713± 0.0046 (4) 0.9694± 0.0044 (3) 0.9505± 0.0063 (5) 0.9709± 0.0047 (3) 0.9711± 0.0055 (3)

spambase Balanced ERM 0.9718± 0.0048 (1) 0.9694± 0.0044 (3) 0.9517± 0.0061 (3) 0.9712± 0.0043 (1) 0.9707± 0.0051 (4)
Undersample 0.9709± 0.0049 (5) 0.9688± 0.0048 (5) 0.9518± 0.0064 (1) 0.9706± 0.0046 (5) 0.9706± 0.0055 (5)
SMOTE 0.9714± 0.0046 (2) 0.9695± 0.0045 (2) 0.9518± 0.0062 (1) 0.9709± 0.0041 (3) 0.9718± 0.0049 (1)
ERM 0.9939± 0.0027 (1) 0.9931± 0.0030 (4) 0.9935± 0.0031 (4) 0.9938± 0.0028 (3) 0.9934± 0.0032 (4)
Plugin 0.9932± 0.0030 (4) 0.9935± 0.0028 (1) 0.9933± 0.0024 (5) 0.9924± 0.0030 (5) 0.9937± 0.0029 (3)

splice Balanced ERM 0.9938± 0.0025 (2) 0.9935± 0.0028 (1) 0.9944± 0.0025 (1) 0.9939± 0.0029 (2) 0.9934± 0.0037 (4)
Undersample 0.9932± 0.0033 (4) 0.9929± 0.0030 (5) 0.9939± 0.0026 (3) 0.9938± 0.0028 (3) 0.9939± 0.0029 (2)
SMOTE 0.9938± 0.0026 (2) 0.9934± 0.0026 (3) 0.9941± 0.0025 (2) 0.9941± 0.0027 (1) 0.9943± 0.0027 (1)
ERM 0.9925± 0.0107 (4) 0.9893± 0.0131 (5) 0.9957± 0.0010 (1) 0.9947± 0.0052 (4) 0.9960± 0.0022 (2)
Plugin 0.9922± 0.0105 (5) 0.9953± 0.0034 (2) 0.9957± 0.0010 (1) 0.9945± 0.0052 (5) 0.9973± 0.0008 (1)

thyroid Balanced ERM 0.9961± 0.0022 (1) 0.9951± 0.0036 (3) 0.9941± 0.0026 (4) 0.9958± 0.0021 (2) 0.9959± 0.0036 (3)
Undersample 0.9952± 0.0031 (3) 0.9949± 0.0032 (4) 0.9918± 0.0038 (5) 0.9955± 0.0031 (3) 0.9953± 0.0029 (5)
SMOTE 0.9961± 0.0019 (1) 0.9956± 0.0025 (1) 0.9943± 0.0026 (3) 0.9959± 0.0018 (1) 0.9958± 0.0021 (4)


