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Abstract—Structural Support Vector Machines (SSVMs)
have recently gained wide prominence in classifying structured
and complex objects like parse-trees, image segments and Part-
of-Speech (POS) tags. Typical learning algorithms used in
training SSVMs result in model parameters which are vectors
residing in a large-dimensional feature space. Such a high-
dimensional model parameter vector contains many non-zero
components which often lead to slow prediction and storage is-
sues. Hence there is a need for sparse parameter vectors which
contain a very small number of non-zero components. L1-
regularizer and elastic net regularizer have been traditionally
used to get sparse model parameters. Though L1-regularized
structural SVMs have been studied in the past, the use of elastic
net regularizer for structural SVMs has not been explored yet.
In this work, we formulate the elastic net SSVM and propose
a sequential alternating proximal algorithm to solve the dual
formulation. We compare the proposed method with existing
methods for L1-regularized Structural SVMs. Experiments
on large-scale benchmark datasets show that the proposed
dual elastic net SSVM trained using the sequential alternating
proximal algorithm scales well and results in highly sparse
model parameters while achieving a comparable generalization
performance. Hence the proposed sequential alternating proxi-
mal algorithm is a competitive method to achieve sparse model
parameters and a comparable generalization performance
when elastic net regularized Structural SVMs are used on very
large datasets.

Keywords-Structural SVMs, Alternating Proximal method.

I. INTRODUCTION

Structured classification is the task of classifying struc-

tured output objects like parse-trees, image segments, protein

structures from corresponding inputs like sentences, images

and amino acid sequences. Such structured output objects

are composed of various components which, in general,

are not independent of each other. Each component of the

object interacts with one or various other components of the

same object in a complex manner. This nature of interaction

among the various components of the structured outputs

distinguishes these objects from distinct outputs which are

used in binary and multi-class classification.

Structured classification in a supervised setting comprises

of the learning stage where a suitable parametric model is

learnt using a learning algorithm and the prediction stage

where the prediction of outputs is done using the learnt pa-

rameters. In this work, we consider a structured input-output

space pair (X ,Y ) where the structured objects (x,y)
reside. For sequence learning application, which is a well-

known example of structured classification, each object x ∈
X is assumed to be made of T parts x = (x1, x2, · · · , xT )
and the associated structured output y ∈ Y has correspond-

ing parts y = (y1, y2, · · · , yT ). A crucial component of

structured classification is the feature vector f(x,y) which

relates an input x with a structured output y. The feature

vector is a map f : X ×Y → R
d which transforms an input-

output pair (x,y) into a d-dimensional vector. In practical

applications, d is of the order of millions and designing a

suitable f(x,y) for the particular application in hand plays

an important role during the learning stage [16].

Structured output learning involves learning a discrimi-

nant function h : X ×Y → R which is often parametrized

with a suitable d-dimensional vector w that resides in the

same space as the feature vector. The discriminant function

h generally takes a linear form given by

h(x,y;w) = wT f(x,y) (I.1)

The prediction stage then uses this discriminant rule to

classify an unseen object x̂ as

ŷ = argmax
y

h(x̂,y;w) (I.2)

We note that the prediction by (I.2) involves a search among

all possible outputs y ∈ Y .

Support Vector Machines have been widely used for var-

ious machine-learning tasks [17]. Structural Support Vector

Machines (SSVMs) [15][16] have become a very popular

technique in structured classification. With the advent of

very fast and efficient learning algorithms for structured

output learning like the sequential dual method [2] and the

cutting-plane method [9], SSVMs are a practical choice for

many applications like POS-tagging, dependency parsing,

etc., SSVMs solve a convex Quadratic Program (QP) which

optimizes an L2-regularized parameter vector and consists

of an exponential number of constraints corresponding to the

number of possible structured outputs y ∈ Y . The solution

of such a QP results in a d-dimensional model parameter

vector w. The high-dimensional parameter vector w usually

consists of non-zero values for many or all dimensions. This



is primarily due to the presence of the L2-regularizer term

in the QP. This often leads to slow prediction and storage

concerns. Hence, there is a growing need for finding sparse

parameter vectors which contain only a very small number of

non-zero components. This would not only help in a compact

parameter vector which helps allay storage issues and helps

in faster prediction but would also lead to feature-selection

for structured classification in a straight-forward manner.

One possible approach to obtaining a sparse model pa-

rameter vector w is the use of L1-regularizer instead of the

L2-regularizer used in standard Structural SVM formulation.

L1-regularizer in structural SVMs results in a Linear Pro-

gram (LP) instead of a QP; but it still contains an exponential

number of constraints. A variety of methods to solve the

resultant LP have been given in [22] and [20]. However, the

experimental results have been reported only on small or

synthetic datasets. Hence, the scalability of L1-regularized

SSVMs to large datasets with millions of features and the

effect of L1-regularizer on model sparsity for such datasets

remain to be explored.

A different approach to obtain sparse model parameters

is to use a weighted combination of L1 and L2 regularizers

which is called the elastic net regularizer. Elastic net regu-

larizer was introduced in [23] for regression problems and

in [18] for binary classification problems. In both regression

and classification, elastic net regularizer has been shown to

obtain sparse model parameters. In structured classification

setting, elastic net regularizer has been used for Conditional

Random Fields (CRFs) in [10]. However the use of elastic

net regularizer has not yet been explored for Structural

SVMs. Moreover, the usage of elastic net regularizer has

been studied frequently in its primal formulation. The dual

formulations of elastic net regularizer have rarely been

used; see [8] and [21] where they have been used in the

context of multiple-kernel learning and in the analysis of

linearized Bregman methods. However, the dual elastic net

formulations used in [8] and [21] consist of only a small

number of variables. Hence there is a need for developing

efficient algorithms for solving the dual elastic net SSVM

formulation which involves an exponential number of vari-

ables.

A. Contributions

In this work, we formulate the primal problem of elastic

net regularized structural SVMs and derive its dual. The

use of alternating proximal algorithm is explored when the

dual problem has exponentially large number of variables.

We adapt the basic alternating proximal scheme to solve

the dual elastic net structural SVM. We devise a sequential

alternating proximal method which works by sequentially

visiting each training example and solving simpler prob-

lems restricted to a small subset of variables associated

with that example. We implemented and experimented our

method on various benchmark large-scale sequence learning

datasets for which the existing L1 regularized methods do

not scale well. Our results demonstrate that the proposed

sequential alternating proximal method scales very well and

the use of elastic net regularizer results in highly sparse

model parameters. The proposed method also achieves a

comparable generalization performance with the resultant

sparse model. We also conducted experiments to study

contributions of L1 and L2 regularizers on model sparsity.

Through these various experiments, the proposed sequential

alternating proximal method to solve the dual elastic net

structural SVM formulation is shown to be a competitive

scalable method to achieve very sparse models.

The rest of the paper is organized as follows. The next sec-

tion describes various formulations of Structural SVMs and

discusses relevant algorithms to solve these formulations.

The use of elastic net regularizer in various contexts is also

discussed. In Section III, we introduce the elastic net reg-

ularized Structural SVMs and derive its dual. We illustrate

the sequential alternating proximal method to solve the dual

elastic net SSVM formulation in Section IV. The details of

empirical results on scalability, sparsity and generalization

performance, achieved by the proposed method on various

datasets, are presented in Section V. Section VI concludes

the paper.

II. STRUCTURAL SVMS

Structural SVMs [15][16] learn from training data

{(xi,yi)}
n
i=1 of structured inputs and outputs, by finding

the solution to a convex Quadratic Program (QP), which is

(OP1):

min
w,ξi≥0

1

2
‖w‖22 + C

∑

i

ξi

s.t. ξi ≥ li(y)−wT∆fi(y) ∀ i, ∀ y ∈ Y

(II.1)

where C > 0 is a regularization coefficient that trades

regularization of w against the sum of slack variables ξi,
which quantify the loss encountered in misclassification.

The vector ∆fi(y) = f(xi,yi) − f(xi,y) can be called

the difference feature vector. The term li(y) is a loss

function which is decomposable over various parts of the

structured output. For sequence-labeling applications, li(y)
is the decomposable Hamming-loss function

li(y) =
T
∑

t=1

I(yti 6= yt) (II.2)

where I(p) = 1 if p is true and 0 otherwise. We note that

OP1 contains a quadratic regularizer involving the model

parameters w. The quadratic regularizer does not necessarily

lead to a sparse model, i.e., most of the components of the

w vector are typically non-zero. This makes the inference

task in (I.2) to be slow, particularly when the dimension d
of w is very large.



An equivalent single-slack formulation of problem OP1

given in [9] is (OP1-1-slack):

min
w,ξ≥0

1

2
‖w‖22 + Cξ

s.t.
1

n
wT

n
∑

i=1

∆fi(ȳi) ≥
1

n

n
∑

i=1

li(ȳi)− ξ,

∀ (ȳ1, . . . , ȳn) ∈ Y
n (II.3)

A cutting-plane method to solve OP1-1-slack proposed in

[9], has been observed to be fast on various large datasets.

A sequential dual algorithm proposed in [2] directly works

on OP1 and solves a scaled version of dual problem of OP1,

which is (OP2):

min
α

C

2
‖
∑

i,y

αi(y)∆fi(y)‖
2
−
∑

i,y

αi(y)li(y)

s.t.
∑

y

αi(y) = 1 ∀ i, αi(y) ≥ 0 ∀ i,y (II.4)

The sequential dual algorithm sequentially traverses through

each example i and solves a subproblem involving the dual

variables αi(y) associated with the i-th example. It has been

empirically observed to be very fast on large datasets. The

primal and dual variables of OP1 and OP2 are related as

w = C
∑

i,y

αi(y)∆fi(y) (II.5)

Solving OP1-1-slack or OP2 usually results in non-sparse

parameter vector w.

The use of L1 regularizer is well-known to obtain sparse

model parameters in SVM-based methods [4]. Zhu et al.

[22] studied the use of L1-regularizer for structural SVMs.

They replace the quadratic term 1
2‖w‖

2
2 in OP1 with ‖w‖1,

which can be formulated as an LP (OP3):

min
w,ξi≥0

‖w‖1 + C
∑

i

ξi

s.t. ξi ≥ li(y)−wT∆fi(y) ∀ i, ∀ y ∈ Y (II.6)

The L1-norm regularizer is empirically found to give sparse

model parameters. A simple cutting-plane method is pro-

posed in [22] to solve OP3. However, solving the resultant

sub-LP requires an off-the-shelf LP solver. Experimental

results reported indicate that off-the-shelf LP solvers are

much slower and do not scale well even for medium-sized

datasets. To overcome the dependence on such solvers, other

methods like projected sub-gradient and EM-style algorithm

are given in [22]. The projected sub-gradient method solves

an equivalent formulation of OP3, given as :

min
w

1

n

n
∑

i=1

max
y∈Y

{

li(y)−wT∆fi(y)
}

s.t. ‖w‖1 ≤ ǫ (II.7)

We note that the formulation (II.7) however contains a norm-

constraint ‖w‖1 ≤ ǫ for some positive ǫ. The projected

sub-gradient method sequentially visits each example i and
updates w by finding a sub-gradient of the objective term

in (II.7) at the i-th example. The update step used in

the projected sub-gradient method is similar in spirit to

stochastic gradient descent update [3]. After this update

step at the i-th example, a projection step is carried out

which projects the updated parameters to the L1-norm ball

‖w‖1 ≤ ǫ. The positive parameter ǫ gives a control on the

sparsity of the model parameters. Note that the projection

step after each example, as given in the online version of the

projected sub-gradient algorithm in [22], is computationally

expensive [7]. Another algorithm proposed in [22] is the

EM-style algorithm which solves an equivalent adaptive-net

formulation of OP3. However, the results reported in [22]

are for small synthetic datasets and the scalability of the

proposed methods to very large datasets is yet to be explored.

Wang and Shawe-Taylor [20] impose a positivity con-

straint w ≥ 0 in the problem OP3. With this additional

positivity constraint, the Lagrange function for the problem

OP3 can be given as (OP4):

min
w≥0,ξi≥0

max
αi(y)≥0

1Tw + C

n
∑

i=1

ξi+

n
∑

i=1

∑

y

αi(y)
[

li(y)−wT∆fi(y)− ξi
]

(II.8)

In [20], Wang and Shawe-Taylor considered the simple 0/1-

loss: li(y) = 0, if y = yi and 1 otherwise, and designed a

column-generation method to add constraints to a working

set W . The extra-gradient method was used to find a saddle

point of the Lagrange function OP4 with respect to the

constraints in W . The method gave a comparable gener-

alization performance within first 20 iterations on medium

sized datasets. However, the results mentioned in [20] do not

give details about the sparsity of the model obtained. The

scalability of the proposed extra-gradient method to large

datasets with very large feature dimensions has also not yet

been explored.

Apart from the L1 regularizer, the use of weighted

combination of L1 and L2 regularizers ‖w‖1 and ‖w‖22,
also results in sparse models. Such a combination is called

the elastic net regularizer [23]. Elastic net regularizer has

been used in the context of binary classification [18] and

regression [23] in its primal form. Recently, Lavergne et

al. [10] applied elastic net regularizer to structured output

learning using CRFs and gave a number of algorithms to

solve the primal problem. Dual elastic net regularizer for

multiple-kernel learning has been explored in [8]. However,

the use of elastic net regularizer for Structural SVMs has

not yet been studied to the best of our knowledge.

In this work, we formulate the dual elastic net regularized

Structural SVM and propose an efficient algorithm to solve



the dual problem.

III. ELASTIC NET REGULARIZED STRUCTURAL SVMS

We introduce the primal elastic net regularized SSVM

problem (ENSSVM) as the following optimization problem

(OP5):

min
w,ξi≥0

ρ1‖w‖1 +
ρ2
2
‖w‖22 + C

∑

i

ξi

s.t. ξi ≥ li(y)−wT∆fi(y) ∀ i, ∀ y ∈ Y

(III.1)

We note that the primal problem consists of the combination

of both the L1-regularizer term ‖w‖1 weighted by a factor

ρ1 and the squared L2-regularizer term ‖w‖22 weighted by

ρ2. By putting appropriate non-negative weights ρ1 and ρ2,
it is possible to recover both OP1 and OP3 from OP5. Hence

OP5 can be considered as a generalization of OP1 and OP3.

The dual problem of OP5 can be formulated as a convex

QP (OP6):

min
α,β

1

2ρ2
‖
∑

i,y

αi(y)∆fi(y)− β‖
2
−
∑

i,y

αi(y)li(y)

s.t.
∑

y

αi(y) = C ∀ i, αi(y) ≥ 0 ∀ i,y,

β ∈ [−ρ1, ρ1]
d

We give the derivation of the dual problem below.

A. Derivation of Dual Problem OP6

We derive the dual problem as follows. To handle the non-

differentiable term ‖w‖1, we write an equivalent formulation

of the primal problem OP5 as (P5):

min
w,u,v,ξi≥0

ρ11
T (u+ v) +

ρ2
2
‖w‖22 + C

∑

i

ξi

s.t. w = u− v , u ≥ 0 , v ≥ 0,

ξi ≥ li(y)−wT∆fi(y) ∀ i, ∀ y ∈ Y

The problem P5 is a convex QP with linear constraints.

Therefore, the first-order KKT conditions are necessary and

sufficient at optimality. From the KKT conditions of P5, we

obtain

w =
1

ρ2





∑

i,y

αi(y)∆fi(y)− β



 , ρ2 6= 0,

(III.2)

β ∈ [−ρ1, ρ1]
d

(III.3)

and
∑

y

αi(y) = C ∀ i. (III.4)

Using these conditions, the dual problem of P5 can be

written as in OP6. Note that if ρ2 = 0, the resulting dual is

a large-scale LP. By scaling αi(y) ≈ Cαi(y) in OP6, we

obtain a modified normalization constraint which restricts

the dual variables αi(y) for each example i to belong to a

unit simplex. Thus we have a scaled version of OP6 given

by (OP7):

min
α,β

C

2ρ2

∥

∥

∥

∥

∥

∥

∑

i,y

αi(y)∆fi(y)−
β

C

∥

∥

∥

∥

∥

∥

2

−
∑

i,y

αi(y)li(y)

s.t.
∑

y

αi(y) = 1 ∀ i, αi(y) ≥ 0 ∀ i,y,

β ∈ [−ρ1, ρ1]
d

(III.5)

This problem formulation is also referred to as the Dual

ENSSVM in this paper. The optimal dual objective value of

the scaled version OP7 is (- 1
C
) times the optimal primal

objective value obtained by OP5. The primal and dual

variables of the problems OP5 and OP7 are related as

w =
1

ρ2



C
∑

i,y

αi(y)∆fi(y)− β



 . (III.6)

β is a d-dimensional vector, with each of its components

taking values in [−ρ1, ρ1]. The β vector aids in achieving

sparsity of the primal parameter vector w as described in

the next section.

We note the close resemblance of dual problem OP7 with

the problem OP2, which is the dual of Structural SVM.

Indeed, for a fixed β, the optimality of αi(y) in OP7 can

be checked by the quantity

ζi = max
y

gi(y)− min
y:αi(y)>0

gi(y) (III.7)

where

gi(y) = li(y)−wT∆fi(y). (III.8)

Hence, at optimality we would have

ζi = 0 ∀ i. (III.9)

Note that the optimality conditions given by (III.9) are very

similar to the optimality conditions for OP2 [2]. Hence

applying a sequential optimization method, similar to that in

[2], to solve OP7 can be tried. However a straight-forward

application of such a scheme might not help because of the

presence of another variable β. To overcome this difficulty,

we propose a sequential alternating proximal algorithm to

solve the Dual ENSSVM. As we see later, the optimality

condition (III.9) can be used as a possible termination

criterion for the proposed sequential alternating proximal

algorithm.



IV. A SEQUENTIAL ALTERNATING PROXIMAL METHOD

TO SOLVE DUAL ENSSVM

In this section, we describe a sequential alternating prox-

imal method to solve Dual ENSSVM. We first illustrate the

basic alternating proximal method given in [1]. We consider

the convex problem of the following type:

min
u∈U ,v∈V

H(u) +G(v) +
σ

2
P (u, v) (IV.1)

where we make the following assumptions (A1):

• U and V are real (possibly infinite dimensional)

Hilbert spaces;

• H : U → R∪ {+∞}, G : V → R∪ {+∞} are closed

convex proper functions on U and V respectively;

• P (u, v) : U × V → R
+ is a continuous quadratic

function of the form P (u, v) = ‖Au−Bv‖
2
and A,B

are linear continuous operators;

• σ > 0.

The alternating proximal algorithm (with costs-to-move)

given in Attouch et al. [1] solves (IV.1) by starting from an

initial point (u0, v0) and generating iterates {uk, vk}∞k=0 by

the following alternating procedure. First, uk+1 is found by

solving

uk+1 = argmin
η

{

H(η) +
σ

2
P (η, vk) +

µ

2
‖η − uk‖2

}

(IV.2)

Then the algorithm alternates to find vk+1 by solving

vk+1 = argmin
γ

{

G(γ) +
σ

2
P (uk+1, γ) +

ν

2
‖γ − vk‖2

}

(IV.3)

The cost-to-move terms ‖η − uk‖2 and ‖γ − vk‖2 prevent

huge oscillation of the iterates from their previous values.

The penalty terms µ and ν are assumed to be positive.

Then the alternating procedure of solving (IV.2) and (IV.3)

is guaranteed to weakly converge to an optimal solution [1].

We now show that the dual problem OP7 can be written in

a form as given in (IV.1) and hence the alternating proximal

method can be directly applied to solve the dual problem

OP7. We first introduce the indicator-function θS of a non-

empty closed convex set S as

θS(z) =

{

0 if z ∈ S
+∞ otherwise

(IV.4)

If the outputs can be enumerated as y1,y2, · · · ,ym such

that m denotes the size |Y | of the output space Y ,

then we can write the vector of dual variables as α =
[αi(y

j)]n,mi=1,j=1. The variables associated with a single ex-

ample can then be denoted as αi = [αi(y
j)]mj=1. We can

similarly define gi = [gi(y
j)]mj=1 for an example i where

gi(y
j) is given by (III.8). Now, we consider the following

non-empty convex sets

Sα =







α :

m
∑

j=1

αi(y
j) = 1 ∀ i, αi(y

j) ≥ 0 ∀ i, j







(IV.5)

and

Sβ =
{

β : β ∈ [−ρ1, ρ1]
d
}

. (IV.6)

We write the linear term
∑

i,y αi(y)li(y) as αT l

and the quadratic term C
2ρ2

∥

∥

∥

∑

i,y αi(y)∆fi(y)−
β
C

∥

∥

∥

2

as
σ
2P (α,β), where σ = C

ρ2

. Then, we can write the problem

OP7 as (OP8):

min
α,β

H(α) +G(β) +
σ

2
P (α,β) (IV.7)

where

H(α) = θSα
(α)−αT l (IV.8)

and

G(β) = θSβ
(β). (IV.9)

The alternating proximal algorithm (with costs to move)

proposed by Attouch et al. [1] to solve OP8 is as follows.

We start with an initial point (α0,β0) and optimize OP8 by

alternating between the variables α and β. At the (k+1)-th
iteration, we obtain (αk+1,βk+1) as

αk+1 = argmin
η

{

H(η) +
σ

2
P (η,βk) +

µ

2
‖η −αk‖2

}

(IV.10)

and

βk+1 = argmin
γ

{

G(γ) +
σ

2
P (αk+1, γ) +

ν

2
‖γ − βk‖2

}

(IV.11)

We denote (IV.10) as the α-problem and (IV.11) as the β-

problem. Hence the alternating proximal algorithm alternates

between solving the α-problem and the β-problem and

imposes a cost µ on moving the iterate αk to αk+1 and

ν on moving the iterate βk to βk+1. In [1], these cost-

to-move terms µ
2 ‖α

k+1 − αk‖2 and ν
2‖β

k+1 − βk‖2 play

a crucial role in the convergence. We describe the overall

alternating proximal algorithm to solve OP8 in Algorithm 1.

Note that the initialization of α and β variables is done

in Step 3 and Step 4 of Algorithm 1 so as to satisfy the

feasibility conditions in OP7. Since the αi(y) variables can
be considered to form a distribution for each example i,
their initialization is done in such a way that, for an example

(xi,yi), the entire mass is initially associated with the actual

output yi.



Algorithm 1 An Alternating Proximal algorithm to solve

OP8

1: Input S = {(xi,yi)}
n
i=1, C

2: w = 0
3: Initialize α0 as α0

i (yi) = 1 ∀i , α0
i (y) = 0 ∀i, ∀y ∈

Y \ {yi}
4: β0 = 0
5: for k = 0, 1, 2, . . . do
6: Solve α-problem in (IV.10) to get αk+1

7: Solve β-problem in (IV.11) to get βk+1

8: Update w through (III.6)

9: end for

Under the assumptions of A1 and assuming that the

objective function H(u) + G(v) + σ
2P (u, v) in (IV.1) has

at least one minimum point, and with µ, ν > 0, the

alternating procedure described in (IV.2) and (IV.3) weakly

converges to an optimum point (u∞, v∞) [1]. We note that

the objective function in OP8 satisfies these assumptions

and hence Algorithm 1 to solve OP8 weakly converges to

an optimal solution (α∞,β∞) of OP8. We state the theorem

on convergence of the algorithm without proof [1].

Theorem 1: The sequence (αk,βk) generated by the

Alternating Proximal Algorithm (Algorithm 1) weakly con-

verges to a minimum point (α∞,β∞) of OP8. Moreover,

‖αk+1 −αk‖2 → 0 and ‖βk+1 − βk‖2 → 0, as k → ∞.

Let us now describe how to solve the α-problem and the

β-problem. We use the values µ = 1 and ν = 1 for illustra-

tion purpose. Consider the case where all αk
i (y) variables

are available to us. Then the α-problem can be solved using

a plain SMO-type algorithm [13]. But ENSSVMs consist of

an exponential number of αk
i (y) variables and hence we

follow a sequential approach similar to that used in [2] to

solve the α-problem. We describe the procedure next.

A. Solving the α-problem

Note that, for a fixed β, the α-problem in (IV.10) is of

the form

min
α

C

2ρ2

∥

∥

∥

∥

∥

∥

∑

i,y

αi(y)∆fi(y)−
βk

C

∥

∥

∥

∥

∥

∥

2

−
∑

i,y

αi(y)li(y)

+
1

2
‖α−αk‖2

s.t.
∑

y

αi(y) = 1 ∀ i, αi(y) ≥ 0 ∀ i, ∀y

(IV.12)

We now discuss two different ways of solving the

α-problem. We can solve (IV.12) over all examples

i=1, 2, · · · , n, which we call the batch approach. Alterna-

tively, we can sequentially traverse through the examples and

solve for the variables αi(y) associated with a particular

example i, by fixing all other variables αj(y), j 6= i.

This is called the sequential approach. In the batch ap-

proach, the β-update in step 7 and w-update in step 8 of

Algorithm 1 would be performed after processing all the

examples, whereas in the sequential approach, these updates

are carried out after every example. In our experiments, we

observed that the sequential approach gives a useful model

parameter w within a couple of passes over the examples

while the batch approach fails to exhibit such a behaviour.

We now describe the details of the sequential approach used

to solve the α-problem. For a particular example i, we let

αk+1
i (y) = αk

i (y) + δαi(y), where δαi(y) represents

the change in αk
i (y) variables. We use the vector notation

αk+1
i = αk

i + δαi to denote the same. Then, from (IV.12),

we arrive at the following subproblem (α-SUB):

min
δαi

C

2ρ2
δαi

T (Q+D)δαi − gi
T δαi

s.t. δαi
T1 = 0, δαi ≥ −αk

i (IV.13)

where D is a diagonal matrix with entries ρ2

C
and the (p, q)-

th entry in the matrix Q is given by ∆fi(y
p)T∆fi(y

q).
α-SUB is still over all possible y ∈ Y . However, the

optimality conditions in (III.7) and (III.9) indicate that we

can maintain a small subset Vi of outputs y for each

example, such that Vi = {y : αi(y) > 0}, which is very

similar to that used in [2]. With the availability of such

a set Vi, α-SUB can now be solved over a small set of

variables αk+1
i (y), ∀y ∈ Vi using an SMO-type algorithm.

After solving for the variables αk+1
i (y) associated with a

particular example i, we alternate to solve the β-problem

given in (IV.11).

B. Solving the β-problem

Given the current set of αk+1
i (y) variables, solving for the

β variable is simpler. In the sequential approach, we update

the β variable after solving α-problem for every example

i. Therefore, we denote the update to β variable for i-th
example in (k + 1)-th iteration as βk+1

i . Hence by (IV.11),

βk+1
i is obtained using

Π[−ρ1,ρ1]
d







C

Cρ2 + 1



ρ2β
k+1
i−1 +

∑

i,y

αk+1
i (y)∆fi(y)











(IV.14)

where ΠS{z} denotes the projection operator, projecting

the value z to the set S. In particular, the projection

in (IV.14) is done component-wise using Π[−ρ1,ρ1]{z} =
max(−ρ1,min(z, ρ1)). Note that such a simple projection

step can be efficiently carried out after each example, as

opposed to the expensive projection to a L1-ball, given in

[22].

After solving the β-problem, we update w through (III.6)

and proceed to the next example (i + 1) to solve the

α-problem restricted to the variables αk+1
i+1 (y). Thus, we



obtain a sequential alternating proximal algorithm which

visits each training example sequentially and solves the α-

problem in (IV.10) and alternates to solve the β-problem

in (IV.11) and then updates the primal variable w through

(III.6). While updating w by (III.6), we observed that for

appropriate values of µ and ν, many components of the term

C
∑

i,y αi(y)∆fi(y) lie in the range [−ρ1, ρ1] and the β

value also equals the value of the former and hence forces

many components of w to become zero. Thus the β variable

implicitly helps in achieving sparse models.

The w-update step is important for maintaining the set Vi

for each example. To construct Vi, we use the following

approach. Whenever we visit an example i, we find a

violating output ŷi with the current primal variable w using

ŷi = argmax
y

gi(y) (IV.15)

where gi(y) is as defined in (III.8). If ŷi is not present in

Vi, we add it to Vi. The set Vi can be considered as the

active set of outputs y, for which the corresponding αi(y)
variables are non-zero. Finding ŷi also helps in checking

the optimality of αi(y) variables. Note that ζi in (III.7) can

be written as

ζi = gi(ŷi)− min
y∈Vi

gi(y). (IV.16)

We can now check the optimality of αi(y) variables us-

ing (III.9). For numerical reasons, we check

ζi < ϑ ∀ i (IV.17)

for some small positive ϑ. We also like to point out that

the argmax computation in (IV.15) is a computationally

intensive task and requires special purpose algorithms like

Viterbi for sequence labeling applications. We describe the

entire alternating procedure in Algorithm 2. Note that the

algorithm is very easy to implement. Though Algorithm 2

does not contain any terminating condition in its present

form, it is easy to see that the optimality condition (IV.17)

can be used to terminate the algorithm. When (IV.17) holds

for all the examples, no more optimization of αi(y) is

carried out and hence the β variable also turns out to be

optimal. We demonstrate the effectiveness of this algorithm

on different real-world datasets in the next section.

V. EXPERIMENTS

In this section, we give details about experiments con-

ducted using the proposed sequential alternating proximal

(SAP) algorithm for dual ENSSVM. We consider the prob-

lem of sequence labeling, which is a well-known structured

prediction problem. We used five benchmark sequence la-

beling datasets for our experiments. They are OCR [12],

Part-of-Speech Tagging (POS) [12], CoNLL2000 [14], WSJ-

POS [11] and Brown [5]. The dataset characteristics are

listed in Table I. OCR dataset is further divided into 10

Algorithm 2 Sequential Alternating Proximal (SAP) algo-

rithm to solve OP8

1: Input S = {(xi,yi)}
n
i=1, C

2: w = 0, Vi = {yi}, i = 1, 2, · · · , n
3: Initialize α0 as α0

i (yi) = 1 ∀i , α0
i (y) = 0 ∀i, ∀y ∈

Y \ {yi}
4: β0 = 0
5: for k = 0, 1, 2, . . . do
6: for i = 1, 2, . . . , n do

7: Find violator ŷi using (IV.15)

8: if ŷi /∈ Vi then

9: Vi = Vi ∪ {ŷi}
10: αk

i (ŷi) = 0
11: end if

12: Solve α-SUB with respect to Vi to get αk+1
i (y)

13: Obtain βk+1 using (IV.14)

14: Update w through (III.6)

15: end for

16: end for

different partitions, each containing similar proportion of

train and test sizes.

The feature vector f(x,y) for these datasets is constructed
using the procedure given in [16]. Finding the violator

sequence in (IV.15) is done using Viterbi algorithm. All

programs were implemented in C language. The experiments

were run on a dual-CPU quad-core 2.4GHz Intel Xeon

Processor with a 16GB shared main memory running under

Linux.

Though ρ1 and ρ2 parameters can take any positive value,

we assume ρ1 + ρ2 = 1 in our experiments. The range

ρ1 ∈ (0, 1) helps us to understand the results in terms of the

number of non-zero parameters selected and to compare the

generalization performance of the model with the selected

features. In our experiments, we set µ and ν to small positive

values.

1) Comparison of the SAP algorithm for Dual ENSSVM

with L1-SSVM: We implemented L1 regularized SSVM

using the projected sub-gradient algorithm given in [22]. The

L1-SSVM solved by the projected sub-gradient algorithm

contains a bound constraint of the form ‖w‖1 ≤ ǫ for

some positive ǫ. The ǫ value controls the sparsity of model

parameters. Large values of ǫ give rise to many non-zero

model parameters. We implemented the projection of the

model parameters onto ‖w‖1 ≤ ǫ using the procedure

given in [6]. Note that if the projection step is carried out

after each example as given in [22], it slows down the

training drastically and hence we perform the projection step

only after passing through all examples, in contrast to the

sequential β-update done after every example in the SAP

algorithm (Algorithm 2-Step 13).

We experimented using our dual SAP algorithm and the

projected sub-gradient method for L1-SSVM on OCR data



Table I
DATA SET SUMMARY. n AND ntest DENOTE THE SIZES OF THE

TRAINING AND TEST DATA RESPECTIVELY, r IS THE INPUT DIMENSION,
l DENOTES THE NUMBER OF CLASSES AND d IS THE FEATURE VECTOR

DIMENSION

Data set n ntest r l d

OCR 6877 55310 128 26 4004
POS 7200 1681 404990 42 17011344
WSJPOS 35531 1681 446180 42 18741324
CoNLL 8936 2012 1679679 22 36953422
Brown 48242 9098 290843 185 53840180

partition and POS and CoNLL datasets. We compared their

performance in terms of the number of non-zero features

(#NZ), test accuracy and time. For our SAP algorithm, we

fixed the values of C to be 1 for OCR and 0.1 for POS

and CoNLL. We set ρ1 + ρ2 = 1 with ρ1 = 0.7 for OCR

and ρ1 = 0.9 for POS and CoNLL datasets. We did this so

that the L1-term ‖w‖1 gets the maximum weight and aids

in selecting a small number of features. For the projected

sub-gradient method, we used cross-validation to choose the

value of ǫ.
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Figure 1. Comparison of Sequential Alternating Proximal method for

Dual ENSSVM and Projected sub-gradient method for L1-SSVM. The
rows correspond to the OCR data partitions OCR0 and OCR6
respectively.

We give the plots for test set accuracy and the number

of non-zero features selected by both the methods for some

OCR partitions in Figure 1. It is evident from the plots that

the SAP algorithm for Dual ENSSVM is able to generalize

well with a smaller number of features when compared to the

projected sub-gradient method for L1-SSVM. The sparsity

plots of Figure 1 indicate that the SAP method displays

a very good control on the number of non-zero model

parameters selected in the initial iterations whereas such a

behavior is not seen in the projected sub-gradient method.

We also see from the plots that nearly all the features are

selected by the projected sub-gradient algorithm during the

Table II
COMPARISON OF ENSSVM AND L1-SSVM ON LARGE DATASETS.
#NZ DENOTES THE NUMBER OF NON-ZERO FEATURES SELECTED.

Data set Algorithm #NZ Accuracy % Time

POS ENSSVM 3089 94.17 ≈6 hours

L1-SSVM 3924 94.14 >3 days

CoNLL ENSSVM 2313 95.2 ≈22 hours

L1-SSVM 9398 95.2 >4 days

initial stages of learning, which does not happen if the SAP

algorithm is used. We give the results for POS and CoNLL

datasets in Table II. These results indicate that, in spite of

the projection step being carried out after a complete pass

through all the examples, L1-SSVM is too slow on large

datasets and fails to achieve highly sparse models which give

a comparable generalization performance when compared to

those obtained by Dual ENSSVM.

We also implemented the extra-gradient method for L1

regularized SSVM given in [20] by adapting the implemen-

tation available at [19]. However the extra-gradient method

was observed to be very slow on small datasets like OCR.

Hence we do not report those results here.

2) Performance of the SAP algorithm on large datasets:

One notable problem that we encountered when we tried

L1-SSVM on very large datasets was that various methods

used to solve L1-SSVM were not scaling well with the

size of the data. For example, on the Brown dataset, the

projected sub-gradient method for L1-SSVM took more than

10 days to achieve a sparse model with a reasonable gener-

alization performance. The extra-gradient method was also

not scalable on very large datasets. However the proposed

SAP algorithm was found to be scalable even on very large

datasets. We provide the plots in Figure 2 indicating the

performance of the SAP algorithm on very large datasets.

For these experiments we considered ρ1 = 0.9, ρ2 = 0.1
and C = 1. Since our algorithm is sequential in nature,

we get a reasonable generalization performance in the first

couple of iterations itself with highly sparse models. This

is obviously seen for all the datasets in Figure 2. As the

plots reveal, though many features are required for the best

test accuracy at the final stages of the algorithm, the SAP

algorithm achieves a comparable performance in the first few

iterations with a very small number of features. Hence our

algorithm gives the user a wide control over the number of

non-zero model parameters to be selected without significant

degradation in the generalization performance.

Table III
PERFORMANCE OF SAP ON LARGE DATASETS. #NZ AND % NZ

DENOTE RESPECTIVELY, THE NUMBER AND PERCENTAGE OF NON-ZERO
FEATURES SELECTED.

Data set #NZ % NZ Accuracy %

POS 3365 0.02 94.5

WSJPOS 8906 0.05 96

CoNLL 2981 0.01 95.4

Brown 17407 0.032 96.7
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Figure 2. Performance of Sequential Alternating Proximal method for Dual ENSSVM on large datasets with C=1. The plots correspond to the data
sets Row 1: POS and WSJPOS, Row 2: CoNLL and Brown.

Since our method is able to generalize well within the

first few iterations of the learning phase, we calculate the

maximum test accuracy within the first 50 iterations, the

corresponding number of non-zero features selected and

the percentage of non-zero features with respect to the

total number of features to achieve the maximum test set

accuracy. We give these details for all the large datasets

in Table III. These details also show that SAP for dual

ENSSVM achieves a comparable test set generalization with

a very small number of features for all large datasets within

the first few iterations.

3) Effect of ρ1 and ρ2 parameters on the SAP algorithm

for Dual ENSSVM: Having discussed the efficacy of the

Sequential Alternating Proximal algorithm in selecting a

very small number of features for the dual ENSSVM, we

now discuss the effect of parameters ρ1 and ρ2 which appear

as coefficients of the L1 and L2 regularizer terms in OP5.

The regularization coefficient C was fixed to be 0.1 for these

experiments. We performed the experiments on POS and

CoNLL datasets and present the results in Figure 3. In the

plots, we represent the test accuracy and the corresponding

number of non-zero features obtained for different values of

ρ1. The parameter ρ1 was set to different values from the

set {0.9, 0.5, 0.3, 0.1}. From the plots, we notice that as we

decrease ρ1 value, the number of non-zero model parameters

increases. However, this has a very little effect on the test

set generalization performance. Hence a very small number

of model parameters selected with the choices ρ1 = 0.9
and 0.5 are sufficient to achieve a comparable generalization

performance.

4) Effect of regularization coefficient C on the SAP algo-

rithm for Dual ENSSVM: Other than ρ1 and ρ2, the dual

ENSSVM problem contains the regularization coefficient

C which is also tunable. We performed experiments with

different values of C on the CoNLL and POS datasets. The

values ρ1 and ρ2 were fixed to be 0.9 and 0.1 respectively

for these experiments. We performed experiments for the

first 100 iterations and give details of sparsity required for

achieving the best test set generalization performance in the

first 100 iterations in Table IV. It is clear from Table IV

that the generalization performance achieved using various

C values is comparable.

Table IV
EFFECT OF C ON VARIOUS DATASETS. #NZ AND % NZ DENOTE

RESPECTIVELY, THE NUMBER AND PERCENTAGE OF NON-ZERO
FEATURES SELECTED.

#NZ % NZ Accuracy %

POS C = 0.1 3967 0.02 94.57

C = 1 5104 0.03 95.21

C = 10 5110 0.03 95.14

CoNLL C = 0.1 2313 0.006 95.23

C = 1 2981 0.008 95.41

C = 10 4107 0.01 95.53

VI. CONCLUSION

In this work, we formulated the elastic net regularized

Structural SVM (ENSSVM) and proposed a sequential alter-

nating proximal (SAP) algorithm to solve the dual problem.

The SAP algorithm works by sequentially visiting each

training example and by solving a restricted sub-problem

associated with that example. The sub-problem is made up of
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Figure 3. Effect of various ρ1 values on SAP method for Dual ENSSVM Left: ρ1 variation on POS dataset, Right: ρ1 variation on CoNLL
dataset.

two different sets of variables and the SAP algorithm solves

the sub-problem by alternating between the two sets of vari-

ables. Experiments on large-scale benchmark datasets show

that the proposed SAP algorithm for dual ENSSVM scales

well and achieves a comparable generalization performance

with very sparse models, compared to existing algorithms

for L1-regularized Structural SVM. The sequential nature

of the dual SAP algorithm helps in achieving state-of-the-

art generalization performance in the first few iterations

itself. Thus the proposed SAP algorithm for dual ENSSVM

formulation is a powerful alternative to design a scalable

sparse structured output classifier.
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