Reconstructing Sets From Interpoint Distances

Paper presented in 1995 by

- Steven S. Siena (State University Of New York)
- Warren D. Smith (Princeton, NJ)
- Paul Lemke (Polytechnic Institute, NY)

The Problem

• Which point sets realize a given distance multiset?

Reconstructing Sets From Interpoint Distances Outline Of The Presentation

- $O(n^n \log n)$ backtracking algorithm for Beltway Problem.
- Bounds and other properties of Homometric Sets.
 - Turnpike problem
 - Beltway Problem
- Constructing Homometric Beltway Sets with Singer Difference Sets.
- Bounds on Homometric Sets for the *d*-dimensional problem. (If time permits)
- Backtracking Algorithm for reconstruction in *d* dimensional space. (If time permits)

Beltway Algorithm Some Identities

- Distances are taken mod L, indices mod n.
- Fix a direction for the distances, say Clockwise.

•
$$\binom{n}{2}$$
 L = $\sum_{0 \le i, j < n} d_{ij}$ So, find L.
• k L = $\sum_{0 \le i < n} d_{i(i+k)}$

- $d_{ij} + d_{jk} = d_{ik}$ Triangle equality. Important.
- $d_{ij} + d_{ji} = L$ Complement Distance Identity.

Beltway Problem The Algorithm

- Given n(n-1) distances.
- Construct an (n-1) x n table.
- kth row : $d_{i(i+n-k)}$ i = 0,1, ..., n-1 ; k = 1,2, ..., n-1
- $d_{ij} \ge d_{i(j-1)}$ Entry in table below a given entry. $d_{ij} \ge d_{(i-1)j}$ Entry in table below and to the right of a given entry.
- Fill in the distances largest first. Only need to choose which column to place the next distance in. Why?

Beltway Algorithm Analyzing the Algorithm

After choosing which column to place the next distance in, the identity

$$d_{ij} + d_{jk} = d_{ik}$$

allows us to fill in various distances.

• Total $(n-1)^2$ fill-ins.

Each fill-in takes O(logn) time.

- Decisions by the backtrack algorithm : n-2 (First choice arbitrary)
 Each decision has at most n choices.
 Each choice causes at most n² fill-ins.
- Eventual time taken : $O(n^n \log n)$.
- Space taken : merely $O(n^2)$.

Homometric Sets Definitions and Terminology

- Two noncongruent n-point sets are homometric if the multisets of $\binom{n}{2}$ distances they determine are the same.
- Equivalently, a given distance multiset may realize more than one homometric sets of distances.
- $H_d(n)$ denotes the maximum possible number of noncongruent, homometric n-point sets which can exist in \mathbb{R}^d .
- $S_d(n)$ denotes the maximum possible number of such sets for which all points lie on sphere S^d .
- $H_d*(n)$ same as $H_d(n)$ except that overlapping points are allowed. $H_d(n) \le H_d*(n)$.
- $S_d * (n)$ is defined similarly. $S_d(n) \le S_d * (n)$.
- $S_d(n) \leq H_{d+1}(n)$

Homometric Sets - Turnpike Lower Bounds

• For $n \le 5$, $H_1(n) = 1$.

• n = 2, 3 : Trivial.

n=4 : Not so tough.

9 distances remain. 3 pairs sum upto d.

3 distances remain $- \{a,b,c\}$.

Case -1: a+c=d; b determines a,b,c.

Case -2: $a+c \neq d$; 3 pairs determine a,b,c.

Homometric Sets - Turnpike Lower Bounds

- $n \ge 6$, $H_1(n) \ge 2$
- Set-1: $X = \{n+1, n+3\} \cup S \cup T$
- Set-2: $Y = \{2, n+2\} \cup S \cup T$
- $S = \{i \mid 5 \le i \le n-2 \}$
- T = {0,1,n,n+5}
- Claim : X and Y are homometric.
- X : n+1,n,1,4, n+3,n+2,3,2,2.
- Y:2,1,n-2,n+3, n+2,n+1,2,3,n.
- Unbalanced: X 4, Y n-2. Remember.
- Now, we take distances with elements of set S.

Homometric Sets - Turnpike Lower Bounds – Proving the Claim

X : **5+k**,4+k,n-5-k,n-4-k,n-2-k,n-k, **n-2-k**,n-3-k,2+k,3+k,5+k,7+k Y : n-2-k,**n-3-k**,n-4-k,2+k,4+k,7+k, 5+k,**4+k**,3+k,n-5-k,n-3-k,n-k Remaining:

X : 5+k, n-2-k Y : 4+k,n-3-k

X: n-2, n-2 Y: 4,4 Cancell off. Why?

Homometric Sets - Turnpike Lower Bounds

For an infinite number of values of n,

$$\frac{1}{2}n^{\alpha} \le H_1(n)$$
 $\alpha = \frac{\ln(8)}{\ln(13)} \approx 0.8107$

• Known that $H_1(13) \ge 4$, $H_1(ab) \ge 2H_1(a)H_1(b)$

• So,
$$H_1(13^k) \ge 2^{3k-1} = x$$
 (say).

- Now, In(n)=k.In(13)
- $\frac{\ln(x)}{\ln(13)} = k \cdot \frac{\ln(8)}{\ln(13)}$ $\ln(x) = \ln(n^{\frac{\ln(8)}{\ln(13)}})$

• In general, if
$$H_1(\alpha) \ge r$$
, for $n = \alpha^k$: $H_1(n) \ge \frac{1}{2} n^{\frac{\ln(2r)}{\ln(\alpha)}}$

• Open Problem : Improve the bound For eg. demonstrate that for some $n \le 30$, $H_1(n) \ge 8$

Homometric sets - Beltway Trivial Lower Bounds

- $S_1(n)=1$ for $n \leq 3$
- $S_1(n) \ge 2$ for $n \ge 4$
- X : {0,t,1+t,2,4, ... ,2(n-3)}
- Y: {0,t,2,4, ...,2(n-3),2n-5+t} mod 2(n-2)

Homometric Sets - Beltway Singer Difference Sets

- Singer Difference Sets are *n* − element subsets of Z_M where
 M = q²+q+1 and q is a prime; n = q + 1
 such that the n(n-1) differences they determine are exactly all the non-zero elements of Z_M.
- Singer showed that for each prime q, there always exists at least one such example.
- Multiplying a Singer Set by any element r of \mathbb{Z}_M preserves the distance set. If r | q, then this may result to translation of the set.
- If q^2+q+1 is a prime, gcd(M,r) =1, q and -1 generate dihedral group D_3
- If no further multiplicative symmetries exist, then it would have (M-1)/6 or q(q+1)/6 equivalance classes of size 6.

Homometric sets - Beltway Singer Difference Sets

• Hardy – Littlewood Conjecture :

There are infinite number of primes q such that q^2+q+1 is also a prime.

• Our Conjecture :

Singer Set construction generates at least q(q+1)/6 homometric (q+1) - point beltway sets where q and q^2+q+1 are both primes. This would follow if we can show that at least one Singer set with no nontrivial symmetries exists.

Homometric Sets *d* – dimensional problem

- d points generate a (d-1) simplex which we shall call the central simplex.
- Claim :

(n-d)d + $\begin{pmatrix} d \\ 2 \end{pmatrix}$ line segments form a rigid structure and the point set is completely defined.

- The (n-d) points are assigned +/- signs depending on which side of the hyperplane they lie.
- No. of ways < $\binom{n}{2}^{(n-d)d + \binom{d}{2}} * 2^{n-d}$
- We can remove a factor of d!(n-d)! due to automorphisms.

The Algorithm *d* – dimensional problem

- Construct the central simplex using d/2 of the largest distances.in the x1=0 hyperplane.
- For each central simplex, consider the addition of one point at a time by backtracking.
- A point is added by selecting d distances to the central simplex and its sign. Backtracking occurs if
 - A valid d-simplex is not formed
 - The distances to currently embedded points are not valid.
 - The d-tuple of distances is lexicographically larger than some previous d-tuple. This eliminates (n-d)! automorphisms
- Embedding a point $O(d^3)$
- Finding n distances $O(n \log n)$.
- O($n^{(2d-1)n}e^n$)

Thank You