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Algorithmic Approaches

• Sampling: (Japkowicz & Stephen, 2002; Chawla et al., 
2002, 2003; Van Hulse et al., 2007; He & Garcia, 2009) 

– Over-sample the minority class

– Under-sample the majority class 

– SMOTE

– …

• Plug-in classifier (Elkan, 2001)

• Balanced ERM (Liu & Chawla, 2011; Wallace et al., 2011)



Two Families of Algorithms

Algorithm 1

Plug-in with Empirical Threshold

• Learn a class probability estimator 
from training data S.

• Apply a suitable empirical threshold 
on the class probability estimate.
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Two Families of Algorithms

Algorithm 1

Plug-in with Empirical Threshold

• Learn a class probability estimator 
from training data S.

• Apply a suitable empirical threshold 
on the class probability estimate:

Algorithm 2

Empirically Balanced ERM

• Learn a binary classifier by minimizing 
a balanced surrogate loss.

• Balancing terms estimated from 
training data.
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Main Consistency Results

AM-consistency

Main Results: Under mild conditions on the underlying 
distribution and under certain assumptions on the surrogate 
loss function minimized, Algorithms 1 and 2 are AM-consistent.

AM-regret



Key Ingredients in Proofs

• Balanced losses (Kotlowski et al, 2011)

• Decomposition lemma:

• Surrogate regret bounds for cost-sensitive classification 
(Scott, 2012)

• Proper and strongly proper losses (Reid and Williamson, 
2009, 2010; Agarwal, 2013)

• Surrogate regret bounds for standard binary classification 
(Zhang, 2004; Bartlett et al, 2006)
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