
Efficient Algorithms for Linear Summed Error

Structural SVMs

P. Balamurugan

Computer Science and Automation

Indian Institute of Science

Bangalore, India.

Email: balamurugan@csa.iisc.ernet.in

Shirish Shevade

Computer Science and Automation

Indian Institute of Science

Bangalore, India.

Email: shirish@csa.iisc.ernet.in

T. Ravindra Babu

E-Com Research Lab

Education and Research, Infosys Ltd.,

Bangalore, India.

Email: Ravindrababu T@infosys.com

Abstract—Structural Support Vector Machines (SSVMs) have
become a popular tool in machine learning for predicting
structured objects like parse trees, Part-of-Speech (POS) label
sequences and image segments. Various efficient algorithmic
techniques have been proposed for training SSVMs for large
datasets. The typical SSVM formulation contains a regularizer
term and a composite loss term. The loss term is usually
composed of the Linear Maximum Error (LME) associated with
the training examples. Other alternatives for the loss term are
yet to be explored for SSVMs. We formulate a new SSVM with
Linear Summed Error (LSE) loss term and propose efficient algo-
rithms to train the new SSVM formulation using primal cutting-
plane method and sequential dual coordinate descent method.
Numerical experiments on benchmark datasets demonstrate that
the sequential dual coordinate descent method is faster than the
cutting-plane method and reaches the steady-state generalization
performance faster. It is thus a useful alternative for training
SSVMs when linear summed error is used.

Index Terms—Structural SVMs, Dual method, Cutting-plane
method.

I. INTRODUCTION

The task of classifying structured inputs like images, sen-

tences, etc., into structured outputs like image segments,

parse trees and POS-tag sequences is called Structured Clas-

sification. Structured classification has recently gained wide

popularity in the machine learning community. Structured

classification comprises of the learning stage known as struc-

tured output learning and the inference stage known as struc-

tured prediction. Though prediction of certain specific output

structures like finding cyclic permutation in route-prediction

problems might itself be a very hard computational task,

there are real-world examples like sequence labeling, parse

tree classification and image segmentation, where prediction

is tractable.

We introduce structured classification through a simple

example, namely, the POS-tagging for an English sentence.

The sentence forms the structured input and the POS-tagging

forms the structured output. The space of structured inputs

X for this example is the space of all English sentences. The

space Y of structured outputs is the space of all possible POS-

tagging. Hence every x ∈ X is a sentence and is composed

of multiple parts x = (x1, x2, · · · , xT). The corresponding

structured output y ∈ Y is the POS-tagging for the sentence

x. The structured output y could be represented as a collection

of parts (y1, y2, · · · , yT) corresponding to the parts of x. Each

{yt}Tt=1 is from some finite alphabet of size σ. The size |Y |
of the output space Y is exponential in T for many real-

world examples. The output y = (y1, y2, · · · , yT) is called

structured because the prediction of each yi cannot be done

independent of other yj , j 6= i; rather each component yi is

interdependent on one or more of the other components of y

and the prediction has to be consistent with this interaction

among the various components of y.

Structured output learning involves learning a discriminant

function h : X × Y → R which can take a linear form

h = w
T f(x,y), where w is a suitable parameter vector

and f(x,y) is a task-dependent feature representation of

the structured input x in accordance with the output y. We

could thus represent the parameterized discriminant function

as h(w;x,y). Hence the prediction task becomes

g(x) = argmax
y

h(w;x,y) = argmax
y

w
T f(x,y) (I.1)

For the POS-tagging example, a suitable feature vector repre-

sentation could be

f(x,y) =

T
∑

t=1















xt ⊗ yt

I(yt = 1)I(yt−1 = 1)
I(yt = 1)I(yt−1 = 2)

...

I(yt = σ)I(yt−1 = σ)















(I.2)

where ⊗ represents the positioning of feature vector xt at the

yt-th position and I(p) = 1 if p is true and 0 otherwise. If

we consider the sentence and its corresponding POS-tagging

as a chain of nodes and edges, xt ⊗ yt in the feature-vector

construction in (I.2) represents the node-features for node t
and the other features correspond to the edge (t − 1, t). The
construction of f(x,y) through (I.2) also assumes a dummy

node y0. Thus, for the structured classification of an English

sentence into its corresponding POS-tagging, first a suitable

parameter vector w is found by structured output learning and

this parameter is then used in the prediction using (I.1).

The argmax computation in (I.1) usually forms an intrinsic

part of the learning algorithms[11][1]. This computation could

be NP-hard for some real-world applications[6]. Even for

tractable applications like sequence labeling and parse tree

classification, this computation could be expensive. Hence it

plays an important role in the overall performance of any

learning algorithm.

Several advances have been made in developing learning

algorithms for structured classification. Hidden Markov Mod-

els (HMMs)[5], Max-Entropy Markov Models (MEMMs)[15]

and Conditional Random Fields (CRFs)[12] are some of the

early probabilistic discriminative models developed and stud-

ied for structured classification. Margin-based discriminative

models like Max-Margin Markov Networks (M3Ns)[19] and

Structural Support Vector Machines (SSVMs)[21][11] have

also been developed. Various results[11][1] have indicated that

margin based discriminative methods for structured classifica-

tion outperform probabilistic discriminative methods in terms

of training time and generalization performance.

In this work, we focus on Structural SVMs for struc-

tured classification. Various algorithms like cutting-plane

method[11], sequential dual method (SDM)[1], bundle

methods[20] and exponentiated gradient method[2] have been

developed to solve structural SVMs. All these algorithms work

on the standard (or an equivalent) SSVM formulation which

optimizes the sum of a regularized parameter vector and the

collective loss summed over the training examples. The loss

typically used in this formulation is composed of Linear Max

Error (LME) associated with each training example. A single

LME term is associated with each training example and is

shared across the constraints corresponding to this example.

There are other alternatives to the loss term which include

but are not limited to Quadratic Max Error (QME), Linear

Summed Error (LSE) and Quadratic Summed Error (QSE)[7].

However, SSVM formulations involving these alternative loss

terms have not yet been explored owing to the computational

effort involved in solving such problems.

A. Contributions

We propose an alternative formulation for Structural SVMs

with a composite loss term called the Linear Summed Er-

ror(LSE). We call this new formulation the LSE-SSVM. The

resultant optimization problem is still convex with expo-

nentially many constraints and contains exponentially many

optimization variables compared to those in LME-SSVMs.

To handle the exponentially many optimization variables in

the primal problem, we propose an equivalent formulation of

the primal problem with only a finite number of optimization

variables. A primal cutting-plane method to solve the new

equivalent primal formulation of LSE-SSVMs is proposed.

We also devise a sequential dual coordinate descent method

to solve the dual LSE-SSVM formulation. Numerical ex-

periments were carried out to compare the proposed meth-

ods on multi-class and sequence labeling problems. These

experiments demonstrate that the sequential dual coordinate

descent method outperforms the cutting-plane method in terms

of training time. Also, it achieves steady-state generalization

performance faster than the cutting-plane method.

The rest of the paper is organized as follows. The next

section describes Structural SVMs and related formulations

and discusses various algorithms to solve these formulations.

In Section III, we introduce Linear Summed Error Structural

SVMs and illustrate a primal cutting-plane method to solve the

formulation. We discuss the dual formulation of LSE-SSVMs

and give a sequential dual coordinate descent algorithm to

solve dual LSE-SSVMs in Section IV. In Section V, details

of empirical results of the proposed algorithms through various

experiments conducted on a variety of datasets are presented.

Section VI concludes the paper.

II. STRUCTURAL SVMS

Given the training data {(xi,yi)}
n
i=1 of structured in-

puts and outputs, structural SVMs[19][21] solve a convex

Quadratic Program (QP), which is (OP1):

min
w,ξi

1

2
‖w‖

2
+ C

∑

i

ξi

s.t. ξi = max
y

{

max
(

0, li(y)−w
T∆fi(y)

)}

∀ i

(II.1)

where C > 0 is a regularization parameter and ∆fi(y) =
f(xi,yi) − f(xi,y). The term li(y) is the decomposable

Hamming-loss function

li(y) =

T
∑

t=1

I(yti 6= yt) (II.2)

The dual problem of OP1 is (OP1-Dual):

min
1

2
‖
∑

i,y

αi(y)∆fi(y)‖
2
−
∑

i,y

αi(y)li(y)

s.t.
∑

y

αi(y) = C ∀ i, αi(y) ≥ 0 ∀ i,y (II.3)

A cutting-plane algorithm[11] has been proposed for an equiv-

alent formulation of OP1 called the one-slack formulation

(OP1-one-slack):

min
w,ξ≥0

1

2
‖w‖

2
+ Cξ

s.t.
1

n
w

T

n
∑

i=1

∆fi(ȳi) ≥
1

n

n
∑

i=1

li(ȳi)− ξ,

∀ (ȳ1, . . . , ȳn) ∈ Y
n (II.4)

There are other formulations which modify the regularizer

term of OP1. One such formulation is the L1-norm regularized

structural SVM[24]. The problem has the following form

(OP1-L1):

min
w,ξi

‖w‖1 + C
∑

i

ξi

s.t. ξi = max
y

{

max
(

0, li(y)−w
T∆fi(y)

)}

∀ i

(II.5)

The L1-norm regularizer in the above formulation results in

sparse primal solution. Various methods to solve this formu-

lation have been proposed in Zhu et al.[24]. One solution

method is the cutting-plane method similar to that described

in [21]. There are other methods like projected sub-gradient

and EM-style algorithm in [24] which are used to solve equiv-

alent or modified formulations of OP1-L1. Another algorithm

proposed in Wang et al.[22] uses a 0/1 loss instead of the

Hamming loss term of OP1-L1 and uses the extra-gradient

method to solve the resultant formulation.

Other formulations which modify the loss term associ-

ated with OP1 have also been studied. The classical Con-

ditional Random Fields[12] optimize the log-linear loss. Non-

decomposable losses like Precision and Recall and ROC area

are discussed in [17] and algorithms have been proposed to

find the most violating constraint using such loss functions. A

hybrid loss for Structural SVMs and CRFs with consistency

properties has been proposed in [18].

However, we note that a more natural alternative to the

linear max error loss term in OP1 is the linear summed error

loss term. Instead of optimizing the LME, we could optimize

the summed error for every example calculated for every

structured output y ∈ Y . Optimizing linear summed error

loss is well-known for multi-class SVMs[23]. To the best of

our knowledge, the use of linear summed error loss term for

Structural SVMs has not yet been studied. In this work, we

formulate a Structural SVM with the linear summed error loss

term and propose efficient algorithms to solve the resultant

formulation.

III. LINEAR SUMMED ERROR - STRUCTURAL SVMS

Hill and Doucet [7] have proposed an overarching frame-

work for all multi-category classification problems. They have

also proposed various alternatives for empirical risk loss

terms which could be used in the optimization problems for

multi-category SVMs. Since structured classification can be

considered a generalization of the multi-category classification

problem with exponentially large number of classes, we could

use the loss terms discussed in [7] for structured prediction

optimization problems. This is possible because the framework

in [7] easily extends to multi-category classification with

exponential number of distinct classes. We formulate LSE-

SSVMs as a convex QP (OP2):

min
w,ξi(y)≥0

1

2
‖w‖

2
+ C

∑

i,y

ξi(y)

s.t. w
T∆fi(y) ≥ li(y)− ξi(y) ∀ i,y (III.1)

We note that the problem size of OP2 in terms of the primal

variables is much larger when compared to OP1. This is

primarily because of associating a primal slack variable ξi(y)
with each structured output y ∈ Y . The main complexity in

solving OP2 formulation is optimizing the sum of ξi(y) for

all possible structured outputs over the entire output space

Y which might be of an exponential size. To handle this

difficulty, we propose a one-slack equivalent formulation of

the multiple-slack formulation in problem OP2, similar to that

proposed in [11].

The first step is to convert the problem OP2 into an n-slack

formulation with an equivalent set of constraints. We could

formulate OP2 equivalently as (OP2-n-slack):

min
w,ξi≥0

1

2
‖w‖

2
+ C

∑

i

ξi

s.t.
∑

y∈Si

w
T∆fi(y) ≥

∑

y∈Si

li(y)− ξi ∀ i, ∀ Si ∈ 2Y

(III.2)

where 2Y represents the power-set of Y . Si in OP2-n-slack

represents a collection {y} of structured outputs associated

with an example i and hence is a subset of Y . The sum of

slack variables
∑

y
ξi(y) corresponding to an example i in the

problem OP2 is replaced with a single slack ξi in the problem

OP2-n-slack. The constraints in problem OP2 associated

with a single example i are also grouped accordingly. We

note that each slack ξi(y) ≥ li(y) − w
T∆fi(y). Since ξi

corresponds to the sum of all slack variables ξi(y), an intuitive

constraint formulation for OP2-n-slack is that ξi must be

greater than every possible collection {ξi(y)} of outputs {y}
corresponding to an example i. Hence if we consider any

collection Si of outputs y for an example i, then the grouped

constraint ξi ≥
∑

y∈Si
[li(y) − w

T∆fi(y)] must hold. We

provide a proof of the equivalence of formulations OP2 and

OP2-n-slack next.

Theorem 1: The problems OP2 and OP2-n-slack are equiv-

alent.

Proof: Adapting the proof in [9], we prove that OP2 and

OP2-n-slack have an equivalent set of constraints and have the

same objective value. For a given w, the ξi(y) in OP2 can be

optimized individually and the optimum value for ξi(y) is

max{0, li(y) −w
T∆fi(y)}. If we assume that the size |Y |

of output space is m, and the outputs can be enumerated as

y
1,y2, · · · ,ym then we could write the constraints of problem

OP2-n-slack as

∀s ∈ {0, 1}m,

m
∑

j=1

sjw
T∆fi(y

j) ≥

m
∑

j=1

sj li(y
j)− ξi ∀i

where s is an m-sized vector. Hence for any given w, the

optimal ξi for problem OP2-n-slack could be given by

ξi = max
s∈{0,1}m







m
∑

j=1

sj li(y
j)−

m
∑

j=1

sjw
T∆fi(y

j)







This linear function in sj can be optimized for each sj
individually. Hence the optimal ξi is

min ξi =
m
∑

j=1

max
sj∈{0,1}

{

sj li(y
j)− sjw

T∆fi(y
j)
}

=

m
∑

j=1

max
{

0, li(y
j)−w

T∆fi(y
j)
}

= min

m
∑

j=1

ξi(y
j)

= min
∑

y∈Y

ξi(y)

Hence for any given w, given the optimal ξi and ξi(y), the
objective functions of OP2 and OP2-n-slack are same and

hence their optimal values.

In the next step, we convert the problem OP2-n-slack into

an 1-slack formulation with an equivalent set of constraints.

We formulate OP2-n-slack equivalently as (OP2-1-slack):

min
w,ξ≥0

1

2
‖w‖

2
+ Cξ

s.t.

n
∑

i=1

∑

y∈Si

w
T∆fi(y) ≥

n
∑

i=1

∑

y∈Si

li(y)− ξ

∀(S1, S2, · · · , Sn) ∈ (2Y)n (III.3)

In this 1-slack formulation, we replace the sum of n-slack vari-

ables
∑n

i=1 ξi of OP2-n-slack with a single slack ξ. Hence the
constraint grouping in 1-slack formulation must be consistent

with every possible combination of the n-slack variables of

OP2-n-slack. Thus the grouping in OP2-1-slack handles all

possible n-tuples of collections of outputs (S1, S2, · · · , Sn).
We prove the equivalence of problems OP2-n-slack and OP2-

1-slack in the next theorem.

Theorem 2: The problems OP2-n-slack and OP2-1-slack

are equivalent.

Proof: Adapting the proof in [11], we prove that OP2-

n-slack and OP2-1-slack have an equivalent set of constraints

and have the same objective value. For a given w, the ξi in

OP2-n-slack can be optimized individually and the optimum

value for ξi is

max
Si∈2Y







∑

y∈Si

li(y)−
∑

y∈Si

w
T∆fi(y)







For the problem OP2-1-slack, the optimal value of ξ is given

for a w by

min ξ = max
(S1,··· ,Sn)∈(2Y)n







∑

i,y∈Si

li(y)−
∑

i,y∈Si

w
T∆fi(y)







This function can be decomposed linearly in Si for any given

w, and each Si can be optimized individually.

min ξ =

n
∑

i=1

max
Si∈2Y







∑

y∈Si

li(y)−
∑

y∈Si

w
T∆fi(y)







= min

n
∑

i=1

ξi

Hence for any given w, given the optimal ξi and ξ, the

objective functions of OP2-n-slack and OP2-1-slack are same

and hence their optimal values.

Hence, instead of solving the problem OP2, one could solve

the single slack formulation OP2-1-slack. We give a cutting-

plane algorithm similar to that proposed in [11] for solving

the problem OP2-1-slack.

A. Cutting-Plane method for LSE-SSVMs

We solve the 1-slack formulation OP2-1-slack using a

cutting-plane method. We observe that though the problems

OP2-1-slack and OP2 are theoretically equivalent, OP2-1-

slack still contains an infinite number of constraints grouped

across examples and across outputs. The cutting-plane proce-

dure explained in [11] cannot be directly applied to problem

OP2-1-slack because of a different constraint formulation.

In [11], the maximum violating sequence maxy{li(y) −
w

T∆fi(y)} is found for every example i and then a vio-

lating constraint is obtained by summing the ∆fi(y) vectors

and the corresponding li(y) terms for all examples. Such a

procedure might not be sufficient for OP2-1-slack because

the constraints in OP2-1-slack are much more general than

those in OP1-one-slack as they consider all possible n-tuples
of all possible collections of outputs y. Hence we adopt the

procedure as explained in Algorithm 1 to find a violating

constraint for the cutting-plane algorithm for OP2-1-slack.

We maintain a working set W of constraints. We also main-

tain a cache of violators Vi for each example i. In every itera-

tion of the algorithm, we find argmaxy{li(y)−w
T∆fi(y)}

for every example i and add it to Vi if it is not already

present. We build the sets Si by finding the violating outputs

for each example i as described in Step 14 of Algorithm

1. After passing through all examples, we add the n-tuple
(S1, S2, · · · , Sn) as the violated constraint to the set W . We

terminate the algorithm when this violated constraint is not

violated by more than a desired precision ǫ.
We employ certain speed-up heuristics in Algorithm 1.

Step 9 in Algorithm 1 is expensive for various real-world

applications. For sequence labeling applications, Viterbi de-

coding is performed in Step 9. For parse-tree classification,

the Cook-Kasami-Younger (CKY) algorithm is used. All these

algorithms are computationally demanding and hence need to

be used only when it is absolutely essential. Hence in our

implementation, we use a two-loop approach in Algorithm 1

similar to that proposed in [1]. In type-I loop, we perform

Step 9 whereas in type-II loop, we do not perform Step 9

and use only Vi to find the most violating constraint. In our

implementation of Algorithm 1, the optimization in Step 7 was

done by solving the restricted dual problem using a Hildreth-

despo QP solver used in [10]. Other methods like a fixed-

threshold SMO as used in [13] could also be tried.

IV. DUAL LSE-STRUCTURAL SVMS

We now discuss a method to solve the dual problem of OP2,

referred to as (OP3):

min
α

D(α) =
1

2
‖
∑

i,y

αi(y)∆fi(y)‖
2
−
∑

i,y

αi(y)li(y)

s.t. 0 ≤ αi(y) ≤ C ∀ i,y (IV.1)

This dual problem has a nice structure and hence we could

solve this dual problem instead of solving the primal problem

OP2 or OP2-1-slack. It is also important to note that the

equality constraint present in OP1-Dual is absent in OP3. This

Algorithm 1 Primal cutting-plane method to solve OP2-1-

slack

1: Input S = {(xi,yi)}
n
i=1, C, ǫ

2: w = 0, Vi = {yi}, i = 1, 2, · · · , n
3: Si = φ, i = 1, 2, · · · , n
4: W = φ
5: iter = 0, stopflag = 0
6: repeat

7: Solve OP2-1-slack with constraints in W

8: for i = 1, . . . , n do

9: ŷi = argmaxy{li(y)−w
T∆fi(y)}.

10: if ŷi /∈ Vi then

11: Vi = Vi ∪ {ŷi}
12: end if

13: for y ∈ Vi do

14: if wT∆fi(y) < li(y) then
15: Si = Si ∪ {y}
16: end if

17: end for

18: end for

19: if
∑

i,y∈Si

{

li(y)−w
T∆fi(y)

}

≤ ξ + ǫ then

20: stopflag=1

21: else

22: W = W ∪ {(S1, S2, · · · , Sn)}
23: end if

24: iter := iter + 1
25: until stopflag == 1

makes the formulation OP3 more suitable for online learning

applications compared to OP1-Dual. We now give a sequential

dual coordinate-descent method for solving OP3.

If we assume that the size |Y | of output space is m, and

the outputs can be enumerated as y
1,y2, · · · ,ym, the dual

problem OP3 could be simply written as (OP3a):

min
α

1

2

∥

∥

∥

∥

∥

∥

n
∑

i=1

m
∑

j=1

αi(y
j)∆fi(y

j)

∥

∥

∥

∥

∥

∥

2

−
n
∑

i=1

m
∑

j=1

αi(y
j)li(y

j)

s.t. 0 ≤ αi(y
j) ≤ C ∀ i, j (IV.2)

The optimal primal and dual variables of OP2 and OP3 are

associated using the relation

w
∗ =

∑

i,y

α
∗
i (y)∆fi(y) (IV.3)

Hsieh et.al [8] have proposed a dual coordinate descent method

for large scale classification SVMs. If we have all the outputs

y
1,y2, · · · ,ym at our disposal, we could apply the dual

coordinate descent method in [8] to our formulation in a

straight-forward fashion. We discuss the details assuming that

all outputs y1,y2, · · · ,ym in Y are available to us. We then

discuss a way to handle the exponential size m of the output

space Y .

A. Dual Coordinate Descent method for LSE-Structural SVMs

We follow a dual coordinate descent method similar to

that described in [8]. The algorithm runs in stages k =
1, 2, · · · ,∞ and we could consider the vector of dual variables

α
k = [αk

i (y
j)], ∀i, j at each stage k of the algorithm. Such

a vector is of length p = n × m. At each stage k of the

algorithm, we optimize all the variables of the vector αk in

a sequential fashion. During the sequential optimization, a

component of the vector αk is selected and optimized keeping

all the other components fixed. If we assume that the lth

component of αk has been selected, and if we consider the

selected component as αk
i (y

j), then we optimize the amount

δ of change which could be associated with αk
i (y

j) without

violating the constraints. To optimize δ, we solve a simple QP

in δ which is (OP4):

D(αk + δel) =
1

2
∆fi(y

j)
T
∆fi(y

j)δ2 +∇lD(αk)δ + b

s.t. 0 ≤ (αk
i (y

j) + δ) ≤ C (IV.4)

where el is a vector of length p with 1 at position l and zeros

in the remaining positions. b is a constant term and ∇lD(αk)
is the lth component of the gradient ∇D. We see that for the

change δ to be zero, the lth component∇P
l D(αk) of projected

gradient ∇PD(αk) must be zero. The lth component of the

projected gradient is given by

∇P
l D(αk) =







∇lD(αk) if 0< αk
i (y

j) <C

min(0,∇lD(αk)) if αk
i (y

j) = 0
max(0,∇lD(αk)) if αk

i (y
j) = C

∇lD(αk), the gradient with respect to a particular variable

αk
i (y

j) is given by

∇lD(αk) = w
T∆fi(y

j)− li(y
j) (IV.5)

If ∇P
l D(αk) 6= 0, then we update αk

i (y
j) to αk

i (y
j)new using

min

(

max

(

αk
i (y

j)−
∇lD(αk)

∆fi(yj)T∆fi(yj)
, 0

)

, C

)

(IV.6)

After finding αk
i (y

j)new, we update w using the formula

wnew = wold + (αk
i (y

j)new − αk
i (y

j)old)∆fi(y
j) (IV.7)

However all these calculations are possible only for a finite

sized vector αk. The difficulty in solving OP3 arises because

of the exponential size m of Y which gives rise to an equally

exponential sized dual variable set. Hence a direct application

of the dual coordinate scheme discussed above is not possible

for OP3. We handle the problem of exponential sized dual

variable set by restricting our attention to a subset containing

only r dual variables, r ≪ m.

In SDM[1] to solve SSVMs, a cache Vi is maintained for

every training example i and the optimization is done for the

dual variables corresponding to y ∈ Vi. However because of

the summation constraint in OP1-Dual, at least two variables

have to be selected for optimization. The problem OP3 does

not have such a summation constraint and hence each variable

could be optimized independently. Similar to SDM[1], we

TABLE I
SUMMARY OF MULTI-CLASS DATA SETS. n DENOTES THE SIZE OF THE

TRAINING DATA, d IS THE INPUT DIMENSION, k DENOTES THE NUMBER OF

CLASSES AND N IS THE FEATURE VECTOR DIMENSION

Data set n d k N

Covertype 581012 54 7 378
Sector 6412 55197 105 5795685

10
−2

10
0

10
2

10
4

0

1

2

3

4

5

6
x 10

4

CPU Time(seconds)

D
u

a
l
o

b
j
fn

 v
a

l.

Cutting Plane

Seq. Dual Coord Descent

10
−2

10
−1

10
0

10
1

10
2

5.22

5.225

5.23

5.235

5.24

5.245

5.25

5.255

5.26
x 10

4

CPU Time(seconds)

D
u

a
l
o

b
j
fn

 v
a

l.

Cutting Plane

Seq. Dual Coord Descent

Fig. 1. Comparison of CP and SDCD methods on multi-class data
sets.(C=0.01) Left: Covertype, Right: Sector.

maintain a set Vi for each training example i and perform

optimization on the αi(y) variables for y ∈ Vi. Hence we

solve the reduced optimization problem (OP5):

min
α

D′(α) =
1

2
‖

∑

i,y∈Vi

αi(y)∆fi(y)‖
2
−

∑

i,y∈Vi

αi(y)li(y)

s.t. 0 ≤ αi(y) ≤ C ∀ i,y ∈ Vi

To construct the set Vi for each example i, we find a

violator y ∈ Y using argmaxy{li(y)−w
T∆fi(y)}. Hence

our algorithm operates by visiting an example i, constructing
or updating the set Vi and then performing dual coordinate de-

scent method on dual variables corresponding to that example

i. We illustrate the procedure in Algorithm 2.

The sequential dual coordinate descent method described

in Algorithm 2 contains added speed-up heuristics. The basic

algorithm scheme is to visit each example i, find a new violator

ŷi using Step 10. If the violator is not present in Vi, we

add it to Vi and perform coordinate descent for variables

corresponding to y ∈ Vi. The entire procedure terminates

when there is no significant change in the dual variables for

all examples. Various other terminating conditions could be

used; but we found that this termination criterion was a good

heuristic to stop the algorithm. As discussed earlier, Step 10

is still a computationally intensive task and hence should be

used less frequently. Hence we follow a two loop approach

with type-I loop and type-II loop. In type-I loop, we always

find a violator and in type-II loop, we do not perform Step

10 and perform coordinate descent method for dual variables

associated with the set Vi. We alternate between the two loops

such that we spend more time in type-II loops.

V. EXPERIMENTS

In this section, we give details about the various experiments

conducted to show the efficacy of both primal and dual

optimization methods for LSE-SSVMS. We performed exper-

iments on various multi-class and sequence-labeling datasets

using Cutting-Plane (CP) and the Sequential Dual Coordinate

Algorithm 2 Sequential Dual Coordinate Descent Algorithm

to solve OP5

1: Input S = {(xi,yi)}
n
i=1, C

2: w = 0, Vi = {yi}, αi(yi) = C ∀i = 1, 2, · · · , n
3: κ1 = 10, κ2 = 5
4: iter = 0, stopflag = 0
5: GetMaxY = 1,deltathresh=10−4

6: repeat

7: ChangedInOuterLoop=0

8: for i = 1, . . . , n do

9: if GetMaxY == 1 then

10: ŷi = argmaxy{li(y)−w
T∆fi(y)}.

11: if ŷi /∈ Vi then

12: Vi = Vi ∪ {ŷi}, αi(ŷi) = 0.
13: end if

14: end if

15: alphachange=0

16: for y ∈ Vi do

17: Solve (OP4) to find δ
18: Update αi(y) = αi(y) + δ
19: Update w using (IV.7)

20: alphachange += δ × δ
21: end for

22: if GetMaxY == 1 AND alphachange>deltathresh

then

23: ChangedInOuterLoop = 1

24: end if

25: end for

26: if GetMaxY == 1 then

27: if ChangedInOuterLoop == 0 then

28: stopflag=1

29: else

30: if iter ≥ κ1 then

31: GetMaxY=0

32: end if

33: end if

34: else

35: if (iter − κ1)%κ2 == 0 then

36: GetMaxY=1

37: end if

38: end if

39: iter := iter + 1
40: until stopflag == 1

Descent (SDCD) methods. The values of the parameter C in

OP2-1-slack and OP3 were chosen based on the validation

set performance. Both the algorithms were implemented in C

with double precision. All experiments were run on a dual-

CPU quad-core 2.4GHz Intel Xeon Processor with a 16GB
shared main memory under Linux.

A. Multi-class Datasets

First, we compare the performance of the cutting-plane and

SDCD method on multi-class datasets. We use Covertype and

Sector datasets from [4]. The details of the datasets are given

TABLE II
SUMMARY OF SEQUENCE-LABELING DATA SETS. n AND ntest DENOTE

THE SIZES OF THE TRAINING AND TEST DATA RESPECTIVELY, d IS THE

INPUT DIMENSION, k DENOTES THE NUMBER OF ALPHABETS AND N IS

THE FEATURE VECTOR DIMENSION

Data set n ntest d k N

OCR 6877 55310 128 26 4004
POS 7200 1681 404990 42 17011344
WSJPOS 35531 1681 446180 42 18741324
Brown 48242 9098 290843 185 53840180

in Table I. The following feature vector representation for the

data was used:

f(x,y) =
(

x1 ⊗ y1
)

(V.1)

Multi-class feature representation could be considered as the

feature representation for POS-tagging of a single word sen-

tence where x = (x1) and y = (y1). Hence the construction in

(V.1) uses no edge-related information. SDCD method uses the

standard Hamming-loss illustrated in (II.2), whereas cutting-

plane method uses the scaled Hamming-loss as in [11] with a

scaling factor of 10. A simple 0-1 loss for the cutting-plane

method might give a poor generalization performance due

to the grouped constraints in OP2-1-slack. Hence the need

for scaling. We performed the experiments with C=0.01. We

included all classes in Vi for both the methods and skipped

the violator finding steps (Step 9 in Algorithm 1 and Step 10

in Algorithm 2). For the cutting-plane method, ǫ = 0.1 was

used. The results are presented in Fig. 1. The results from our

experiments clearly indicate that SDCD method outperforms

the cutting-plane method by reaching the optimum objective

value an order of magnitude faster.

B. Sequence Labeling Datasets

We also performed experiments with sequence labeling

datasets in addition to those on multi-class datasets. We used

OCR[19], POS[16], WSJPOS[14] and Brown[3] datasets for

our experiments. We used the ten-part partition of OCR dataset

as was used in [19], where each partition has a train and

a test dataset. The dataset details are given in Table II. We

used the feature vector representation discussed for POS-

tagging example in Section I for all our experiments. For OCR

datasets, we used ǫ = 0.1 for cutting-plane method. However

for POS, WSJPOS and Brown datasets, ǫ = 1.0 proved to be

a sufficient stopping threshold for the cutting-plane method.

1) Training Time Comparison: To compare the training

times of both the methods, we compute the relative dual

objective function value difference
|f∗−f |
|f∗| , where f∗ is the

optimal objective function value obtained by the respective

optimization method. We present the plots in Fig. 2 which give

the decrease in the relative dual objective value as the time

increases. Similar performance is observed for OCR dataset

as indicated by results in Table III. Our plots clearly indicate

that SDCD method is an order of magnitude faster than the

cutting-plane method for all datasets and achieves the desired

test set accuracy faster.

2) Test set accuracy Comparison: We compare the test set

accuracy obtained by both the methods on all datasets. The

behaviour of test set accuracy as time progresses is given in

10
0

10
2

10
4

10
−6

10
−4

10
−2

10
0

CPU Time(seconds)

R
e

la
ti
v
e

 D
u

a
l
o

b
j
fn

 v
a

l.

Cutting Plane

Seq. Dual Coord Descent

10
−2

10
0

10
2

10
4

10
6

40

50

60

70

80

90

100

CPU Time(seconds)

T
e

s
t

A
c
c
u

ra
c
y
%

Cutting Plane

SDCD

10
1

10
2

10
3

10
4

10
5

10
−6

10
−4

10
−2

10
0

CPU Time(seconds)

R
e

la
ti
v
e

 D
u

a
l
o

b
j
fn

 v
a

l.

Cutting Plane

SDCD

10
1

10
2

10
3

10
4

10
5

40

50

60

70

80

90

100

CPU Time(seconds)

T
e

s
t

A
c
c
u

ra
c
y
%

Cutting Plane

SDCD

10
2

10
3

10
4

10
5

10
−4

10
−3

10
−2

10
−1

10
0

CPU Time(seconds)

R
e

la
ti
v
e

 D
u

a
l
o

b
j
fn

 v
a

l.

Cutting Plane

SDCD

10
2

10
3

10
4

10
5

40

50

60

70

80

90

100

CPU Time(seconds)

T
e

s
t

A
c
c
u

ra
c
y
%

Cutting Plane

SDCD

Fig. 2. Comparison of CP and SDCD methods on sequence labeling data
sets.(C=0.01) Row 1: POS, Row 2: WSJPOS, Row 3: Brown.

Fig. 2. The plots indicate that SDCD method achieves a better

test set accuracy much earlier than the cutting-plane method.

This is primarily because of the online nature of the SDCD

method which helps it to learn a useful model during its initial

iterations of training. Usually, the SDCD method gives a better

test set accuracy after being trained for the first few iterations

itself. This property is clearly lacking in cutting-plane method

which gives a comparable test set generalization performance

much later in its training stage.

3) Effect of the regularization parameter C: We performed

experiments with C=0.01, 0.1 and 1.0 for partitioned OCR

datasets. We present the runtime comparison results for both

the methods in Table III and the test set accuracy results

in Table IV. The results indicate that as we increase the

regularization parameter C, the time taken for training by both

the methods increases. However the increase in the training

times observed for SDCD is lesser compared to that observed

for the cutting-plane method. The results also indicate a

decrease in the test set accuracy as C increases.

4) Comparison of SDCD for LSE-SSVMs with SDM for

LME-SSVMs: We note that SDCD which solves OP3 is very

similar to the sequential dual method (SDM)[1] which solves

OP1-Dual. Hence we compare the training time, test set

accuracy and the number of active constraints present in the

working set for SDCD and SDM algorithms. The details are

TABLE III
TRAINING TIME(SECONDS) COMPARISON OF SEQ. DUAL COORD DESCENT(SDCD) AND THE CUTTING-PLANE (CP) METHOD ON OCR DATA

PARTITION

OCR0 OCR1 OCR2 OCR3 OCR4 OCR5 OCR6 OCR7 OCR8 OCR9

C=0.01 CP 115.36 99.37 119.97 132.31 142.08 113.14 156 175.91 133.95 113.33

SDCD 24.89 23.41 20.84 25.44 29.35 25.62 34.66 23.07 30.87 24.95

C=0.1 CP 595.13 628.05 474.26 432.04 1288.68 467.75 418.11 378.49 511.23 1193.12

SDCD 37.37 38.73 36.73 49.69 38.71 33.47 54.11 68.39 49.2 37.63

C=1.0 CP 4181.79 9013.09 4928.94 9628 8971.55 7657.24 7134.54 4904.36 4118.72 3822.71

SDCD 106.39 179.53 123.81 116.5 178.28 148.41 184.26 193.44 146.02 116.76

TABLE IV
TEST SET ACCURACY(%) COMPARISON OF SEQ. DUAL COORD DESCENT(SDCD) AND THE CUTTING-PLANE (CP) METHOD ON OCR DATA

PARTITION

OCR0 OCR1 OCR2 OCR3 OCR4 OCR5 OCR6 OCR7 OCR8 OCR9

C=0.01 CP 75.46 76.05 75.97 76.8 76.43 75.87 76.44 75.66 76.44 75.78

SDCD 74.43 75.4 75.3 76.17 75.47 75.24 75.99 74.8 75.6 75.02

C=0.1 CP 73.46 74.14 74.1 75.19 75.28 73.52 74.2 73.78 75.5 73.84

SDCD 73.86 74.54 74.66 75.56 75.44 73.88 74.43 74.02 75.62 74.57

C=1.0 CP 71.15 71.56 72.25 73 72.74 71.24 71.63 71.18 73.38 71.74

SDCD 71.3 72.05 72.44 73.15 72.93 71.39 71.68 71.68 73.31 71.85

provided in Table V. We note from Table V that the training

time required to solve LSE-SSVM is more than that required

for LME-SSVMs. This is mainly due to the increase in the

number of slack variables from n in OP1 to n|Y | in OP2.

Correspondingly, there is also an increase in the size of the

working set. This is evident from Table V.

TABLE V
COMPARISON OF SDCD WITH SDM

Data set Train time(sec) Test Accuracy%
∑

i
|Vi|

SDCD SDM SDCD SDM SDCD SDM
(C=0.01) (C=0.1) (C=0.01) (C=0.1) (C=0.01) (C=0.1)

POS 715 53 96.02 96.03 133782 38891
WSJPOS 1588 242 96.61 96.67 305533 114891
Brown 10832 1836 97.46 97.56 395130 146127

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a new formulation for

Structural SVMs with a composite loss term made up of linear

summed error associated with all possible structured outputs.

We also give a primal cutting-plane and a sequential dual

coordinate descent (SDCD) method to solve the formulation.

Through various experiments, we demonstrate that the sequen-

tial dual coordinate descent method has a superior performance

than the primal cutting-plane method in terms of training time,

while achieving a comparable test set accuracy. The algorithms

are general and can be used in the context of other structured

outputs like parse trees. Though the SDCD method is slower

than SDM for structured classification, we note that the SDCD

method can directly be used in online learning of Structural

SVMs. We are investigating the details of extending the SDCD

method to online learning of Structural SVMs.

ACKNOWLEDGMENT

The work of the first author was partially supported by the

grant from Infosys Ltd., India.

REFERENCES

[1] P. Balamurugan, S. K. Shevade, S. Sundararajan, S. S. Keerthi. A
Sequential Dual Method for Structural SVMs, SDM, 2011.

[2] P. Bartlett, M. Collins, B. Taskar, D. McAllester. Exponentiated Gradient
Algorithms For Large-margin Structured Classification. NIPS, 2004.

[3] Brown Corpus. Available at http://nltk.googlecode.com/svn
/trunk/nltk_data/index.xml

[4] C.-C. Chang, C.-J. Lin. LIBSVM Data: Classification (Multi-class).
http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets

/multiclass.html

[5] D. Freitag, A. K. McCallum. Information Extraction using HMMs and
shrinkage. AAAI, 1999.

[6] T. Gärtner, S. Vembu. On Structured Output Training: Hard Cases and
an Efficient Alternative. ECML, 2009.

[7] S. I. Hill, A. Doucet. A Framework for kernel-based multi-category
classification. Tech. rep. CUED/F-INFENG/TR.508, Engineering Dept.,
University of Cambridge. 2005.

[8] C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. S. Keerthi, S. Sundarara-
jan. A Dual Coordinate Descent Method for Large-scale Linear SVM,
ICML,2008.

[9] T. Joachims. Training linear SVMs in linear time. SIGKDD, 2006.
[10] T. Joachims. SVMstruct: Software available at

http://www.cs.cornell.edu/People/tj/svm_light/svm_struct.html

[11] T. Joachims, T. Finley, C-N. J. Yu. Cutting-Plane training of Structural
SVMs. Machine Learning, 77(1):27-59, 2009.

[12] J. Lafferty, A. McCallum, F. Pereira. Conditional Random Fields:
Probabilistic Models for Segmenting and Labeling Sequence Data. ICML,
2001.

[13] C. Lee, M-G. Jang. A Modified Fixed-threshold SMO for 1-Slack
Structural SVMs. ETRI Journal, Volume 32, Number 1, February, 2010.

[14] M. Marcus, B. Santorini, M. A. Marcinkiewicz, Building a Large
Annotated Corpus of English, Computational Linguistics, 1993.

[15] A. McCallum, D. Freitag, F. Pereira. Maximum Entropy Markov Models
for Information Extraction and Segmentation. ICML, 2000.

[16] N. Nguyen, Y. Guo, Comparisons of Sequence-labeling Algorithms and
Extensions, ICML, 2007.

[17] M. Ranjbar, G. Mori, Y. Wang. Optimizing Complex Loss Functions in
Structured Prediction. ECCV, 2010.

[18] Q. Shi, M. Reid, T. Caetano, A. v. d. Hengel. A Hybrid Loss for Mul-
ticlass and Structured Prediction. Technique Report, School of Computer
Science, The University of Adelaide. 2010.

[19] B. Taskar, C. Guestrin and D. Koller, Maximum-margin Markov net-
works, NIPS, 2003.

[20] G. H. Teo, S. V. N. Vishwanathan, A. Smola, Q. V. Le. Bundle Methods
for Regularized Risk Minimization. JMLR, 11:311-365, 2010.

[21] I. Tsochantaridis, T. Joachims, T. Hoffmann, Y. Altun. Large Margin
Methods for Structured and Inter-dependent Output Variables, JMLR,
6:1453:1484, 2005.

[22] Z. Wang, J. Shawe-Taylor. Large-Margin Structured Prediction via
Linear Programming. AISTATS, 2009.

[23] J. Weston, C. Watkins. Multi-class support vector machines. In M. Ver-
leysen, editor, Proceedings of EASNN99, Brussels, 1999. D. Facto Press.

[24] J. Zhu, E. P. Xing, B. Zhang. Primal Sparse Max-Margin Markov
Networks. SIGKDD, 2009.

