On the Statistical Consistency of Algorithms for Binary Classification under Class Imbalance

Aditya K. Menon¹, Harikrishna Narasimhan², Shivani Agarwal² and Sanjay Chawla³

> ¹University of California, San Diego ²Indian Institute of Science, Bangalore ³University of Sydney and NICTA, Sydney

- Medical Diagnosis
- Text Retrieval
- Credit Risk Minimization
- Fraud Detection

- Medical Diagnosis
- Text Retrieval
- Credit Risk Minimization
- Fraud Detection

Standard misclassification error ill-suited!

Measure	Definition	References
A-Mean (AM)	(TPR + TNR)/2	Chan & Stolfo (1998);
		Powers et al. $(2005);$
		Gu et al. $(2009);$
		KDD Cup 2001 challenge
G-Mean (GM)	$\sqrt{\mathrm{TPR}\cdot\mathrm{TNR}}$	Kubat & Matwin $(1997);$
		Daskalaki et al. (2006)
H-Mean (HM)	$2/(\frac{1}{\text{TPR}} + \frac{1}{\text{TNR}})$	Kennedy et al. (2009)
Q-Mean (QM)	$1 - ((FPR)^2 + (FNR)^2)/2$	Lawrence et al. (1998)
F_1	$2/(\frac{1}{\text{Prec}} + \frac{1}{\text{TPR}})$	Lewis & Gale (1994)
		Gu et al. (2009)
G-TP/PR	$\sqrt{\text{TPR} \cdot \text{Prec}}$	Daskalaki et al. (2006)
AUC-ROC	Area under ROC curve	Ling et al. (1998)
AUC-PR	Area under precision-recall curve	Davis & Goadrich (2006)
		Liu & Chawla (2011)

Measure	Definition	References
A-Mean (AM)	(TPR + TNR)/2	Chan & Stolfo (1998);
		Powers et al. $(2005);$
		Gu et al. $(2009);$
		KDD Cup 2001 challenge
G-Mean (GM)	$\sqrt{\text{TPR} \cdot \text{TNR}}$	Kubat & Matwin $(1997);$
		Daskalaki et al. (2006)
H-Mean (HM)	$2/(\frac{1}{\text{TPR}} + \frac{1}{\text{TNR}})$	Kennedy et al. (2009)
Q-Mean (QM)	$1 - ((FPR)^2 + (FNR)^2)/2$	Lawrence et al. (1998)
F_1	$2/(\frac{1}{\text{Prec}} + \frac{1}{\text{TPR}})$	Lewis & Gale (1994)
		Gu et al. (2009)
G-TP/PR	$\sqrt{\text{TPR} \cdot \text{Prec}}$	Daskalaki et al. (2006)
AUC-ROC	Area under ROC curve	Ling et al. (1998)
AUC-PR	Area under precision-recall curve	Davis & Goadrich (2006)
		Liu & Chawla (2011)

Algorithmic Approaches

- **Sampling:** (Japkowicz & Stephen, 2002; Chawla et al., 2002, 2003; Van Hulse et al., 2007; He & Garcia, 2009)
 - Over-sample the minority class
 - Under-sample the majority class
 - SMOTE
 - ...
- Plug-in classifier (Elkan, 2001)
- Balanced ERM (Liu & Chawla, 2011; Wallace et al., 2011)

Two Families of Algorithms

Algorithm 1

Plug-in with Empirical Threshold

- Learn a class probability estimator from training data *S*.
- Apply a suitable empirical threshold on the class probability estimate.

Two Families of Algorithms

Algorithm 1

Plug-in with Empirical Threshold

- Learn a class probability estimator from training data *S*.
- Apply a suitable empirical threshold on the class probability estimate:

Algorithm 2

Empirically Balanced ERM

- Learn a binary classifier by minimizing a balanced surrogate loss.
- Balancing terms estimated from training data.

Main Consistency Results

AM-regret

 $\operatorname{regret}_{D}^{\operatorname{AM}}[h] = \sup_{h: \mathcal{X} \to \{\pm 1\}} \operatorname{AM}_{D}[h] - \operatorname{AM}_{D}[h]$

Main Consistency Results

AM-regret

 $\operatorname{regret}_{D}^{\operatorname{AM}}[h] = \sup_{h: \mathcal{X} \to \{\pm 1\}} \operatorname{AM}_{D}[h] - \operatorname{AM}_{D}[h]$

AM-consistency

 $\operatorname{regret}_{D}^{\operatorname{AM}}[h_{S}] \xrightarrow{P} 0$

Main Consistency Results

AM-regret

 $\operatorname{regret}_{D}^{\operatorname{AM}}[h] = \sup_{h: \mathcal{X} \to \{\pm 1\}} \operatorname{AM}_{D}[h] - \operatorname{AM}_{D}[h]$

AM-consistency

 $\operatorname{regret}_{D}^{\operatorname{AM}}[h_{S}] \xrightarrow{P} 0$

Main Results: Under mild conditions on the underlying distribution and under certain assumptions on the surrogate loss function minimized, Algorithms 1 and 2 are AM-consistent.

Key Ingredients in Proofs

• Balanced losses (Kotlowski et al, 2011)

$$\mathrm{AM}_D[h] = 1 - \mathrm{er}_D^{0-1,\mathrm{bal}}[h]$$

• Decomposition lemma:

$$\operatorname{regret}_{D}^{0-1,(\widehat{p}_{S})}[h_{S}] \xrightarrow{\mathrm{P}} 0 \implies \operatorname{regret}_{D}^{\mathrm{AM}}[h_{S}] \xrightarrow{\mathrm{P}} 0$$

- Surrogate regret bounds for cost-sensitive classification (Scott, 2012)
- Proper and strongly proper losses (Reid and Williamson, 2009, 2010; Agarwal, 2013)
- Surrogate regret bounds for standard binary classification (Zhang, 2004; Bartlett et al, 2006)

Experiments

Experiments

AM performance of Plug-in and Balanced ERM comparable to that of the sampling techniques

Experiments

