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The Problem

Which point sets realize a given distance multiset?
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Outline Of The Presentation

.

O(    logn) backtracking algorithm for Beltway Problem.

Bounds and other properties of Homometric Sets.

Turnpike problem

Beltway Problem

Constructing Homometric Beltway Sets with Singer Difference 
Sets.

Bounds on Homometric Sets for the  d – dimensional problem.
(If time permits)

Backtracking Algorithm for reconstruction in  d – dimensional 
space.(If time permits)
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Beltway Algorithm
Some Identities

Distances are taken mod L, indices mod n. 

Fix a direction for the distances, say Clockwise.

       L =                      So, find L.

    k L  = 

         +       =          Triangle equality.  Important.

         +       =  L      Complement Distance Identity.

n2 ∑
0≤i , jn

d ij

∑
0≤in

d i ik 

d ij d ikd jk

d ij d ji



Beltway Problem
The Algorithm

Given n(n-1) distances.

Construct an (n-1) x n table.

kth row :                            i = 0,1, ... ,n-1 ;  k = 1,2, ... ,n-1   

                   Entry in table below a given entry.    

                       Entry in table below and to the right of  a given entry.

Fill in the distances largest first.  Only need to choose which 

column to place the next distance in.  Why?

d i in−k 

d ij≥d i  j−1

d ij≥d i−1 j



Beltway Algorithm
Analyzing the Algorithm

After choosing which column to place the next distance in, the 
identity

    

     allows us to fill in various distances.

Total               fill-ins.   

     Each fill-in takes O(logn) time.

Decisions by the backtrack algorithm : n-2 (First choice – arbitrary)

     Each decision has at most n choices.

     Each choice causes at most       fill-ins.

Eventual time taken :   O(     logn).

Space taken : merely  O(    ).

     

d ijd jk=d ik

n−12

n2
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Homometric Sets
Definitions and Terminology

Two noncongruent n-point sets are homometric if the multisets of 

            distances they determine are the same.

Equivalently, a given distance multiset may realize more than one 
homometric sets of distances.

          denotes the maximum possible number of noncongruent, 
homometric n-point sets which can exist in      .

          denotes the maximum possible number of such sets for 
which all points lie on sphere      .

             same as            except that overlapping points are 
allowed.                           .

             is defined similarly.                        .     

          

n2

H d n
ℝd

Sd n
Sd

H d∗n H d n

Sd∗n Sd n≤Sd∗n

H d n≤H d∗n

Sd n≤H d1n



Homometric Sets - Turnpike
Lower Bounds

For          ,             = 1.

n = 2, 3 :  Trivial.

n=4 :  Not so tough.

n=5 :  x1 = 0, x5 = d.

9 distances remain.  3 pairs sum upto d.

3 distances remain – {a,b,c}.

Case -1:                ;   b determines a,b,c.

Case -2:                ;   3 pairs determine a,b,c.

n≤5 H 1n

ac≠d
ac=d



Homometric Sets - Turnpike
Lower Bounds

         ,                      

Set-1:                                        

Set-2:

S = { i |                     } 

T = {0,1,n,n+5}

Claim :  X and Y are homometric.

X : n+1,n,1,4,  n+3,n+2,3,2,2.

Y : 2,1,n-2,n+3,  n+2,n+1,2,3,n.

Unbalanced:  X – 4,  Y – n-2. Remember.

Now, we take distances with elements of set S.

n≥6 H 1n≥2

X={n1, n3}∪S∪T

Y={2, n2 }∪S∪T

5≤i≤n−2



Homometric Sets - Turnpike
Lower Bounds – Proving the Claim

X : 5+k,4+k,n-5-k,n-4-k,n-2-k,n-k,   n-2-k,n-3-k,2+k,3+k,5+k,7+k

Y : n-2-k,n-3-k,n-4-k,2+k,4+k,7+k,  5+k,4+k,3+k,n-5-k,n-3-k,n-k

Remaining:

X : 5+k, n-2-k   Y : 4+k,n-3-k

X : n-2,n-2        Y : 4,4                      Cancell off.  Why?

1 n n+1 n+30 n+5

1 n n+20 n+52



Homometric Sets - Turnpike
Lower Bounds

For an infinite number of values of n, 

Known that                   ,        

So,                            = x (say).

Now, ln(n)=k.ln(13)

In general, if                 , for             : 

Open Problem :  Improve the bound 

For eg. demonstrate that for some            , 

1
2

n≤H 1n =
ln 8
ln 13

≈0.8107

H 113≥4 H 1ab≥2 H 1aH 1b

H 113k≥23 k−1

ln x 
ln 13

=k.
ln 8
ln 13 ln  x =ln n

ln 8
ln 13 

H 1≥r n=k H 1n≥
1
2

n
ln 2r 
ln 

n≤30 H 1n≥8



Homometric sets - Beltway
Trivial Lower Bounds

              for

              for  

X : {0,t,1+t,2,4, ... ,2(n-3)}

Y : {0,t,2,4, ... ,2(n-3),2n-5+t} mod 2(n-2)

S1n=1 n≤3
S1n≥2 n≥4



Homometric Sets - Beltway
Singer Difference Sets

Singer Difference Sets are n – element subsets of        where

M =                 and  q is a prime;  n = q + 1  

such that the n(n-1) differences they determine are exactly  all 

the non-zero elements of       .  

Singer showed that for each prime q, there always exists at least 
one such example.

Multiplying a Singer Set by any element r of        preserves the 
distance set.  If r | q, then this may result to translation of the set.

If                 is a prime, gcd(M,r) =1, q and -1 generate dihedral 
group      

If no further multiplicative symmetries exist, then it would have 
(M-1)/6   or   q(q+1)/6 equivalance classes of size 6.

ℤM

q2q1

ℤM

ℤM

q2q1
D3



Homometric sets - Beltway
Singer Difference Sets

Hardy – Littlewood Conjecture :

There are infinite number of primes q such that

is also a prime.

Our Conjecture :

     Singer Set construction generates  at least q(q+1)/6 homometric 
(q+1) – point beltway sets where q and                   are both 
primes.  This would follow if we can show that at least one 
Singer set with no nontrivial symmetries exists.

q2q1

q2q1



Homometric Sets
d – dimensional problem

d points generate a (d-1) – simplex which we shall call the central 
simplex.

Claim :

(n-d)d +       line segments form a rigid structure and the point 

set is completely defined.

The (n-d) points are assigned +/- signs depending on which side 
of the hyperplane they lie.

No. of ways < 

We can remove a factor of d!(n-d)! due to automorphisms.

d2 

n2n−d dd2∗2n−d



The Algorithm
d – dimensional problem

Construct the central simplex using d/2 of the largest distances.in 
the x1=0 hyperplane.

For each central simplex, consider the addition of one point at a 
time by backtracking.

A point is added by selecting d distances to the central simplex 
and its sign.  Backtracking occurs if 

A valid d-simplex is not formed

The distances to currently embedded points are not valid.

The d-tuple of distances is lexicographically larger than some 
previous d-tuple.  This eliminates (n-d)! automorphisms

Embedding a point – O(   )

Finding n distances – O(n log n).

O(               )

d3

n2 d−1n en



Thank You


