On the Statistical Consistency of Algorithms for Binary Classification under Class Imbalance
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Main Consistency Results

Class imbalance situations, where one class is rare compared to the other, AM-regret: regret®™[h] = sup AMp[h] — AMp]A]

arise frequently in machine learning applications. It is well known that the o M%{il},\ ~

usual misclassification error is ill-suited for measuring performance in such For any prediction space J C R, function f: A=), and loss £: {£1} x V=R,
settings. A wide range of performance measures have been proposed for (-regret: erp[f] = B yop [y, f(2))]; regreth[f] = erp[f] —inf, o 5erp[f]
this problem. However, little is understood about the statistical consistency Cost-sensitive loss: £ (y,7) = ((1 o)1y =1)+el(y = _1)) 0y, 7))

of the algorithms proposed with respect to the performance measures of
interest. In this paper, we study consistency with respect to one such
performance measure, namely the arithmetic mean of the true positive and

Theorem (Consistency of Algorithm 1 with certain strongly proper losses)

Let ¢ : {£1} x R—R. be a strongly proper composite loss, and let fg, hg denote the real-valued
function and classifier learned by Algorithm 1 from a training sample S using this loss. If the

true negative rates (AM); and establish that some praCtica”y pOPUIar kernel K and regularization parameter sequence A\, can be chosen such that regret‘b[fg]iO,
approaches, such as applying an empirically determined threshold to a then under mild conditions on the distribution D,

. r . . .. AM P
suitable class probability estimate or performing an empirically balanced regrety [hs] —0.

form of risk minimization, are in fact consistent with respect to the AM
(under mild conditions on the underlylng dIStrIbUtIOn). Experlmental results Let ¢ : {1} x R—R. be a loss that is convex in its second argument, classification-calibrated at

\confirm our consistency theorems. ) % and satisfies a few more technical conditions (see paper). Let fs,hs denote the real-valued

function and classifier learned by Algorithm 2 from a training sample S using this loss. If the
kernel K and regularization parameter sequence \,, can be chosen such that

Theorem (Consistency of Algorithm 2 with certain convex classification-calibrated losses)

Class Imbalance
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Problem Setug Key Ingredients in Proofs
Trainingset: S = ((z1,¥1),..., (Tn,Yn)) drawniid from Don X’ x {£1} * Balanced losses (Kotlowski et al, 2011):
L 0-1,bal
Goal: Learn a binary classifier hg : X —{+1} AMplh] =1 —erp ™A

e Decomposition lemma:
Imbalanced classes: p = P(y = 1) departs significantly from 0.5.

Lemma: Let hg : X—{x1} denote the classifier learned by an algorithm from training sample S,

_ . e~ . P
o o . . _ _ and let ps denote any estimator of p = P(y = 1) satisfying ps € (0,1) and ps — p. Then under
_ TPRD [h] B P(h(x) =1 ‘ Yy = 1) TNRD [h] B P(h(ﬂf) = —1 | Yy = 1) y mild conditions on the distribution D,
regret%l’(ﬁ*g) [hs] 20 = regret 3M[hg] 0.
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Algorithm 1: Plug-in with Empirical Threshold 0.9-
o e ° . ° . ° . 0.65_ 0.85_
Learn a class probability estimator via minimization of a strongly proper loss: = odl - o8l
r,- n < ' <
: 1 2 ~ 1 I B ERM | 0.751 BERM
fs € argmin,cz § — Z C(yi, f(25)) + )\anHK} ; Ns =Y "ofs 053 B Piugin 0.7+ B Plugin
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Algorithm 2: Empirically Balanced ERM
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