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Abstract

The boxicity of a graph G, denoted as box(G), is the minimum dimension d for which

each vertex of G can be mapped to a d-dimensional axis-parallel box in R
d such that

two boxes intersect if and only if the corresponding vertices of G are adjacent. An

axis-parallel box is a generalized rectangle with sides parallel to the coordinate axes. If

additionally, we restrict all sides of the rectangle to be of unit length, the new parameter

so obtained is called the cubicity of the graph G, denoted by cub(G).

F.S. Roberts had shown that for a graph G with n vertices, box(G) ≤
⌊

n
2

⌋

and

cub(G) ≤
⌊

2
3
n
⌋

. A minimum vertex cover of a graph G is a minimum cardinality subset

S of the vertex set of G such that each edge of G has at least one endpoint in S. We

show that box(G) ≤
⌊

t
2

⌋

+1 and cub(G) ≤ t+ ⌈log2(n− t)⌉−1 where t is the cardinality

of a minimum vertex cover. Both these bounds are tight.

For a bipartite graph G, we show that box(G) ≤
⌈

n
4

⌉

and this bound is tight. We

observe that there exist graphs of very high boxicity but with very low chromatic num-

ber. For example, there exist bipartite (2 colorable) graphs with boxicity equal to n
4
.

Interestingly, if boxicity is very close to n
2
, then the chromatic number also has to be

very high. In particular, we show that if box(G) = n
2
−s, s ≥ 0, then χ(G) ≥ n

2s+2
, where

χ(G) is the chromatic number of G.

We also discuss some known techniques for finding an upper bound on the boxicity of

a graph - representing the graph as the intersection of graphs with boxicity 1 (boxicity

1 graphs are known as interval graphs) and covering the complement of the graph by

co-interval graphs (a co-interval graph is the complement of an interval graph).
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Chapter 1

Introduction

In this thesis we discuss some dimensional properties of graphs - boxicity and cubicity.

This thesis is not meant to be a comprehensive survey on these dimensions, but rather we

start by introducing these concepts so that the reader becomes familiar with them and

then discuss some known properties which we shall use later while giving new bounds

on these dimensions. Some basic knowledge of graph theory is assumed. Otherwise, the

thesis is mostly self-contained.

The basic assumptions and notations used in this thesis are discussed in Section 1.1.

In Section 1.2 we discuss how the problem of finding the boxicity of a graph originated

in ecology. We give a brief overview of the thesis in Sections 1.3, 1.4 and 1.5 and also

state our contributions. In these sections we won’t be giving any definitions, which are

deferred till the relevant chapters. We discuss the organization of the other chapters of

this thesis in Section 1.6, so that the reader familiar with the notion of boxicity and

cubicity can read the topics of interest to him/her self.

1.1 Basics and Notation

Throughout this thesis, a graph should be understood as a simple, finite, undirected

and connected graph, unless otherwise stated. We use the notation, terminology and

definitions used in [12]. We shall denote the number of vertices of a graph by |G| or

1



Chapter 1. Introduction 2

n and the number of edges by ||G|| or m. An edge with ends a and b is considered as

a 2-tuple (a, b). Graphs are considred equal under isomorphism. For a graph G, let

NG(v) = {u ∈ V (G)|(u, v) ∈ E(G)} denote the set of neighbours of a vertex v ∈ V (G).

P n denotes the path on n + 1 vertices and Cn denotes the cycle on n vertices. If

G = (V, E) and H = (V, F ), then G ∪ H = (V, E ∪ F ) and G ∩ H = (V, E ∩ F ). A

bipartite graph G = (V1 ∪ V2, E) is used to denote a bipartite graph with a bipartition

{V1, V2} of the vertex set such that V1 and V2 are independent sets. The Cartesian graph

product G1�G2, also called the graph product of graphs G1 and G2 with disjoint vertex

sets V1 and V2 and edge sets E1 and E2 is the graph G with vertex set V1 × V2 and for

u = (u1, u2) ∈ V1 × V2 and v = (v1, v2) ∈ V1 × V2, (u, v) ∈ E(G) if and only if either:

a) u1 = v1 and (u2, v2) ∈ E(G2) or

b) u2 = v2 and (u1, v1) ∈ E(G1).

Other definitions and notations will be discussed in the relevant Chapters and Sections.

1.2 Food Webs, Interval Graphs and Boxicity

In ecology, niche is a term describing the relational position of a species or population

in its ecosystem. The different dimensions of a niche represent different biotic and

abiotic factors like geographic range, temperature range, habitat, place in the food chain,

moisture, degree of acidity (pH range), amount of nutrients, time of the day, etc.

If we restrict ourselves to l independent factors, then the ecological niche these factors

define occupies a subspace of the l-dimensional Euclidean space (ecological phase space).

Two species compete if their ecological niches have non-empty intersection. It is difficult

to know all the factors which determine an ecological niche, and some factors may be

relatively unimportant and dependent on each other. Hence it is useful to start with the

concept of competition and try to represent competition by niche overlap such that each

ecological niche occupies a d dimensional subspace of a d-dimensional phase space.

It seems desirable that in an ideal representation, the factors determining the di-

mension of the ecological phase space would be independent and the niches would be
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C1 C2 C3

R1 R2 R3 R4

Figure 1.1: A simple foodweb

C1 C2 C3

Figure 1.2: The graph derived from the food web

represented as axes-parallel boxes, or Cartesian products of intervals [17]. This gives rise

to the following question:

What is the minimum dimension of a niche space necessary to represent the

overlaps among observed niches?

An interval graph is a well known class of graphs for which each vertex of the graph

can be mapped to a closed interval on the real line (1 dimensional Euclidean space)

in such a way that two intervals overlap if and only if the corresponding vertices are

adjacent in the graph. For more information on interval graphs, read Chapter 2.2.

Joel E. Cohen [7, 8] used interval graphs to study the dimensionality of ecological

niche space. Suppose we have a food web comprising of three consumers and four re-

sources as shown in figure 1.1 [27]. If we consider the consumers to be vertices of a graph

and make two vertices adjacent if and only if the corresponding consumers compete for

at least one resource, then we have derived a graph from the food web as shown in figure

1.2. This graph is an interval graph with an interval representation as shown in figure

1.3.

The reader is encouraged to verify for him/her self that the only way in which we

C1

C2
C3

Figure 1.3: An interval representation of the derived graph
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C1 C2 C3

R1 R2 R3 R4

C4

Figure 1.4: A foodweb whose derived graph is not an interval graph
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C1

C2

C3

C4

Figure 1.5: Graph derived by adding the fourth consumer

can add a fourth consumer to our food web so that the graph derived from the new food

web doesn’t correspond to an interval graph is as shown in figure 1.4. So, we are saying

that the cycle of length 4 shown in figure 1.5 (the graph derived from the foodweb in

figure 1.4) is not an interval graph. See Lemma 2.2 for a proof. So, for the example in

figure 1.1, only 1 dimension is required to represent the ecological phase whereas for the

example in figure 1.4, more than 1 dimension is required; but 2 dimensions are enough

as demonstrated by the derived graph and its representation in 2 dimensions (figures 1.5

and 1.6).

C1 C3

C2

C4

Figure 1.6: A 2-dimensional representation of the derived graph in figure 1.5



Chapter 1. Introduction 5

The minimum number of dimensions required to represent the ecological niche (or

the graph derived from the food web) is known as its boxicity. Our example of figure 1.2

has boxicity 1 and the example in figure 1.5 has boxicity 2.

1.3 Boxicity and Cubicity of Graphs

F.S. Roberts studied the problem mentioned in Section 1.2 [20, 21] and formulated it

mathematically as a generalization of interval graphs to higher dimensions [22]. He also

introduced the notion of cubicity [22].

The cubicity of a graph G is the minimum dimension d for which each vertex of G

can be mapped to an axis-parallel d-dimensional unit cube in R
d such that two cubes

intersect if and only if the corresponding vertices of G are adjacent.

The boxicity and cubicity of a graph G are denoted by box(G) and cub(G) respectively

throughout the thesis. Roberts [22] had shown that box(G) ≤
⌊

n
2

⌋

and cub(G) ≤
⌊

2
3
n
⌋

for any graph G.

1.4 Boxicity, Cubicity and Minimum Vertex Cover

A vertex cover is a subset S of the vertex set of G such that each edge of G has at least

one endpoint in S. In other words, for each edge (a, b) in E, at least one of a or b must

be an element of S. A minimum vertex cover, denoted by MVC, is a vertex cover having

the smallest cardinality among all the vertex covers. The minimum vertex cover need

not be unique, but all such vertex covers have the same cardinality t.

We prove that box(G) ≤
⌊

t
2

⌋

+ 1 (Theorem 3.16) and cub(G) ≤ t + ⌈log2(n − t)⌉ − 1

(Theorem 4.3) for any graph G [2] where t = |MV C|. Both these bounds are tight.

1.5 Bipartite Graphs and Chromatic Number

For a bipartite graph G = (V1 ∪ V2, E), we show that box(G) ≤ min
{⌈

|V1|
2

⌉

,
⌈

|V2|
2

⌉}

(Theorem 3.20) and cub(G) ≤ n
2

+ ⌈log n⌉ − 1 (Corollary 4.4). Since either |V1| ≤
n
2

or
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|V2| ≤
n
2
, box(G) ≤

⌈

n
4

⌉

. In Section 3.5.1 we give an example to show that this bound is

tight.

Thus, as shown in the example mentioned above, there exist graphs with very high

boxicity (equal to n
4
) but very low chromatic number (equal to 2). However, in Theorem

3.21 we show that if box(G) = n
2
− s, s ≥ 0, then χ(G) ≥ n

2s+2
, where χ(G) is the

chromatic number of G [2]. In other words when the boxicity is very close to n
2
, the

chromatic number also has to be very high. Note that s ≥ 0 since box(G) ≤ n
2

as shown

in [22], Theorem 3.11 and Corollary 3.17.

1.6 Organization of the Rest of the Thesis

In Chapter 2 we discuss intersection graphs and a general framework - Dimensional

Properties of graphs - for boxicity and cubicity. In Chapter 3 we discuss some techniques

for giving bounds on the boxicity of graphs and then give an upper bound on the boxicity

of general graphs in terms of the cardinality of a minimum vertex cover. We also give

an upper bound on the boxicity of bipartite graphs and see the relationship between

boxicity and chromatic number. In Chapter 4 we give an upper bound on the cubicity

of general graphs in terms of the cardinality of a minimum vertex cover.

Chapters 3 and 4 can be read independently of each other after reading Chapter 2.3

and Theorems 2.8 and 2.9 from Chapter 2.4.



Chapter 2

Dimensional Properties

2.1 Introduction

In Section 2.2, we discuss intersection graphs like interval graphs and unit interval graphs.

In Section 2.3 we formally introduce the boxicity and cubicity of graphs. In Section 2.4,

we see a general framework - dimensional properties of graphs - of which interval graphs

and unit interval graphs are specific instances. We also see how boxicity and cubicity

are related to interval graphs and unit interval graphs respectively. In Section 2.5, we

discuss the boxicity and cubicity of some simple graph classes and also see the relationship

between boxicity and cubicity.

2.2 Intersection Graphs

Let S be a set and F = {S1, S2, . . . , Sp} be a family of sets such that
⋃p

i=1 Si = S.

Definition 2.1. The intersection graph Ω(F) of F has S1, S2, . . . , Sp as its vertices

and an edge between two vertices if and only if the corresponding sets have nonempty

intersection.

A graph G is an intersection graph on S if there exists a family F of subsets of S such

that G and Ω(F) are isomorphic graphs. For example, if S = {1, 2, 3, 4}, then P 2 (the

path on 3 vertices) is an intersection graph on S since for F = {{1, 2}, {2, 3}, {3, 4}},

7



Chapter 2. Dimensional Properties 8

Ω(F) = P 2.

Definition 2.2. An interval graph is an intersection graph of a family of closed

intervals in R
1 (the real number line).

In other words, in a representation F of an interval graph, each subset Si is a set of

continuous points in R
1 (an interval). See [15] for more information on interval graphs.

For an interval graph, we shall represent the interval corresponding to a vertex v (in a

representation of the interval graph) as [l(v), r(v)].

Lemma 2.1. P n is an interval graph, n ≥ 0.

Proof. Let P n = v0, v1, . . . , vn be a path. We associate with each vertex vi the interval

[i, i + 1]. Note that since r(vi) = i + 1 = l(vi+1), the interval associated with each vertex

overlaps with the intervals associated with its neighbouring vertices (in P n) and since

r(vi) ≤ l(vj) for j ≥ i + 2, the interval associated with any vertex does not overlap with

the intervals associated with any vertices other than its neighbours (in P n). Thus we

have shown a representation of P n as the intersection graph of closed intervals in R
1.

Lemma 2.2. Cn is not an interval graph, n ≥ 4.

Proof. Let v0 . . . vn−1v0 be the cycle Cn. Assume for the sake of contradiction that

Cn can be represented as the intersection of closed intervals in R
1. Let l(v0) = a,

r(v0) = b, l(v2) = c and r(v2) = d. Since (v0, v2) /∈ E(Cn), the corresponding intervals

cannot overlap in any interval representation of Cn. Either b < c or d < a. Without

loss of generality, we may assume that b < c. Then, (v0, v1) ∈ E(Cn) ⇒ l(v1) ≤ b

and (v1, v2) ∈ E(Cn) ⇒ r(v1) ≥ c. Thus, [b, c] ⊆ [l(v1), r(v1)] and b ∈ [l(v1), r(v1)].

Also, (v2, v3) ∈ E(Cn) ⇒ r(v3) ≥ c and (vn−1, v0) ∈ E(Cn) ⇒ l(vn−1) ≤ b. Since

v2v3 . . . vn−1v0 is an induced path of Cn, b ∈ [l(vk), r(vk)] for some k, 3 ≤ k ≤ n − 1.

Then, the intervals corresponding to v1 and vk overlap at b which is a contradiction since

(v1, vk) /∈ E(Cn) for 3 ≤ k ≤ n − 1.

Definition 2.3. An indifference graph is an intersection graph of a family of unit

length closed intervals on R
1.

Equivalently, we can say that a graph G is an indifference graph if there exists a

mapping f : V (G) → R such that ∀ a, b ∈ V (G), |f(a) − f(b)| ≤ 1 ⇔ (a, b) ∈ E(G).
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We shall interchangeably refer to a unit interval [a − 0.5, a + 0.5] by a. We could also

equivalently have defined an indifference graph as an intersection graph of a family of

closed intervals of a constant length c. To see the equivalence, just scale the intervals in

a unit interval representation of the indifference graph by a factor of c around the origin.

2.3 Boxicity and Cubicity

A d-dimensional box in the d-dimensional Euclidean space is a generalized d-dimensional

rectangle with sides parallel to the coordinate axes. A unit d-dimensional cube in the

d-dimensional Euclidean space is a d-dimensional cube (a d-dimensional box with all

sides of equal length) with all sides of unit length and parallel to the coordinate axes.

We shall represent the d-dimensional unit cube [a1 − 0.5, a1 + 0.5]× [a2 − 0.5, a2 + 0.5]×

· · · × [ad − 0.5, ad + 0.5] by (a1, a2, . . . , ad). Two unit cubes a = (a1, a2, . . . , ad) and

b = (b1, b2, . . . , bd) intersect each other if and only if ρ(a, b) ≤ 1 where ρ is the product

metric:

ρ((a1, a2, . . . , ad), (b1, b2, . . . , bd)) = max
i

|ai − bi|. (2.1)

This is true since if |aj − bj | > 1, 1 ≤ j ≤ d, then the two cubes don’t intersect

along the j-th axis. A representation of a graph G as the intersection graph of boxes

(unit cubes) in R
d shall be called a box (unit cube) representation of G in d dimensions.

We are interested in finding the minimum d′ such that a graph G has a unit cube

representation in d′ dimensions and the minimum d′′ such that G has a box representation

in d′′ dimensions. But this raises a very basic question as to whether every graph has a

unit cube representation (or box representation) in d dimensions for some d.

Lemma 2.3 ([22]). Every graph has a unit cube representation in n dimensions.

Proof. It is equivalent to say that G has a unit cube representation in n dimensions

or that there is a mapping f : V (G) → R
n such that

ρ(f(a), f(b)) ≤ 1 ⇔ (a, b) ∈ E(G); ∀ a, b ∈ V (G)
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Let fi(a) denote the i-th element of of the n-tuple f(a), 1 ≤ i ≤ n. Let V (G) =

{v1, v2, . . . , vn} and for u ∈ V (G), let

fi(u) = 0 if u = vi

= 1 if u ∈ NG(vi).

= 2 if u ∈ V (G) − {NG(vi) ∪ {vi}}.

For x, y ∈ V (G) where x = vk, y = vl, there are 2 cases to consider:

Case 1: (x, y) ∈ E(G).

fi(x) − fi(y) ≤ 1 ∀i, 1 ≤ i ≤ n since fk(x) = 0, fk(y) = 1, fl(y) = 0, fl(x) = 1 and

{fi(x), fi(y)} ∈ {1, 2} ∀i 6= k, l. So, ρ(f(x), f(y)) ≤ 1.

Case 2: (x, y) /∈ E(G).

ρ(f(x), f(y)) = 2 since fk(x) = 0 and fk(y) = 2.

Thus ρ(f(x), f(y)) ≤ 1 ⇔ (x, y) ∈ E(G).

Since a unit cube is also a box, every graph has a box representation in n dimensions.

Definition 2.4. The boxicity of a graph G denoted as box(G) is the minimum d

such that G has a box representation in d dimensions.

Definition 2.5. The cubicity of a graph G denoted as cub(G) is the minimum d

such that G has a unit cube representation in d dimensions.

By convention, box(Kn) = 0 = cub(Kn).

Proposition 2.4. box(G) ≤ cub(G).

Proof. Since any unit cube is also a box, a unit cube representation of a graph is also

a box representation for the graph.

It is equivalent to consider a representation of a graph by closed intervals (boxes) or

open intervals (boxes) [22].

Proposition 2.5. If H is an induced subgraph of G, then box(H) ≤ box(G) and

cub(H) ≤ cub(G).

Proof. Consider a box representation of G in box(G) dimensions. Mapping the

vertices in H to the same boxes they are mapped to in this box representation of G gives
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us a box representation of H in box(G) dimensions. Thus, box(H) ≤ box(G). Similarly,

cub(H) ≤ cub(G).

Proposition 2.6. If G has a box (unit cube) representation in d dimensions, then

G has a box (unit cube) representation in d + e dimensions ∀e ≥ 0.

Proof. Consider a box representation of G in d dimensions. In this box representation,

let the box corresponding to vertex vi be [ai1 , bi1 ]×[ai2 , bi2 ]×· · ·×[aid , bid]. Now, mapping

vertex vi to the d + 1 dimensional box [ai1 , bi1 ] × [ai2 , bi2 ] × · · · × [aid , bid] × [0, 1] gives

us a box representation of G in d + 1 dimensions. Extending this construction gives us

a box representation of G in d + e dimensions. Similarly, we can extend a unit cube

representation to higher dimensions.

Proposition 2.7. If G has t components C1, C2, . . . , Ct, then

box(G) = max
1≤i≤t

box(Ci) and cub(G) = max
1≤i≤t

cub(Ci)

Proof. By Proposition 2.6, we can construct a box representation of each component

in max1≤i≤t box(Ci) = x dimensions. Now, since each component has a finite number of

vertices, we can translate the boxes of each component sufficiently far apart along one

dimension so that they don’t intersect. This is a box representation of G in x dimensions.

2.4 Dimensional and Codimensional Properties of

Graphs

2.4.1 Dimensional Properties

Definition 2.6 ([11]). A property P of graphs is a dimensional property if every

graph can be represented as the intersection of graphs, each satisfying property P .

If P is a dimensional property, let dP (G) be the least integer k such that G is the

intersection of k graphs, each satisfying property P .
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Let I(G) denote the property of G being an interval graph and U(G) denote the

property of G being a unit interval graph.

Theorem 2.8 ([22]). dI(G) = box(G).

Proof. First, we prove that dI(G) ≤ box(G). Consider a box representation of

G in box(G) dimensions. Projecting each of these boxes on the coordinate axes gives

us box(G) interval supergraphs - say I1, I2, . . . , Ibox(G) - of G. Moreover, for (a, b) /∈

E(G), ∃ i, 1 ≤ i ≤ box(G) such that (a, b) /∈ E(Ii), else the boxes corresponding to a

and b would intersect. So, we have box(G) interval graphs - I1, I2, . . . , Ibox(G) such that

I1 ∩ I2 ∩ · · · ∩ Ibox(G) = G.

Now, we prove that box(G) ≤ dI(G). dI(G) is the least integer k such that G is the

intersection of k interval graphs, i.e. there exist interval graphs I1, I2, . . . , IdI(G) such

that I1∩I2∩· · ·∩IdI (G) = G. Now, for each vertex v, we construct a box as the cartesian

product of the dI(G) intervals (interval associated with v in each of the dI(G) interval

graphs). If (u, v) ∈ E(G), the boxes corresponding to u and v intersect since the intervals

corresponding to u and v intersect in each interval graph Ii, 1 ≤ i ≤ dI(G). Conversely,

if (u, v) /∈ E(G), ∃ i, 1 ≤ i ≤ dI(G) such that the intervals associated with u and v in

Ii do not intersect. Consequently, the boxes associated with u and v do not intersect.

Thus, we have demonstrated a box representation of G in dI(G) dimensions.

Similarly, we have the following equivalence:

Theorem 2.9. dU(G) = cub(G).

In Section 1.2, we had mentioned that box(C4) = 2.

Proposition 2.10. box(C4) = 2.

Proof. First we note that box(C4) ≤ 2 since C4 has a box representation in 2 di-

mensions as shown in figure 1.6, Section 1.2. Now, by Lemma 2.2, C4 is not an interval

graph. So, by Theorem 2.8 box(C4) > 1.

We now use Theorem 2.8 to give an upper bound on the boxicity of a graph.

Lemma 2.11. The boxicity of the Hajós graph1 denoted by S2 (shown in figure 2.1)

is 2.

1The Hajós graph is also known as the 2-sun graph or the Sierpiński graph of order 2.
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a1

a2 a3

b1

b2b3

Figure 2.1: The Hajós graph

b1 b2 b3

a1a3
a2

b2 b1 b3

a2a3
a1

I1 I2

Figure 2.2: Interval supergraphs of the Hajós graph

Proof. First, we claim that the Hajós graph is not an interval graph. Assume

for the sake of contradiction that the Hajós graph has an interval representation IS2
.

Since {b1, b2, b3} is an independent set, the intervals corresponding to these 3 vertices

do not overlap each other. Without loss of generality, we may assume that l(b1) ≤

r(b1) < l(b2) ≤ r(b2) < l(b3) ≤ r(b3). Now, (a2, b1) ∈ E(S2) ⇒ l(a2) ≤ r(b1) and

(a2, b3) ∈ E(S2) ⇒ l(b3) ≤ r(a2). Then, l(b2) ∈ [l(a2), r(a2)] which is a contradiction

since (a2, b2) /∈ E(S2). Thus, box(S2) ≥ 2.

Now we prove that box(S2) ≤ 2. Let I1 and I2 be the interval graphs shown in figure

2.2. Since S2 = I1 ∩ I2, by Theorem 2.8 we can say that box(S2) ≤ 2. Alternatively, to

prove that box(S2) ≤ 2, we just need to show a box representation of S2 in 2 dimensions

as in figure 2.3.
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a1

a2

a3

b1

b2b3

Figure 2.3: A box representation of the Hajós graph

2.4.2 Codimensional Properties

Definition 2.7. A property P of graphs is a codimensional property if every graph can

be represented as the union of graphs, each satisfying property P .

If P is a codimensional property, let cP (G) be the least integer k such that G is the

union of k graphs, each satisfying property P .

Let P be the property which holds for G if and only if P holds for G.

Proposition 2.12 ([11]). P is dimensional if and only if P is codimensional. If P

is dimensional then, dP (G) = cP (G).

Proof. First we show that if P is dimensional, then P is codimensional and cP (G) ≤

dP (G). Since P is dimensional, every graph G can be expressed as the intersection of

dP (G) graphs, each satisfying property P . Say G = P1 ∩ P2 ∩ · · · ∩ PdP (G). By De

Morgan’s law, G = P 1 ∪ P 2 ∪ · · · ∪ P dP (G). Thus, G can be expressed as the union of

dP (G) graphs, each satisfying property P . i.e., cP (G) ≤ dP (G).

Similarly, it can be shown that if P is codimensional, then P is dimensional and

dP (G) ≤ cP (G).

The complement of an interval graph is called a co-interval graph and the complement

of a unit interval graph is called a co-unit interval graph. As examples of codimensional

properties, I(G) denotes the property of G being a co-interval graph and U(G) denotes
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10 2 3 2n−2 2n−1

u

v1 v2 vn

Figure 2.4: An interval representation of K1,n

the property of G being a co-unit interval graph.

2.5 Relationship between Boxicity and Cubicity

In this section, we shall find the boxicity and cubicity of K1,r and give a brief review of

the existing literature on boxicity.

Lemma 2.13. box(K1,r) = 1; r ≥ 2.

Proof. Let V (K1,r) = {u, v1, v2, . . . , vr} and d(u) = r. Let l(vi) = 2 · (i − 1),

r(vi) = 2 · i − 1 for 1 ≤ i ≤ r and l(u) = 0, r(u) = 2 · r − 1 as shown in figure 2.4.

Then, [l(vi), r(vi)] ∩ [l(vj), r(vj)] = ∅, ∀ i, j; 1 ≤ i, j ≤ r and [l(vi), r(vi)] ∩ [l(u), r(u)] =

[l(vi), r(vi)], ∀ i, 1 ≤ i ≤ r. Since (vi, vj) /∈ E(K1,r), ∀ i, j; 1 ≤ i, j ≤ r and (u, vi) ∈

E(K1,r), ∀ i, 1 ≤ i ≤ r, we have given an interval representation of K1,r. i.e., box(K1,r) ≤

1. Since r ≥ 2, K1,r 6= Ks for any s and box(K1,n) ≥ 1.

Lemma 2.14. cub(K1,3) = 2.

Proof. Let V (K1,3) = {u, v1, v2, v3} and d(u) = 3. To prove that cub(K1,3) ≤ 2,

we need to show a unit cube representation of K1,3 in R
2. f(u) = (0, 0), f(v1) =

(1, 1), f(v2) = (1,−1) and f(v3) = (−1, 1) is the desired unit cube representation.

Now, assume for the sake of contradiction that cub(K1,3) = 1. Without loss of

generality, let f(v1) ≤ f(v2) ≤ f(v3). Then, since (v1, v2) /∈ E(K1,3), f(v2) − f(v1) > 1

and since (v2, v3) /∈ E(K1,3), f(v3) − f(v2) > 1. So, f(v3) − f(v1) > 2. But, (u, v1) ∈

E(K1,3) ⇒ |f(u) − f(v1)| ≤ 1 and (u, v3) ∈ E(K1,3) ⇒ |f(u) − f(v3)| ≤ 1. Then,

f(v3) − f(v1) ≤ |f(v3) − f(u)| + |f(u) − f(v1)| ≤ 2 which is a contradiction.

Theorem 2.15 ([22]). cub(K1,r) = ⌈log r⌉; r ≥ 1.
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Proof. Let V (K1,r) = {u, v1, v2, . . . , vr} and d(u) = r. First, we give a unit cube rep-

resentation of K1,r in ⌈log r⌉ dimensions to show that cub(K1,r) ≤ ⌈log r⌉. Let the cube

corresponding to u be at (0, 0, . . . , 0) and the cubes corresponding to vertices v1, v2, . . . , vr

be at distinct (−1, 1) vectors. Note that for ⌈log r⌉ dimensions, we can get r such distinct

vectors. Now, ρ(vi, vj) = 2, where 1 ≤ i, j ≤ r, i 6= j and ρ(u, vi) = 1, 1 ≤ i ≤ r.

Now we prove that cub(K1,r) ≥ ⌈log r⌉. In other words, we prove that K1,r does not

have a unit cube representation in R
p if r > 2p by induction on p. For p = 0, r > 1 implies

that K1,2 is an induced subgraph of K1,r and since cub(K1,2) = 1, by Proposition 2.5 we

have cub(K1,r) ≥ 1. For p = 1, r ≥ 2 implies that K1,3 is an induced subgraph of K1,r.

By Lemma 2.14, we know that cub(K1,3) = 2. So, by Proposition 2.5, cub(K1,r) ≥ 2.

This is the basis for our induction. We now assume that for p ≥ 1, K1,r does not have

a unit cube representation in R
p if r > 2p and show that K1,r does not have a unit

cube representation in R
p+1 if r > 2p+1. For the sake of contradiction assume that for

r > 2p+1 there exists a unit cube representation of K1,r in R
p+1. Let f : V → R

p+1 be

a function which maps each vertex of K1,r to an n + 1 dimensional unit cube. Let fi(v)

denote the i-th element of the (p+1)-tuple f(v). Now, let S1 = {vi : fp+1(vi) ≥ fp+1(u)}

and S2 = {vi : fp+1(vi) ≤ fp+1(u)}. Without loss of generality, we may assume that

|S1| ≥ |S2|. Thus, |S1| > 2p. Let gi be the restriction of fi to S1 ∪ {u} for 1 ≤ i ≤ p.

Then, g1, g2, . . . , gp is a representation of K1,|S1| in R
p, which contradicts our assumption.

In [4] it is shown that cub(G) ≤ ⌈log n⌉ · box(G). This equality holds tight for K1,n−1

as shown by Lemma 2.13 and Theorem 2.15 . We know from Proposition 2.4 that

box(G) ≤ cub(G). Thus,

box(G) ≤ cub(G) ≤ ⌈log n⌉ · box(G). (2.2)

From Lemmas 2.13 and 2.14, we know that K1,3 is an interval graph but not a unit

interval graph. In [19] it was shown that a graph is a unit interval graph if and only if

it is an interval graph and has no induced K1,3.
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It was shown in [9] that computing the boxicity of a graph is NP-hard. In fact,

deciding whether the boxicity of a graph is at most 2 is also NP-complete [16]. The

boxicity of a graph is at most 2D2 [3], where D is the maximum degree of the graph.

Thomassen [26] proved that the boxicity of planar graphs is at most 3. Scheinerman

[23] showed that the boxicity of outer planar graphs is at most 2. The cubicity of the

d-dimensional hypercube is Θ
(

d
log d

)

[5].

Researchers have also tried to extend the concept of boxicity in various ways. The

circular dimension [14, 24], rectangle number [29] and grid dimension [1] are some ex-

amples.



Chapter 3

Boxicity

3.1 Introduction

In this chapter, we shall see bounds on the boxicity of some graphs. We can show an

upper bound of d on the boxicity (cubicity) of a graph, by demonstrating a box (unit

cube) representation of the graph in d dimensions or by representing the graph as the

intersection of d interval (unit interval) graphs. In Section 3.2 we shall see examples of

how to prove lower bounds and upper bounds on the boxicity of a graph. In Section 3.3

we see a technique of proving an upper bound on the boxicity of a graph by expressing

the complement of the graph as the union of co-interval graphs 1. In Section 3.5 we give

our proof that if G is a bipartite graph, box(G) ≤
⌈

n
4

⌉

and in Section 3.4, we give our

proof that for any graph G, box(G) ≤
⌊

t
2

⌋

+ 1 where t is the cardinality of a minimum

vertex cover. In Section 3.6, we give our proof that if box(G) = n
2
− s where s ≥ 0, then

χ(G) ≥ n
2s+2

, where χ(G) is the chromatic number of G. We interchangeably refer to an

interval representation of a graph as the interval graph itself.

1A co-interval graph is the complement of an interval graph

18
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3.2 Bounds on the Boxicity of some Graphs

In this Section, we see upper bounds on the boxicity of a tree and a split graph. We also

see the boxicity of K
n
2

2 (when n is even).

3.2.1 An Upper Bound on the Boxicity of a Tree

Lemma 3.1. For a tree T , box(T ) ≤ 2.

Proof. We shall show that T can be represented as the intersection of 2 interval

graphs I1 and I2 and by Theorem 2.8 this would imply that box(T ) ≤ 2. Arbitrarily,

choose a vertex r as the root of the tree.

In I1, we associate with each vertex v the interval [dv, dv + 1], where dv is the depth

of vertex v. Thus,

(u, v) ∈ E(I1) ⇔ du = dv or du = dv + 1 or du = dv − 1. (3.1)

In I2, we let the intervals correspond to timestamps in a DFS (Depth-First Search)

of T as explained in [25]. The first timestamp of a vertex v corresponds to l(v) and the

second timestamp corresponds to r(v). By the Parenthesis theorem [25], exactly one of

the following 3 cases holds for 2 vertices u and v:

Case 1: The intervals [l(u), r(u)] and [l(v), r(v)] are entirely disjoint and neither u nor v

is a descendant of the other in the DFS tree.

Case 2: The interval [l(u), r(u)] is entirely contained within the interval [l(v), r(v)] and

u is a descendant of v in the DFS tree.

Case 3: The interval [l(v), r(v)] is entirely contained within the interval [l(u), r(u)] and

v is a descendant of u in the DFS tree.

So, (u, v) ∈ E(I2) if and only if Case 2 or 3 above holds. But by equation 3.1,

(u, v) ∈ E(I1 ∩ I2) if and only if u is the parent or a child of v. Thus, I1 ∩ I2 = T .

In [6] it is shown that box(G) ≤ tw(G) + 2, where tw(G) is the treewidth of G.



Chapter 3. Boxicity 20

3.2.2 The Boxicity of K
n

2

2

We shall see in Section 3.3 (Theorem 3.11) and Section 3.4 (Corollary 3.17) that box(G) ≤

⌊n
2
⌋. This inequality is tight for T (n, n

2
) = n

2
K2 = K

n
2

2 , the Turan graph with n
2

partitions,

each of size 2.

Lemma 3.2. box(T (n, n
2
)) = n

2
.

Proof. Let A = {a1, a2, . . . , an
2
} and B = {b1, b2, . . . , bn

2
} be the vertices of the graph

such that (ai, bi) /∈ E(T (n, n
2
)). All the other pairs of vertices are adjacent to each other.

First we show that box(T (n, n
2
)) ≤ n

2
by constructing n

2
interval graphs I1, I2, . . . , In

2
.

Construction of Ii for 1 ≤ i ≤ n
2
:

In (the interval representation of) Ii, we map each vertex v ∈ V (T (n, n
2
)) to an interval

fi(v) as follows:

fi(v) = [0, 1] if v = ai

= [2, 3] if v = bi

= [1, 2] if v ∈ V (T (n, n/2)) − {ai, bi}.

Then, (ai, bi) /∈ E(Ii). For u, v 6= ai, bi, (ai, v) ∈ E(Ii) since 1 ∈ fi(ai) and 1 ∈ fi(v),

(bi, v) ∈ E(Ii) since 2 ∈ fi(bi) and 2 ∈ fi(v), (u, v) ∈ E(Ii) since 1 ∈ fi(u) and 1 ∈ fi(v).

So, E(Ii) = E(Kn) − {(ai, bi)}. It follows that I1 ∩ I2 ∩ · · · ∩ In = T (n, n
2
). By Theorem

2.8, box(T (n, n
2
)) ≤ n

2
.

Now we show that box(T (n, n
2
)) ≥ n

2
. For the sake of contradiction, assume that

box(T (n, n
2
)) = l < n

2
. By Theorem 2.8, there are l interval graphs say I1, I2, . . . , Il such

that I1 ∩ I2 ∩ · · · ∩ Il = T (n, n
2
). Since n

2
pairs of vertices are nonadjacent in T (n, n

2
), at

least one of these l interval graphs has two distinct pairs of nonadjacent vertices. Let Ik,

1 ≤ k ≤ l be an interval graph having two pairs of nonadjacent vertices, say (c1, d1) and

(c2, d2). Now, since E(Ik) ⊇ E(T (n, n
2
)), the four vertices c1, c2, d1, d2 induce a C4 in Ik

and by Proposition 2.10, the boxicity of C4 is 2. By Proposition 2.5, box(Ik) ≥ 2 which

is a contradiction since Ik is an interval graph.
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3.2.3 An Upper Bound on the Boxicity of a Split Graph

Let G be a split graph with vertex partition V = K ⊎S where K is a clique and S is an

independent set. Let K = {v1, v2, . . . , vp} 6= ∅ and S = {u1, u2, . . . , uq}. We construct
⌈

p

2

⌉

interval graphs I1, I2, . . . , I⌈ p

2⌉
and show that G = I1 ∩ I2 ∩ · · · ∩ I⌈ p

2⌉
.

Construction of Ii for 1 ≤ i ≤ ⌊p

2
⌋:

We map each v ∈ V to an interval fi(v) on the real line as follows:

fi(v) = [0, 2] if v = v2i−1.

= [1, 3] if v = v2i.

= [0, 4] if v ∈ K − {v2i−1, v2i}

=

[

2j − 1

2q + 1
,

2j

2q + 1

]

if v = uj ∈ NG(v2i−1) − NG(v2i).

=

[

1 +
2j − 1

2q + 1
, 1 +

2j

2q + 1

]

if v = uj ∈ NG(v2i) ∩ NG(v2i−1).

=

[

2 +
2j − 1

2q + 1
, 2 +

2j

2q + 1

]

if v = uj ∈ NG(v2i) − NG(v2i−1).

=

[

3 +
2j − 1

2q + 1
, 3 +

2j

2q + 1

]

if v = uj /∈ {NG(v2i) ∪ NG(v2i−1}).

Claim 1. For each i, 1 ≤ i ≤ ⌊p

2
⌋, E(G) ⊆ E(Ii).

Proof. Let (a, b) be an edge of G. If {a, b} ⊆ K, then 1 ∈ fi(a) and 1 ∈ fi(b). So

(a, b) ∈ E(Ii). Otherwise either a ∈ S or b ∈ S, but {a, b} ⊆ S is not possible. Without

loss of generality, we may assume that a ∈ K and b ∈ S. Note that 0 < 2j−1
2q+1

< 2j

2q+1
< 1

when 1 ≤ j ≤ q. So, due to the mapping of the interval to b, (a, b) ∈ E(Ii).

Construction of I⌈ p

2⌉
when p is odd:

For this interval, we map each v ∈ V to an interval f⌈ p

2⌉
(v) on the real line as follows:

f⌈ p

2⌉
(v) = [0, 1] if v = v⌈ p

2⌉
.

= [0, 2] if v ∈ K − {v⌈ p

2⌉
}

=

[

2j − 1

2q + 1
,

2j

2q + 1

]

if v = uj ∈ NG(v⌈ p

2⌉
).
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=

[

1 +
2j − 1

2q + 1
, 1 +

2j

2q + 1

]

if v = uj /∈ NG(v⌈ p

2⌉
).

Claim 2. E(G) ⊆ E(I⌈ p

2⌉
).

Proof. Let (a, b) be an edge of G. If {a, b} ⊆ K, then 0 ∈ f⌈ p

2⌉
(a) and 0 ∈ f⌈ p

2⌉
(b). So

(a, b) ∈ E(Ii). Otherwise either a ∈ S or b ∈ S, but {a, b} ⊆ S is not possible. Without

loss of generality, we may assume that a ∈ K and b ∈ S. Note that 0 < 2j−1
2q+1

< 2j

2q+1
< 1

when 1 ≤ j ≤ q. So, due to the mapping of the interval to b, (a, b) ∈ E(Ii).

The following Lemma follows from Claims 1 and 2.

Lemma 3.3. For each interval graph Ii, 1 ≤ i ≤
⌈

p

2

⌉

, E(G) ⊆ E(Ii).

Lemma 3.4. For any (x, y) /∈ E(G), there exists some i, 1 ≤ i ≤
⌈

p

2

⌉

, such that

(x, y) /∈ E(Ii).

Proof. Suppose (x, y) /∈ E(G). First note that {x, y} ⊆ K is not possible.

Case 1: {x, y} ⊆ S.

Let x = uk and y = ul, where k 6= l. It is easy to see that fi(x)∩fi(y) = ∅ ∀ i, 1 ≤ i ≤
⌈

p

2

⌉

.

Since K 6= ∅, p ≥ 1 and
⌈

p

2

⌉

≥ 1. Hence (x, y) /∈ E(I1).

Case 2: {x, y} ∩ K 6= ∅

Without loss of generality, we may assume that x = vk ∈ K and y = ul ∈ S. Then, by

our construction, f⌈ k
2⌉

(x) ∩ f⌈k
2⌉

(y) = ∅. Thus, (x, y) /∈ E(I⌈ k
2⌉

).

By Lemmas 3.3 and 3.4, we get E(G) = E(I1) ∩ E(I2) ∩ · · · ∩ E(I⌈ p

2⌉
). Thus by

Theorem 2.8, we obtain the following:

Theorem 3.5 ([10]). For a split graph G with vertex partition V = K⊎S, box(G) ≤
⌈

|K|
2

⌉

if K 6= ∅.

3.3 Covering a Graph by Co-interval Graphs

In Chapter 2.4, we introduced a general theory of dimensional and codimensional prop-

erties. Here, we shall use Proposition 2.12 to show upper bounds on the boxicity of some

graphs.



Chapter 3. Boxicity 23

Lemma 3.6 ([11]). If G is a co-interval graph, then the union of G and an isolated

vertex is a co-interval graph.

Proof. Let J = G be an interval graph and let H be the graph obtained from J by

adding a vertex u which is adjacent to all the vertices of J . Now consider an interval

representation of J and add another interval corresponding to vertex u of H which

spans all the intervals. This is an interval representation of H . So, by Proposition 2.12,

dI(H) = 1 = cI(H).

Corollary 3.7. If G is a co-interval graph, then the union of G and isolated

vertices is a co-interval graph.

Definition 3.1. A set C of spanning subgraphs of a graph G is an edge covering of

G if each edge of G belongs to some C ∈ C.

Lemma 3.8 ([10]). box(G) ≤ k if and only if there is an edge covering C of G such

that |C| = k and each graph in C is a co-interval spanning subgraph of G.

Proof. For k = 0, G = Kn and C = ∅. For k ≥ 1, by Theorem 2.8 we know that

box(G) ≤ k if and only if G = I1 ∩ I2 ∩ · · · ∩ Ik where each Ii is an interval graph. By

De Morgan’s law, G = I1 ∪ I2 ∪ · · · ∪ Ik. But, this is equivalent to saying that G has an

edge covering C = {I1, I2, . . . , Ik} where I i, 1 ≤ i ≤ k is a co-interval graph.

Definition 3.2. For 2 adjacent vertices u and v, the u, v ant of G(V, E) represented

by (u − v)(G) is the spanning subgraph of G whose vertex set is V (G) and whose edge

set is {(u, v)} ∪ {(u, w)|(u, w) ∈ E(G)} ∪ {(v, w)|(v, w) ∈ E(G)}.

Lemma 3.9. ([10]) If (u, v) ∈ E(G), then (u − v)(G) is a co-interval graph.

Proof. We show that (u − v)(G) = H is an interval graph and it will follow that

(u − v)(G) is a co-interval graph. To show that H is an interval graph, we map each

vertex x ∈ H to an interval f(x) as follows:

f(x) = [0, 1] if x = u

= [4, 5] if x = v

= [2, 3] if (x, u), (x, v) /∈ E(H) and x 6= u, v

= [0, 3] if (x, u) ∈ E(H), (x, v) /∈ E(H) and x 6= u, v
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= [2, 5] if (x, u) /∈ E(H), (x, v) ∈ E(H) and x 6= u, v

= [0, 5] if (x, u), (x, v) ∈ E(H) and x 6= u, v.

For {a, b} ⊆ V (H), one of the following cases holds true:

Case 1: a, b 6= u, v.

f(a) ∩ f(b) ⊆ [2, 3] 6= ∅ and (a, b) ∈ E(H) since (a, b) /∈ E((u − v)(G)).

Case 2: a = u; b 6= u, v.

f(a) ∩ f(b) 6= ∅ ⇔ (a, b) ∈ E(H).

Case 3: a = v; b 6= u, v.

f(a) ∩ f(b) 6= ∅ ⇔ (a, b) ∈ E(H).

Case 4: a = v; b = v.

f(a) ∩ f(b) = ∅ and (a, b) /∈ E(H) since (a, b) ∈ E((u − v)(G)).

Thus, we have demonstrated an interval representation of H .

Lemma 3.10. box(Cn) = ⌈n
3
⌉, n ≥ 5.

Proof. Let v1v2 . . . vnv1 be the cycle Cn. First we show that box(Cn) ≤ ⌈n
3
⌉. Let

⌈n
3
⌉ = r and let Qi be the path v3i−2v3i−1v3iv3i+1 for 1 ≤ i < r and Qr be the path

vn−2vn−1vnv1. Note that a path v1v2v3v4 is a v2, v3 ant and hence a co-interval graph.

By Corollary 3.7, the union of such a path and isolated vertices is also a co-interval

graph. Thus, all the edges of Cn are covered by the ⌈n
3
⌉ co-interval graphs with edge

sets same as Q1, Q2, . . . , Qr respectively, each of which is the union of a path of length 3

and isolated vertices.

Now, to show that box(Cn) ≥ ⌈n
3
⌉, assume that box(Cn) ≤ ⌈n

3
⌉−1 for the sake of con-

tradiction. Then, by Theorem 2.8, there exist box(Cn) interval graphs I1, I2, . . . , Ibox(Cn)

such that Cn = I1 ∩ I2 ∩· · ·∩ Ibox(Cn). By the pigeonhole principle, there exists at least 1

interval graph Ik such that ||Ik ∩Cn|| ≥ 4. But then, Ik ∩ Cn induces a C4 in Cn which

is a contradiction, since box(C4) = 2 and by Proposition 2.5 this means that box(Ik) ≥ 2.

Theorem 3.11 ([10]). box(G) ≤ ⌊n
2
⌋, for any graph G.
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Proof. If |E(G)| = 0, G = Kn and box(G) = 0. Otherwise choose (a1, b1) ∈ E(G).

Let C1 = (a1 − b1)(G). If C = {C1} = {G}, then by Lemma 3.9, box(G) = 1 ≤ ⌊n
2
⌋

since n ≥ 2. Otherwise keep choosing an edge of G, say (ai+1, bi+1) not covered by

C =
⋃

1≤j≤i{Cj}. Let Ci+1 = (ai+1 − bi+1)(G). Suppose all edges of G are covered by

C =
⋃

1≤j≤l{Cj} when we terminate this procedure. Note that a1, b1, a2, b2, . . . , al, bl are

all distinct and we have covered G by l ants. Thus, by Lemmas 3.9 and 3.8, box(G) ≤

l = 2l
2
≤ ⌊n

2
⌋.

Trotter [28] has shown that when n is even, T (n, n
2
) is the only graph which satisfies

equality in the above equation. When n is odd, he again gives a characterization of

graphs satisfying equality in the above equation. For n = 5, C5 = C5 and a graph

containing T (4, 2) as an induced subgraph are the only graphs satisfying equality. For

n = 7, the only graphs satisfying equality in the above equation are C7, C5�T (2, 1) or

a graph containing T (6, 3) as an induced subgraph.

Let G be a split graph with vertex partition V = K ⊎ S, where K is a clique and S

is an independent set.

Lemma 3.12 ([10]). For a split graph G with vertex partition V = K ⊎S, box(G) ≤
⌈

|S|
2

⌉

.

Proof. G is also a split graph with G[S] a clique and G[K] an independent set. Let

V (G[S]) = {u1, u2, . . . , uq}. When |S| = 0, G = K and box(G) = 0. When |S| = 1, let

S = {a}. We show that box(G) ≤ 1 or that G is an interval graph. For this, we map

each vertex x ∈ V to an interval f(x) as follows:

f(x) = [0, 1] if x = a

= [0, 3] if x 6= a and (x, a) ∈ E(G)

= [2, 3] if x 6= a and (x, a) /∈ E(G).

It is easy to see that this is an interval representation of G. When |S| ≥ 2, the edges

of G are covered by (u1 − u2)(G), (u3 − u4)(G), . . . , (uq−1 − uq)(G) if q is even and by

(u1−u2)(G), (u3−u4)(G), . . . , (uq−2−uq−1)(G), (uq−1−uq)(G) if q is odd. In either case
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(q is even or q is odd), by Lemmas 3.9 and 3.8, box(G) ≤
⌈

|S|
2

⌉

.

By Theorem 3.5 and Lemma 3.12, we have the following:

Theorem 3.13 ([10]). For a split graph G with vertex partition V = K⊎S, box(G) ≤

min
{⌈

|K|
2

⌉

,
⌈

|S|
2

⌉}

.

3.4 Boxicity and Vertex Cover

Let G = (V, E) be a graph and MV C be a minimum vertex cover of G. Let A =

V − MV C. Clearly A is an independent set in G. Suppose |MV C| = t and
⌊

t
2

⌋

= t1.

In this section we show that box(G) ≤ t1 + 1.

Let l be the largest integer such that there exist sets P, Q ⊆ MV C such that P =

{a1, a2, . . . , al}, Q = {b1, b2, . . . , bl}, P ∩ Q = ∅, and (ai, bi) /∈ E(G). Next, we construct

t1 + 1 different interval super graphs of G, say I1, I2, . . . , It1+1, as follows.

Construction of Ii for 1 ≤ i ≤ l:

Recall that, for 1 ≤ i ≤ l, (ai, bi) /∈ E. For each pair (ai, bi), 1 ≤ i ≤ l, we construct an

interval graph Ii. To construct Ii, we map each v ∈ V to an interval fi(v) on the real

line as follows:

fi(v) = [0, 1] if v = ai.

= [4, 5] if v = bi.

= [0, 3] if v ∈ NG(ai) − NG(bi).

= [2, 5] if v ∈ NG(bi) − NG(ai).

= [0, 5] if v ∈ NG(ai) ∩ NG(bi).

= [2, 3] if v ∈ V − ({ai, bi} ∪ NG(ai) ∪ NG(bi)).

Claim 3. For each i, 1 ≤ i ≤ l, E(G) ⊆ E(Ii).

Proof. It is easy to see that if v ∈ MV C−{ai, bi}, then 3 ∈ fi(v). So, MV C−{ai, bi}

is a clique in each Ii. If v ∈ NG(ai)∪{ai}, then 0 ∈ fi(v). So, NG(ai) ⊆ NIi
(ai). Similarly,

if v ∈ NG(bi) ∪ {bi}, then 5 ∈ fi(v). That is, NG(bi) ⊆ NIi
(bi). So, E(G) ⊆ E(Ii), for
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each i, 1 ≤ i ≤ l.

Construction of Ii for l + 1 ≤ i ≤ t1 (assuming t1 ≥ l + 1):

Let C = MV C − {P ∪ Q}. Clearly C induces a clique in G by the maximality of l.

Let |C| = k′ = t − 2l. Since t1 =
⌊

t
2

⌋

, we have k′ = t − 2l ≥ 2 and hence |C| ≥ 2.

Let C = {c1, c2, . . . , ck′}. If k′ is even, then let k′′ = k′, otherwise let k′′ = k′ − 1. Let

C ′ = {c1, c2, . . . , ck′′}. Clearly C ′ ⊆ C.

Let G′ be the graph induced by C ′ ∪ A in G. As C ′ induces a clique and A in-

duces an independent set in G, G′ is a split graph. So by Theorem 3.13, box(G′) ≤

min
{

⌈

k′′

2

⌉

,
⌈

|A|
2

⌉}

≤ k′′

2
(as k′′ is even and k′′ ≥ 2). That is, G′ is the intersection of at

most k′′

2
interval graphs, say I ′

1, I
′
2, . . . , I

′
k′′

2

, by Theorem 2.8. Note that l+ k′′

2
=

⌊

t
2

⌋

= t1.

Let gi be a function that maps each v ∈ V (I ′
i) to a closed interval on the real line such

that I ′
i, for each i, 1 ≤ i ≤ k′′

2
, is the intersection graph of the family of intervals

{gi(v) : v ∈ V (I ′
i)}. Now, let Lj and Rj be numbers on the real line such that Lj ≤ x,

for all x ∈
⋃

v∈V (I′j)
(gj(v)) and Rj ≥ y, for all y ∈

⋃

v∈V (I′j)
(gj(v)). To construct Ii,

l + 1 ≤ i ≤ t1, map each v ∈ V (G) to a closed interval fl+j(v), 1 ≤ j ≤ k′′

2
on the real

line as follows.

fl+j(v) = gj(v) if v ∈ V (I ′
j) = V (G) − (P ∪ Q) − (C − C ′)

= [Lj , Rj ] otherwise.

Claim 4. For each Ii, l + 1 ≤ i ≤ t1, E(G) ⊆ E(Ii).

Proof. By the construction of Ii, l + 1 ≤ i ≤ t1, it is easy to see that if v ∈

P ∪ Q ∪ (C − C ′), then Lj ∈ fl+j(v), 1 ≤ j ≤ k′′

2
. So, P ∪Q ∪ (C − C ′) induces a clique

in each Ii, l + 1 ≤ i ≤ t1. Also, if u ∈ P ∪ Q ∪ (C − C ′), then (u, v) ∈ E(Ii), for each

v ∈ V (Ii) − {P ∪ Q ∪ (C − C ′)}, by the definition of Li and Ri. As the collection of

interval graphs I ′
1, I

′
2, . . . , I

′
k′′

2

is an interval graph representation of G′, by Theorem 2.8,

E(G′) ⊆ E(I ′
j), 1 ≤ j ≤ k′′

2
. But in Il+j, fl+j(v) = gj(v), for all v ∈ V (I ′

j), 1 ≤ j ≤ k′′

2
.

So, E(G′) ⊆ E(Il+j), 1 ≤ j ≤ k′′

2
. Hence for each Ii, l + 1 ≤ i ≤ t1, E(G) ⊆ E(Ii).

Construction of It1+1:
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We construct the last interval graph It1+1 as follows. If k′ is odd then suppose C −C ′ =

{v}. So, v /∈ V (G′). Let MV C ′ = MV C if k′ is even and MV C ′ = MV C − {v} if k′

is odd. Let A = {x1, x2, . . . , xr}, where |A| = r. Note that A 6= ∅. If k′ is odd, then

without loss of generality suppose {x1, x2, . . . , xs} = A ∩ NG(v). Now, map each vertex

x of G to an interval ft1+1(x) on the real line as follows.

ft1+1(x) = [2i − 1, 2i] if x ∈ A and x = xi.

= [1, 2r] if x ∈ MV C ′.

if k′ is odd then ft1+1(v) = [1, 2s]

Claim 5. E(G) ⊆ E(It1+1).

Proof. It is easy to see that if x ∈ MV C, then 1 ∈ ft1+1(x). So, MV C induces a

clique in It1+1. Also, if x ∈ MV C ′ ∪ {xi}, for some i, 1 ≤ i ≤ r, then 2i ∈ ft1+1(x).

That is, each xi ∈ A is adjacent to all the vertices of MV C ′. If x = xi, 1 ≤ i ≤ s,

then 2i ∈ ft1+1(xi) ∩ ft1+1(v). Thus (xi, v) ∈ E(It1+1) for each i, 1 ≤ i ≤ s. That is,

NG(v) ⊆ NIt1+1
(v). So, E(G) ⊆ E(It1+1).

The following Lemma follows from Claims 3, 4 and 5.

Lemma 3.14. For each interval graph Ii, 1 ≤ i ≤ t1 + 1, E(G) ⊆ E(Ii).

Lemma 3.15. For any (x, y) /∈ E(G), there exists some i, 1 ≤ i ≤ t1 + 1, such that

(x, y) /∈ E(Ii).

Proof. Suppose (x, y) /∈ E(G). As C induces a clique in G, both x and y cannot be

present in C.

Case 1: {x, y} ⊆ A.

Let x = xi and y = xj , where i 6= j. It is easy to see that ft1+1(x) ∩ ft1+1(y) = ∅. Hence

x is non-adjacent to y in It1+1.

Case 2: {x, y} ∩ {P ∪ Q} 6= ∅

Without loss of generality suppose x ∈ P ∪ Q. So, in Ii, for some i, 1 ≤ i ≤ l, say

Ik, fk(x) = [0, 1] or fk(x) = [4, 5]. If fk(x) = [0, 1], then fk(y) is either [2, 3], [2, 5] or

[4, 5] and if fk(x) = [4, 5], then fk(y) is either [0, 1], [0, 3] or [2, 3]. In both the cases
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fk(x) ∩ fk(y) = ∅. Hence x is non-adjacent to y in Ik.

Case 3: {x, y} ∩ {P ∪ Q} = ∅

Now, it is easy to see that one of x or y, say x, will belong to MV C − {P ∪ Q}, and y

will belong to A. If x ∈ C ′, then it is easy to see that x, y ∈ V (G′). As I ′
1, I

′
2, . . . , I

′
k′′

2

is

an interval graph representation of G′, by Theorem 2.8, there exists k, 1 ≤ k ≤ k′′

2
such

that (x, y) /∈ I ′
k. But in Il+k, fl+k(v) = gk(v), for all v ∈ I ′

k. So, x and y are non-adjacent

in Il+k.

Next suppose x ∈ C −C ′. Now, in It1+1, ft1+1(x) = [1, 2s] and as y /∈ Nx(G), y = cj,

where j > s. It is easy to see that ft1+1(x) ∩ ft1+1(y) = ∅. So, x and y are non-adjacent

in It1+1.

Hence there exists some i, 1 ≤ i ≤ t1 + 1, such that (x, y) /∈ E(Ii).

By Lemmas 3.14 and 3.15, we get E(G) = E(I1) ∩ E(I2) ∩ · · · ∩ E(It1+1). Thus by

Theorem 2.8, we obtain the following:

Theorem 3.16. ([2]) For a graph G with vertex cover MV C, box(G) ≤ ⌊ t
2
⌋ + 1,

where t = |MV C|.

Note that Theorem 3.11 follows from this result.

Corollary 3.17. ([22]) box(G) ≤
⌊

n
2

⌋

.

Proof. If G = Kn, then box(G) = 0. Otherwise, ∃ a, b such that (a, b) /∈ E(G).

Then, V (G) − {a, b} is a vertex cover of G of cardinality n − 2. So, by Theorem 3.16,

box(G) ≤
⌊

n−2
2

⌋

+ 1 =
⌊

n
2

⌋

.

3.4.1 Tightness result

In this section we illustrate some graphs for which the bound given in Theorem 3.16 for

boxicity is tight. For C4, |MV C| = 2 and we know from Lemma 2.10 that box(C4) = 2.

So, box(C4) = |MV C|
2

+ 1.

Claim 6. For the graph T (n, n
2
), the cardinality of minimum vertex cover is n − 2.

Proof. Let G = T (n, n
2
). Let a, b ∈ V (G) be such that (a, b) /∈ E(G). It is easy to

verify that V − {a, b} is a vertex cover of G. Thus, |MV C| ≤ n − 2. Now, if possible

suppose |MV C| ≤ n− 3. Let a, b, and c be the vertices which are not present in MV C.
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By the construction of T (n, n
2
) there will exist an edge in the induced subgraph of G

on {a, b, c}. Clearly this edge is not adjacent to any of the vertex of MV C. This is a

contradiction. Hence the claim is true.

For T (n, n
2
) ,

⌊

|MV C|
2

⌋

+ 1 =
⌊

n−2
2

⌋

+ 1 = n
2

(as n is even), which equals the boxicity

of T (n, n
2
). Thus the bound of Theorem 3.16 is tight for T (n, n

2
).

3.5 Boxicity of Bipartite Graphs

Let G = (V1 ∪ V2, E) be a bipartite graph such that |V1| = n1 and |V2| = n2. Suppose

n1 ≤ n2 and n1 ≥ 3. In this section we show that for a bipartite graph G, box(G) ≤

min{⌈n1

2
⌉, ⌈n2

2
⌉}.

It is easy to see that |MV C| ≤ n1 in G. So, by Theorem 3.16, box(G) ≤ ⌊n1

2
⌋+ 1. If

n1 is odd, then
⌊

n1

2

⌋

+ 1 =
⌈

n1

2

⌉

. So, box(G) ≤ min {
⌈

n1

2

⌉

,
⌈

n2

2

⌉

}.

Now assume that n1 is even. By Theorem 3.16, box(G) ≤
⌊

n1

2

⌋

+ 1 = n1

2
+ 1 (as n1

is even). But, we need to show that box(G) ≤ n1

2
. So that, box(G) ≤ min{

⌈

n1

2

⌉

,
⌈

n2

2

⌉

}.

Suppose n1 is even. We construct n1

2
interval super graphs of G, say I1, I2, . . . , In1

2
,

as follows.

Construction of Ii for 1 ≤ i ≤ n1

2
− 1:

Let x, y ∈ V1 and V ′
1 = V1 − {x, y}. Note that V ′

1 6= ∅ as |V1| ≥ 3. Let G′
1 be the

graph induced by V ′
1 ∪ V2 in G. Let G1 be a graph such that V (G1) = V (G′

1) and

E(G1) = E(G′
1) ∪ {(a, b) | a, b ∈ V ′

1}. Clearly V ′
1 induces a clique and V2 induces an

independent set in G1. So, G1 is a split graph. Now, by Theorem 3.13, box(G1) ≤

min
{⌈

n1−2
2

⌉

,
⌈

n2

2

⌉}

=
⌈

n1−2
2

⌉

= n1

2
− 1 (as n1 is even). That is, G1 is the intersection of

at most n1

2
− 1 interval graphs, say I ′

1, I
′
2, . . . , I

′
n1
2
−1

, by Theorem 2.8.

Let hi be a function that maps each v ∈ V (I ′
i), 1 ≤ i ≤ n1

2
− 1, to a closed interval

on the real line such that I ′
i is the intersection graph of the family of intervals {hi(v) :

v ∈ V (I ′
i)}. Now, let L′

i and R′
i, 1 ≤ i ≤ n1

2
− 1, be numbers on the real line such that

L′
i ≤ x, for all x ∈

⋃

v∈V (I′i)
(hi(v)) and R′

i ≥ y, for all y ∈
⋃

v∈V (I′i)
(hi(v)). To construct

Ii, 1 ≤ i ≤ n1

2
− 1, map each v ∈ V (G) to a closed interval fi(v) on the real line as
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follows.

fi(v) = hi(v) if v ∈ V (I ′
i) = V (G) − {x, y}.

= [L′
i, R

′
i] otherwise.

Claim 7. For each Ii, 1 ≤ i ≤ n1

2
− 1, E(G) ⊆ E(Ii).

Proof. Since fi(x) = fi(y) = [L′
i, R

′
i] it is easy to see that in Ii, x and y are adjacent to

each v, v ∈ V (Ii)−{x, y}, by the definition of L′
i and R′

i. As I ′
1, I

′
2, . . . , I

′
n1
2
−1

is an interval

graph representation of G1, by Theorem 2.8, E(G1) ⊆ E(I ′
i), for each 1 ≤ i ≤ n1

2
− 1.

But in Ii, fi(v) = hi(v), for all v ∈ V (I ′
i). So, E(G1) ⊆ E(Ii), 1 ≤ i ≤ n1

2
− 1. Hence for

each Ii, 1 ≤ i ≤ n1

2
− 1, E(G) ⊆ E(Ii).

Construction of In1
2

:

Let V1 = {v1, v2, . . . , vn1
}. Suppose without loss of generality that x = v1 and y = vn1

.

To construct In1
2

, we map each v ∈ V (G) to an interval fn1
2

(v) as follows.

fn1
2

(v) = [2i − 1, 2i] if v ∈ V1 and v = vi

= [1, 2n1] if v ∈ V2 and v ∈ Nx ∩ Ny.

= [1, 2n1 − 2] if v ∈ V2 and v ∈ Nx − Ny.

= [3, 2n1] if v ∈ V2 and v ∈ Ny − Nx.

= [3, 2n1 − 2] if v ∈ V2 − (Nx ∪ Ny).

Claim 8. E(G) ⊆ E(In1
2

).

Proof. In In1
2

, for each v ∈ V2, the point n1 ∈ fn1
2

(v). So, V2 induces a clique in

In1
2

. Also for each v ∈ NG(x), 1 ∈ fn1
2

(v) and for each v ∈ NG(y), 2n1 ∈ fn1
2

(v). So,

NG(x) ⊆ NI n1
2

(x) and NG(y) ⊆ NI n1
2

(y). For vj ∈ V1 − {x, y}, we have 2 ≤ j ≤ n1 − 1,

and thus we have 3 ≤ 2j − 1 ≤ 2n1 − 2. So, 2j − 1 ∈ fn1
2

(v), for all v ∈ V2. It is easy

to see that (vi, v) ∈ E(In1
2

) for all pairs (vi, v) where vi ∈ V1 − {x, y} and v ∈ V2. Hence

E(G) ⊆ E(In1
2

).

The following Lemma follows from Claims 7 and 8.
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Lemma 3.18. For each interval graph Ii, 1 ≤ i ≤ n1

2
, E(G) ⊆ E(Ii).

Lemma 3.19. For any (p, q) /∈ E(G), there exists some i, 1 ≤ i ≤ n1

2
, such that

(p, q) /∈ E(Ii).

Proof. Suppose (p, q) /∈ E(G).

Case 1: {p, q} ⊆ V1.

Suppose p = vi and q = vj, where i 6= j. In this case it is easy to see that in In1
2

,

fn1
2

(p) ∩ fn1
2

(q) = ∅. So, p is non-adjacent to q in In1
2

.

Case 2: {p, q} ⊆ V2 ∪ V ′
1 .

If both p and q belong to V2 ∪ V ′
1 , then it is easy to see that p, q ∈ G1 and in view of

Case 1, (p, q) /∈ E(G1). As I ′
1, I

′
2, . . . , I

′
n1
2
−1

is an interval graph representation of G1, by

Theorem 2.8, (p, q) /∈ E(I ′
i), for some i, 1 ≤ i ≤ n1

2
− 1, say I ′

k. Recalling that in Ik,

fk(v) = gk(v) for all v ∈ V (I ′
k) p and q are non-adjacent in Ik also.

Case 3: p ∈ {x, y} and q ∈ V2.

Let p = x. Now, in In1
2

, fn1
2

(x) = [1, 2] and as q is not a neighbor of x in G, either

fn1
2

(q) = [3, 2n1 − 2] or [3, 2n1]. In both the cases, fn1
2

(p) ∩ fn1
2

(q) = ∅. So, p and q are

non-adjacent in In1
2

.

Similarly, if p = y, then in In1
2

, fn1
2

(y) = [2n1 −1, 2n1] and as q is not a neighbor of y

in G, either fn1
2

(q) = [1, 2n1 − 2] or [3, 2n1 − 2]. In both the cases, fn1
2

(p) ∩ fn1
2

(q) = ∅.

So, p and q are non-adjacent in In1
2

.

By Lemmas 3.18 and 3.19, we get E(G) = E(I1) ∩ E(I2) ∩ · · · ∩ E(In1
2

). Thus by

Theorem 2.8, we have the following.

Theorem 3.20. For a bipartite graph G = (V1∪V2, E), box(G) ≤ min
{⌈

n1

2

⌉

,
⌈

n2

2

⌉}

,

where |V1| = n1 and |V2| = n2.

3.5.1 Tightness result

In this section we show that the bound given in Theorem 3.20 is tight. Consider a

complete bipartite graph G = (V1 ∪ V2, E) and remove a perfect matching from that.

Let G′ = (V1 ∪ V2, E
′) be the resulting graph. It is easy to see that, |V1| = |V2| = n

2
(as

G has a perfect matching). Next we show that box(G′) = ⌈n
4
⌉.
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Claim 9. box(G′) ≥
⌈

n
4

⌉

.

Proof. If possible suppose box(G′) ≤
⌈

n
4

⌉

− 1. Let n be divisible by 4. So,
⌈

n
4

⌉

− 1 =

n
4
− 1, By Theorem 2.8, G′ is the intersection of at most n

4
− 1 interval graphs. Recall

that, n
2

edges (size of a perfect matching of G) are missing in G′. Since there are total

n
2

missing edges, at least one interval graph, say Ik, 1 ≤ k ≤ n
4
− 1, will be such that at

least three edges, say aa′, bb′, and cc′, will be absent in Ik.

Let {a, b, c} ⊆ V1 and {a′, b′, c′} ⊆ V2. So, {a, b′, c, a′, b, c′} (=C, say) is a cycle of

length six in Ik. By Lemma 2.2, C cannot be an induced cycle in Ik, otherwise Ik will

not be an interval graph. Consider the following cases:

Case 1. Either {a, b, c} or {a′, b′, c′} induces a complete graph in Ik.

Without loss of generality let {a, b, c} induce a complete graph in Ik. If Ik[{a
′, b′, c′}] has

no edge, then by Lemma 2.11, Ik = S2 is not an interval graph. So, suppose Ik[{a
′, b′, c′}]

contains at least one edge. Without loss of generality suppose a′b′ ∈ E(Ik). Now, it is

easy to see that {a, b, a′, b′} induces a cycle of length four in Ik. This is a contradiction.

Case 2. Both Ik[{a, b, c}] and Ik[{a
′, b′, c′}] are not complete.

Suppose Ik[{a, b, c}] or Ik[{a
′, b′, c′}] has two edges. Without loss of generality suppose

Ik[{a, b, c}] has two edges ab and bc. Now, {a, b′, c, b} induces a cycle of length four in

Ik. This is a contradiction. So, Ik[{a, b, c}] and Ik[{a
′, b′, c′}] contains exactly one edge

each. Without loss of generality suppose ab ∈ E(Ik). If a′b′ ∈ E(Ik), then {a, b, a′, b′}

induces a cycle of length four in Ik. This is a contradiction. Now, either a′c′ ∈ E(Ik) or

b′c′ ∈ E(Ik). If a′c′ ∈ E(Ik), then it is easy to see that {a, b′, c, a′, c′} induces a cycle of

length five in Ik, which is a contradiction. Similarly if b′c′ ∈ E(Ik), then also there will

be an induced cycle of length five in Ik, which is a contradiction. So, this case is also

not possible.

Hence, Ik cannot contain three missing edges. This is a contradiction.

Next suppose n is not divisible by 4. Now,
⌈

n
4

⌉

− 1 =
⌊

n
4

⌋

+ 1 − 1 =
⌊

n
4

⌋

. Using

similar arguments as in the case when n is divisible by 4, we will get a contradiction in

this case also.

Hence, box(G′) ≥
⌈

n
4

⌉

.
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By Theorem 3.20, we have box(G′) ≤ ⌈n
4
⌉. Hence box(G′) = ⌈n

4
⌉. So, for such graphs

the bound given for bipartite graphs is tight.

3.6 Boxicity and Chromatic Number

We know that box(G) ≤
⌊

n
2

⌋

, where n is the number of vertices of G (Theorem 3.11).

Let box(G) = n
2
− s, for some s ≥ 0. Note that, if n is odd, then s is not an integer.

In the following theorem, we show that when s is small for a graph G, the chromatic

number of G has to be very high.

Theorem 3.21. ([2]) If box(G) = n
2
− s, then χ(G) ≥ n

2s+2
.

Proof. Let box(G) = n
2
− s. By Theorem 3.16, box(G) = n

2
− s ≤

⌊

t
2

⌋

+ 1 ≤ t
2

+ 1,

where t is the cardinality of a minimum vertex cover of G. So, t ≥ n− 2s− 2. It is easy

to see that if α is the independence number of G, then χ(G) ≥ n
α
. But α = n − t. So,

χ(G) ≥
n

n − t

≥
n

n − (n − 2s − 2)

=
n

2s + 2

The lower bound for χ(G) given in Theorem 3.21 is tight for the graph T (n, n
2
). From

Lemma 3.2, we know that box(T (n, n
2
)) = n

2
(recall that n is even in T (n, n

2
)). Thus,

s = 0 for T (n, n
2
). Substituting s = 0 in the inequality given in Theorem 3.21, we get

χ(G) ≥ n
2
. But χ(G) = n

2
for T (n, n

2
).



Chapter 4

Cubicity

4.1 Introduction

In Chapter 2.5 we have seen an example of how to prove a lower bound on the cubicity

of a graph (K1,r). In Section 4.2, we prove an upper bound on the cubicity of a graph

in terms of its minimum vertex cover: cub(G) ≤ t + ⌈log (n − t)⌉ − 1, where t is the

cardinality of a minimum vertex cover.

4.2 Cubicity and Vertex Cover

In this section, we give a tight upper bound for cubicity of a graph G in terms of

the cardinality of its minimum vertex cover. In particular we show that cub(G) ≤

t + ⌈log (n − t)⌉ − 1, where |MV C| = t and n is the number of vertices of G. Let

MV C = {v1, v2, . . . , vt}. Clearly A = V − MV C is an independent set in G. Let

A = {w0, w1, . . . , wα−1}, where |A| = n− t = α. Next, we construct t+ ⌈log (n − t)⌉−1,

unit interval super graphs of G, say U1, U2, . . . , Ut+⌈log (n−t)⌉−1, as follows.

Construction of Ui for 1 ≤ i ≤ t − 1:

Let MV C ′ = MV C −{vt}. So, |MV C ′| = t− 1. For each vi ∈ MV C ′, 1 ≤ i ≤ t− 1, we

construct a unit interval graph Ui. To construct Ui, map each x ∈ G to a unit interval

35
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fi(x) as follows.

fi(x) = [0, 1] if x = vi

= [1, 2] if x ∈ NG(vi).

= [2, 3] if x ∈ V (G) − (NG(vi) ∪ {vi}).

Claim 10. For each unit interval graph Ui, 1 ≤ i ≤ t − 1, E(G) ⊆ E(Ui).

Proof. It is easy to see that for all x ∈ NG(vi) ∪ {vi}, 1 ∈ fi(x). So, NG(vi) ∪ {vi}

induces a clique in Ui. Also, for all x ∈ V (G) − {vi}, 2 ∈ fi(x). That is, V (G) − {vi}

induces a clique in Ui. So, we infer that E(G) ⊆ E(Ui), for each i, 1 ≤ i ≤ t − 1.

Construction of Ut+j for 0 ≤ j ≤ ⌈log(n − t)⌉ − 1:

Recall that MV C = {v1, v2, . . . , vt} and A = {w0, w1, . . . , wα−1}. It is easy to see that

vt is adjacent to at least one vertex of A since MV C is a minimum vertex cover of G.

Without loss of generality suppose (vt, w0) ∈ E(G). For each j, 0 ≤ j ≤ ⌈log (n − t)⌉−1,

we define a function bj : A → {0, 1} as follows:

bj(wk) = 0 if the (j + 1) − th least significant bit of k is 0

= 1 otherwise.

To construct Ut+j , 0 ≤ j ≤ ⌈log (n − t)⌉ − 1, we map each x ∈ V (G) to a unit interval

as follows.

ft+j(x) = [0.5, 1.5] if x = vt.

= [1, 2] if x ∈ MV C ′.

= [0, 1] if x = w0.

= [0, 1] if x ∈ A − {w0} and bj(x) = bj(w0).

= [1.5, 2.5] if x ∈ A − {w0} and bj(x) 6= bj(w0) and xvt ∈ E(G).

= [2, 3] if x ∈ A − {w0} and bj(x) 6= bj(w0) and xvt /∈ E(G).
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Claim 11. For each unit interval graph Ut+j, 0 ≤ j ≤ ⌈log (n − t)⌉ − 1, E(G) ⊆

E(Ut+j).

Proof. It is easy to see that, for all x ∈ MV C, 1 ∈ ft+j(x). So, MV C induces

a clique in Ut+j . Also, for all y ∈ NG(vt), either 1 ∈ ft+j(y) or 1.5 ∈ ft+j(y). As

ft+j(vt) = [0.5, 1.5], ft+j(vt) ∩ ft+j(y) 6= ∅, for all y ∈ NG(vt). So, NG(vt) ⊆ NUt+j
(vt).

Let wi ∈ A. Now, either ft+j(wi) = [0, 1] or [1.5, 2.5] or [2, 3]. In all the cases, it is easy to

see that ft+j(wi)∩ ft+j(v) 6= ∅, for all v ∈ MV C ′ since ft+j(v) = [1, 2]. That is, for each

wi ∈ A, wiv ∈ E(Ut+j), for all v ∈ MV C ′. Hence for each j, 0 ≤ j ≤ ⌈log (n − t)⌉ − 1,

E(G) ⊆ E(Ut+j).

The following Lemma follows from Claims 10 and 11.

Lemma 4.1. For each unit interval graph Ui, 1 ≤ i ≤ t + ⌈log (n − t)⌉ − 1, E(G) ⊆

E(Ui).

Lemma 4.2. For any (x, y) /∈ E(G), there exists some i, 1 ≤ i ≤ t+⌈log (n − t)⌉−1,

such that (x, y) /∈ E(Ui).

Proof. Suppose (x, y) /∈ E(G).

Case 1: {x, y} ⊆ MV C.

It is easy to see that either x or y, say x, will be present in MV C ′. Let x = vi, for

some i, 1 ≤ i ≤ t − 1. Now, in Ui, as y /∈ NG(vi), fi(x) = [0, 1] and fi(y) = [2, 3]. So,

fi(x) ∩ fi(y) = ∅. Hence, x is non-adjacent to y in Ui.

Case 2: x ∈ MV C and y ∈ A.

First suppose x ∈ MV C ′. Let x = vi, for some i, 1 ≤ i ≤ t − 1. Now, in Ui, as

y /∈ NG(vi), fi(x) = [0, 1] and fi(y) = [2, 3]. Hence, x is non-adjacent to y in Ui.

Next suppose x = vt. It is easy to see that y 6= w0, as (w0, vt) ∈ E(G) by assumption.

Let y = ws, for some s, 1 ≤ s ≤ α − 1. Since s > 0, clearly there exists a l, 0 ≤

l ≤ ⌈log (n − t)⌉ − 1, such that bl(ws) 6= bl(w0). Now, in Ut+l, ft+l(ws) = [2, 3]. But

ft+l(vt) = [0.5, 1.5]. As ft+l(vt) ∩ ft+l(ws) = ∅, x and y are non-adjacent in Ut+l.

Case 3: {x, y} ⊆ A.

Let x = wr and y = ws, 0 ≤ r, s ≤ α − 1. Since r 6= s, there exists a j, 0 ≤ j ≤

⌈log (n − t)⌉−1, such that bj(wr) 6= bj(ws). As bj(w0) is either 0 or 1, bj(w0) is different
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from either bj(wr) or bj(s). Without loss of generality suppose bj(w0) 6= bj(ws). So,

bj(w0) = bj(wr) as bj(wr) 6= bj(ws). Now, in Ut+j , ft+j(wr) = [0, 1] and ft+j(ws) =

[1.5, 2.5] or [2, 3]. In both the cases ft+j(wr) ∩ ft+j(ws) = ∅. Hence x = wr and y = ws

are non-adjacent in Ut+j , 0 ≤ j ≤ ⌈log (n − t)⌉ − 1.

By Lemmas 4.1 and 4.2, we get

E(G) = E(U1) ∩ E(U2) ∩ · · · ∩ E(Ut+⌈log(n−t)⌉−1). Thus by Theorem 2.8, we have the

following:

Theorem 4.3. ([2]) For a graph G, cub(G) ≤ t+⌈log (n − t)⌉−1, where |MV C| = t

and n is the number of vertices of G.

It is easy to see that for a bipartite graph G, t ≤ n
2
, where t is the cardinality of

a minimum vertex cover of G. Applying the bound given above, we have the following

result.

Corollary 4.4. For a bipartite graph G, cub(G) ≤ n
2

+ ⌈log n⌉ − 1.

For a graph G, it is known that cub(G) ≤
⌊

2n
3

⌋

[22]. Note that for bipartite graphs

Corollary 4.4 gives a better upper bound.

4.2.1 Tightness result

In this section we show that the upper bound given for cubicity in Theorem 4.3 is tight for

K1,n−1. It is easy to see that |MV C| = 1 for K1,n−1. Substituting t = 1 in the inequality

of Theorem 4.3 gives us the inequality cub(K1,n−1) ≤ ⌈log(n − 1)⌉. But, by Theorem

2.15, we know that cub(K1,n−1) = ⌈log(n − 1)⌉. So, the upper bound for cubicity given

in Theorem 4.3 is tight for K1,n−1.
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Conclusions and Future Work

In this thesis, we saw the known result that for any graph G, box(G) ≤
⌊

n
2

⌋

[22] and

improved this result by proving that box(G) ≤
⌊

t
2

⌋

+1. As shown in Corollary 3.17, this

result improves upon the previous result in [22]. This bound is tight.

We also saw the known result that for any graph G, cub(G) ≤
⌊

2
3
n
⌋

[22] and gave

the new bound cub(G) ≤ t + ⌈log2(n− t)⌉ − 1. This result is not always better than the

result in [22], but is tight nonetheless.

5.1 Directions for Future Work

It is NP-hard to compute the boxicity of a general graph [9]. However, it would be nice

if one can characterize or find some non-trivial properties of the graphs with boxicity k.

[18] gives a characterization of the graphs with boxicity less than or equal to 2. Finding

the boxicity and cubicity of some special classes of graphs would also be useful.

Let P be a set of n points. We associate with each point p ∈ P an open ball Bp,

which is centered at p and has radius equal to the distance between p and its nearest

neighbour.

Definition 5.1. A sphere-of-influence graph is a graph G(V, E) with V (G) = P

and for {p1, p2} ⊆ V (G), (p1, p2) ∈ E(G) ⇔ Bp1
∩ Bp2

6= ∅.

39
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The points could by lying in R
d and the distance between them found using the Eu-

clidean metric. In [13], the metric induced from the sup-norm (L∞-norm) is considered.

Definition 5.2. Given a graph G, the minimum dimension d for which we can

map the vertices of G to points in R
d such that the sphere-of-influence graph so realized

is isomorphic to G, is called the Sphere-of-Influence Graph dimension of G denoted by

SIG(G).

In [13], it is shown that in the L∞-norm, SIG(G) ≤ t + ⌈log(n − t)⌉ − 1 where

t = |MV C|.

Note that this inequality is same as the inequality we proved for cubicity in Theorem

4.3. However, cubicity and SIG dimension are not the same. We would like to explore

the SIG dimension further to see if either of the dimensions helps in understanding the

other dimension better.
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