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Abstract

Model checking is a powerful technique for analyzing reachability and temporal properties

of finite state systems. Model-checking of finite state systems has been well-studied and

there are well known efficient algorithms for this problem. However these algorithms may

not terminate when applied directly to infinite state systems. Counter systems are a class

of infinite state systems where the domain of counter values is possibly infinite. Many

practical systems like cache coherence protocols, broadcast protocols etc, can naturally

be modeled as counter systems. In this thesis we identify a class of counter systems,

and propose a new technique to check whether a system from this class satisfies a given

CTL formula. The key novelty of our approach is a way to use existing reachability

analysis techniques to answer both “until” and “global” properties; also our technique

for “global” properties is different from previous techniques that work on other classes

of counter systems, as well as other classes of infinite state systems. We also provide

some results by applying our approach to several natural examples, which illustrates the

scope of our approach.
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Chapter 1

Introduction

Infinite state systems include programs, as well as other automata theoretic structures

like petri-nets, pushdown systems and counter systems. An aspect of verification of these

systems is to determine the set of reachable states starting from the initial states (i.e.,

reachability), on which there is extensive literature. For instance, reachability analysis

in programs, although undecidable in general, has been addressed using a variety of

approximation algorithms, as surveyed by Jhala et al. [1]. In the space of automata

theoretic structures, reachability in infinite-state systems like pushdown-systems and

petri-nets is decidable [2, 3].

Model-checking of temporal properties is another aspect of verification. Verification

of CTL [4] properties for pushdown systems is decidable [2, 5]. This result has been

extended for analysis of other kinds of structures, e.g., in the context of analysis of inter-

procedural programs [6, 7]. Counter systems are a class of infinite state systems that are

equivalent to simple looping programs without arrays, pointers and dynamic memory

allocation. Counter systems are a richer class of infinite state systems than pushdown

systems. Therefore, the algorithms to model-check temporal properties in pushdown

systems cannot be extended in a straightforward way to answer temporal properties in

counter systems. Counter systems have a finite set of control states and finite set of

counters, with each counter taking values from the infinite domain of integers. Counter

systems have transitions between control states. Each transition has a guard and an

1



2 1. Introduction

action. Typically the guards are formulas on the counters and actions are formulas on

the primed and unprimed versions of the counters where the primed versions represents

the values of the counters after the transition. The class of counter systems where the

guards and actions of transitions are given by Presburger formulas are called Presburger

counter systems. Various subclasses of Presburger counter systems have been proposed in

the literature [8, 9, 10, 11], with the focus predominantly being on reachability analysis.

Presburger counter systems have been shown to be applicable in settings such as the

analysis of the TTP protocol, broadcast protocols, cache coherence protocols, etc. in [12].

CTL properties involve the use of next, until and global operators, that are universally or

existentially quantified over paths of the counter system. The basic propositions in the

properties that we consider are Presburger formulas (i.e., predicates) over the counter

values of the counter system. We use ψ, ψ1, ψ2 . . . to represent temporal properties and

φ, φ1, φ2, . . . to represent Presburger formulas over counter variables.

1.1 Our approach

The focus of this thesis is on global model-checking a given CTL property in a given

Presburger counter system (which we will simply refer to as “counter system” from

hereon). That is, we find the set of states that satisfy the given temporal property in

the counter system. A state in a counter system is a vector which contains the control

state and the values of the counters. We give a generic algorithm for this problem, which

is structurally similar to the standard CTL model checking algorithm for finite state

Kripke structures [4]. The algorithm computes inductively, the set of states that satisfy

each sub-property of the given temporal property. In our approach, we use Presburger

formulas whose free variables are the names of the counters, to represent the set of

states that satisfy each sub-property (and finally the full CTL property). In some cases

we either under or over-approximate the set of states that satisfy a sub-property. The

approximation of the sub-property changes the precision of the solution of the properties

at the higher level. Every approximation of a sub-property results in the same direction
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of approximation of properties at higher levels except for the negation operator which

inverts the direction of approximation. In cases where we approximate we indicate the

direction of approximation of computed set of states that satisfy the given temporal

property.

Our Algorithm for model-checking CTL properties in Counter Systems:

Model-checking of CTL properties include finding the set of states that satisfy next,

until and global properties. The next state properties are easy to compute. Given a

counter system M and a CTL property EXψ1, we first inductively solve ψ1 and get the

set of states φ1 that satisfy ψ1. The set of immediate predecessors of φ1 represented by

pre(M , φ1 ), can be computed easily. This is because the immediate successor states are

defined by the transitions of the system.

Model-checking until and global properties involve fix point computations and is non-

trivial. These computations may not always terminate but there are classes of counter

systems where these computations can be done precisely.

Until Properties:

Given a counter system M and a CTL property E(ψ1 U ψ2 ) we find the set of states

that satisfy E(ψ1 U ψ2 ) as follows:

• Inductively solve ψ1 and ψ2 yielding φ1 and φ2 as the set of states that satisfy ψ1

and ψ2 respectively.

• We then conjunct the guards of the transitions of M with φ1 to get a new system

M1. We call M1 as the refinement of M with respect to φ1. Any state in M1 from

which any transition can be fired must satisfy ψ1.

• All states from which a state in φ2 can be reached in M1 will satisfy the prop-

erty E(ψ1 U ψ2 ). Existing reachability analysis techniques provide the routine

pre∗(M1 , φ2 ), that returns the set of predecessors of φ2 in the counter system M1.
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[x > 0]/
x′ = x− 1

y′ = y + 1

[y ≥ 0]/
y′ = y − 1

[y > 0]/

q0

[x ≥ 0]/x′ = x+ 1

t1
t2

t4
t3x = 0 ∧ y = 0

Figure 1.1: A counter system M

We use this routine in our algorithm as a black-box. The formula returned precisely

represents the set of states that satisfy E(ψ1 U ψ2 ) in the machine M .

For example, consider the counter system shown in Figure 1.1. The formula shown

in “[ ]” for each transition represents the guard of the transition and the formula af-

ter the “/” represents the action of the transition. Consider the property E((x ≥

10) U (x = 10)). First the system is refined with x ≥ 10, meaning the guards of each

transition are strengthened with x ≥ 10. This is shown in Figure 1.2. Now we com-

pute the set of states from which we can reach x = 10 in this refined system, using a

reachability analysis technique as the black-box. The black-box returns x ≥ 10 as the

solution, which precisely represents the set of states that satisfy E(x ≥ 10 U x = 10 )

in the system shown in Figure 1.1.

y′ = y + 1

[y ≥ 0 ∧ x ≥ 10]/

[x > 0 ∧ x ≥ 10]/
x′ = x− 1

y′ = y − 1

[y > 0 ∧ x ≥ 10]/

q0

t1
t2

t4
t3x = 0 ∧ y = 0

[x ≥ 0 ∧ x ≥ 10]/x′ = x+ 1

Figure 1.2: Refinement of counter system M in Figure 1.1 with x ≥ 10
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As noted above, our approach uses reachability analysis techniques as a black-box

subroutine. These reachability analysis techniques typically use accelerations to reason

about states that may be visited within loops, and hence help in termination of fix point

computations. Our approach, at a high-level, resembles the idea of Bouajjani et al. [2]

for answering “next” and “until” properties in pushdown systems. However, they have

a built-in reachability analysis, and do not use a provided black box for this. There

are different classes of counter systems on which reachability is decidable, each having

their own reachability analysis routine. Hence using reachability analysis as a black box

makes our approach more generic and applicable to more classes of counter systems.

Global Properties:

We handle “global” (i.e., EG) properties in a very different way than Bouajjani et al.,

because in counter systems these properties cannot be solved using simple reachability

queries. Given a counter system M and a temporal property EGψ, we propose two

different techniques to answer these global properties.

A naive computation:

The first technique we propose is guaranteed to terminate in cases where the underlying

reachability black-box terminates. But in general it may under-approximate the set

of states that satisfy the property EGψ. It uses the underlying reachability analysis

black-box to compute the set of states that satisfy EGψ as follows

• Compute inductively the set of states that satisfy ψ. Let φ1 be the set of states

that satisfy ψ.

• Refine the system M with respect to to φ1 to get a system M1.

• Every state from which there is an outgoing transition in M1 satisfies φ1 because

the guard of each transition in M is conjuncted with φ1. Hence the set of states

from which there are paths of infinite length in M1 must satisfy EGψ.



6 1. Introduction

y′ = y + 1

[y ≥ 0]/ [x ≥ 0 ∧ y ≥ 0]/

x′ = x+ 1

t3

q0 q1

t2

y ≥ 0

Figure 1.3: Counter system N , which is a flattening of M shown in Figure 1.1.

• Generate a system N which has no nested cycles among its control states. Such

systems with no nested cycles are called flat systems. The reachability analysis

tools generate such flat systems of a given system by unrolling the loops. The

system N is called a flattening of the system M1.

• In flat systems the set of that satisfy EGφ states can be computed with existing

techniques [13] 1.

For example consider model-checking the property EG(y ≥ 0 ) on the counter system

shown in Figure 1.1. Generate a flat system N from M , as shown in Figure 1.3. We then

refine this new flat system N with respect to y ≥ 0. We compute the set of states that

have infinitely long paths in this system. The algorithm returns y ≥ 0 as the solution.

Though the result returned by the algorithm was precise in the previous case, it will,

in general, under-approximate the set of states that satisfy the property EGψ. This is

because flattening the system might remove some transitions and hence traces (sequences

of states) in the system.

Approach 2:

The previous approach, in general under-approximated the set of states that satisfy EGψ.

This is because it generated a flattening and computed the set of states that satisfy

EGψ in the flattening and returned it as the solution. The approach did not check

1For any class of flat systems for which a terminating black-box is available, model-checking CTL
has shown to be decidable. Hence all our contributions are towards addressing non-flat systems.
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whether the computed set of states was the precise solution. In our second approach

we iteratively compute the set of states that satisfy the property EGψ by generating

multiple flattenings. For each one compute the set of states that have infinite length

paths along which ψ holds and then check whether the computed set of states precisely

represent the set of states that satisfy EGψ. We iteratively produce different flattenings

till we produce the one which EGψ can be computed precisely as follows:

1. Inductively compute the set of states φ1 that satisfy ψ.

2. Refine the system M with φ1 to generate the new system M1.

3. Generate a flattening N of M1 and compute the set of states X that have infinite

paths in N .

4. Check whether every trace from the remaining states, i.e, φ1 −X, that is present

in M1 is also present in N . Checking whether the traces from a given set of states

are preserved in the flattening is decidable as shown by Demri et. al [13].

5. If true then return X as the precise solution.

6. Else go back Step 3.

Note that the approach may not always terminate, but whenever it terminates it re-

turns the precise set of states that satisfy EGψ. We can also terminate the algorithm

prematurely which will give an under-approximation of the set of states that satisfy the

property.

For example consider model-checking the property EG(y ≥ 0 ) on the counter system

shown in Figure 1.1. The set of states that satisfy y ≥ 0 is given by the formula

φ1 ≡ y ≥ 0 which is computed inductively. Now the system M is refined with respect to

φ1. We generate a flat system N , from this refined system as shown in Figure 1.4. We

compute the set of states X that satisfy EG(y ≥ 0 ) in N . The formula y ≥ 0 precisely

represents the set of states that satisfy the above property in N which is computed by

the algorithm. algorithm returns X as the solution. y ≥ 0 precisely represents the set
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y′ = y + 1
[y ≥ 0]/

q0

t3

y ≥ 0

Figure 1.4: Another flattening N of the counter system M shown in Figure 1.1

of states that satisfy EG(y ≥ 0 ) in the counter system M . The iterative nature of the

algorithm and procedure to check whether the computed set of states is precise, which

is the main difference of this approach when compared to the previous one is discussed

in detail in Chapter 5.

1.2 Contributions

In this section we briefly mention our contributions and discuss them in detail in Chap-

ter 8.

Technical novelty:

• To our knowledge we are the first to propose an algorithm for CTL model checking

in counter systems that is structurally similar to the standard (finite-state) CTL

model-checking algorithm, in that it inductively solves sub-properties of the given

temporal property.

• We are the first to use the idea of refinement in counter systems which enables us

to answer temporal properties in a larger class of counter systems.

• We use reachability analysis tools that use accelerations as a black-box which makes

our algorithm generic and applicable on different classes of counter systems for

which accelration black boxes are available. We also have an assumption that the

systems that we consider are finite branching, that is, a given state will have a

finite number of successor states.
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• We also incorporate approximations to our algorithm. In this thesis we focus on

under-approximation routines for answering “global” and “until” properties. We

also emit the direction of approximation of the set of states that satisfy a temporal

property ψ in case we approximate. Note that in this thesis we only give the

routines that can under-approximate the global properties. Routines that over-

approximate the set of states that satisfy the global properties are given by Lakshmi

et al [14]. The over-approximation routine stated in [14] is not the contribution

of the author of this thesis.

Correctness, Precision and Termination: Our algorithm uses different routines

for answering until and global properties. The routine for until property terminates

whenever the underlying reachability black-box terminates. We give two different ap-

proaches for answering global properties. The first approach terminates in all cases but

in general, under-approximates the set of states that satisfy the property. The second

approach precisely computes the set of states that satisfy the property if it terminates.

Otherwise it produces an under-approximation of the set of states that satisfy the prop-

erty.

Usefulness: We identify different natural temporal properties on several systems [12]

and we show that our approaches terminates on these systems. These systems are not

handled by the existing techniques.

The rest of the thesis is organized as follows: In Chapter 2 we give the basic termi-

nology, followed by our generic algorithm in Chapter 3. In Chapter 4 we describe our

core technique to answer until properties using existing reachability analysis techniques.

We discuss our approaches to handle global properties in Chapter 5 along with stating

some theorems that prove the correctness and precision of our approaches. In Chapter 6

we describe our experience with several realistic examples. We discuss the existing ap-

proaches in literature in Chapter 7. We discuss the key aspects of our work in Chapter 8

and finally conclude in Chapter 9.





Chapter 2

Notation and Terminology

In this chapter, we formally define counter systems, CTL temporal properties and their

semantics along with the terminology that we use.

Definition 1 (Presburger Logic). Consider a finite set of variables X. A Presburger

formula over X is defined by the following grammar

φ ::= t < t | t = t | ¬φ | φ ∨ φ | ∃x.φ | ∀x.φ | true

t ::= 0 | 1 | y | t+ t, where y ∈ X is a variable

Presburger formulas are interpreted over natural numbers with +, <,=, 0, 1 have their

usual meaning. These formulas have the same semantics as formulas in standard first

order logic. Presburger arithmetic is a decidable theory; i.e, there exists an algorithm

which says whether a given statement in Presburger arithmetic is true or not. Presburger

arithmetic does not involve multiplication, although multiplication by constants can be

incorporated by repeated addition.

Definition 2 (Counter System). A counter system M is represented by the tuple M =

〈Q,C,Σ, φinit , G, F 〉 where Q is a finite set of natural numbers that encode the control

states, C is a finite set of m counters represented as a vector, φinit is a Presburger formula

that represents the initial states of the system, Σ is a finite alphabet representing the set

of transitions in M , such that for each b ∈ Σ there exists a G(b) = gb and an F (b) = fb

that are the guard and action of the transition b, respectively.

11



12 2. Notation and Terminology

The counter system shown in Figure 1.1 is given by the following tuple M = 〈{q0},

{x, y}, {t1, t2, t3, t4}, (x = 0 ∧ y = 0), {gt1 , gt2 , gt3 , gt4}, {ft1 , ft2 , ft3 , ft4}〉 where q0 = 0

which represents the control state, the guards gt1 ≡ x > 0, gt2 ≡ x ≥ 0 which respectively

represent the positive and non-negative values of the counter x, gt3 ≡ y ≥ 0 and gt4 ≡

y > 0 which respectively represents the non-negative and positive values of the counter

y and the actions ft2 ≡ x′ = x + 1, ft1 ≡ x′ = x − 1 increment and decrement the

value of counter x respectively without changing the value of counter y, ft3 ≡ y′ = y+ 1

and ft4 ≡ y′ = y − 1 increment and decrement the values of the counter y respectively

without affecting the values of counter x.

A state (denoted by s, s′ etc.) in a system is a column vector v ∈ Im+1. The first

element v0 represents the control state and the values of rest of the elements v1, . . . , vn

represent the values of the counters C. We sometimes use the term concrete state to refer

to a state. For example {0, 0, 0} represents the state where the control state is encoded

by the number 0 and the counters x and y have the value 0.

In our setting we use Presburger formulas of two kinds. The first one uses the counter

variables and the control state variable q, as free variables. In general such formula

represents a set of the states in the system. We use these formulas

• to represent the initial states φinit ,

• as guards of transitions in the system

• as basic propositions of temporal properties and

• to represent the return value of our algorithm i.e, the set of states that satisfy any

sub-property of the the given temporal property.

In these formulas we use the variable name q whose value encodes the control state. Note

that in a formula that is used as the guard of a transition, the control state variable is

typically constrained to be equal to the source control state of the transition. The

systems that we show in this thesis have a single control state and whenever we do not

show the variable q in the formula, we mean that its value is constrained to be equal to
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0 (which is the number corresponding to the control state). Therefore, for convenience,

we drop this constraint from the everywhere in this thesis even in the formulas that we

return. For example, the guard of transition t1 in Figure 1.1 is x ≥ 0

The second kind of Presburger formulas is used specifically to represent the actions

of transitions. The actions are Presburger formulas on primed and unprimed versions of

the counter variables, where unprimed and primed versions of the variables represent the

values before and after the transition respectively. Note that the action of a transition

a implicitly sets the new control state to the destination of a; hence, we omit q from

the formulas. In the actions we do not show the values of the counters that remain

unaffected. For example, the action of transition t1 in Figure 1.1 is x′ = x − 1. It

indicates that the value of the counter x will be decremented after the transition and the

value of y will remain unchanged.

We now turn into the semantics of counter machines. Informally a transition a in a

counter system M can be taken in a state s only if it satisfies the guard ga of a. The

values of the counters are modified according to the action fa of a. Hence a transition in

general defines a partial function on the set of states induced by M . We use the notation

s
a−→ s′ to represent a transition from s to s′ on a ∈ Σ. We say s′ to be the immediate

successor of s and s to be the immediate predecessor of s′.

The systems that we consider may be non-deterministic, i.e, there could be two

transitions ti, tj ∈ Σ and a state s such that s |= gti and s |= gtj . For example, consider

the state {0, 0, 0} in Figure 1.1. It satisfies the guards of transitions t2 and t3 and hence

the system is non-deterministic. We assume that the action fa of a transition a may be

non-deterministic, but is finitely branching. That is, any given state has a finite number

of successor states under fa. For example, we do not allow actions of the form x′ ≥ 0 in

our counter system.

Throughout the thesis we use φ, φi, etc., to denote Presburger formulas with counter

variables and the control state variable as free variables. In case we have other free vari-

ables, we denote them is subscripts. For example, we use φ(k) to represent a Presburger

formula with the k and the state variables as free variables. A state s is said to satisfy a
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formula φ, denoted as s |= φ, if the formula φ evaluates to true when the free variables

in φ are substituted by corresponding elements in s.

We say that a counter machine M1 = 〈Q1, C1,Σ1, φ
init
1 , G1, F1〉 is a refinement of

machine M = 〈Q,C,Σ, φinit , G, F 〉 with respect to Presburger formula φ if and only if

Q1 = Q, C1 = C, Σ1 = Σ, φinit
1 = φinit and for each a ∈ Σ, g1a = ga∧φ and f1a = fa. The

function refineSystem(M , φ) refines the counter system M and returns a counter system

M1 which is a refinement of M with respect to φ. For example the counter system shown

in Figure 1.2 is a refinement of the counter system shown in Figure 1.1 with respect to

x ≥ 10.

Given a counter system M and Presburger formula φ, representing the set of states,

we define the successor states of φ in M as

post(M , φ)
def
= {s | ∃s1 ∈ Im+1. s1 |= φ ∧ (∃a ∈ Σ.s1

a−→ s)}

Similarly we define the set of predecessor states of φ in M as follows

pre(M , φ)
def
= {s | ∃s1 ∈ Im+1. s1 |= φ ∧ (∃a ∈ Σ.s

a−→ s1)}

For example consider the set of states (x = 0∧y = 0) for the example shown in Figure 1.1.

The set of immediate successors, post(x = 0 ∧ y = 0), is the formula (x = 0 ∧ y =

1)∨ (y = 0 ∧ x = 1). Similarly, pre(x = 0∧ y = 0) ≡ (x = 0∧ y = 1)∨ (x = 1∧ y = 0).

The definition of successors of a set of states φ can be extended to the kth successors of

φ as follows

postk(M , φ)(k)
def
={s | ∃s1 . . . sk. s1 |= φ

k∧
i=1

(∃a ∈ Σ.si
a−→ si+1 ∧ ∃a ∈ Σ.sk

a−→ s}

Note that the subscript (k) indicates that postk(M , φ)(k) is a formula in which C (which

includes the counter that encodes the control state) and k occur as free variables. For

example postk(M , x < 0 ∧ y = 0 )(k), where M is the counter system shown in Figure 1.1,
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is given by the formula ∃k1, k2 ≥ 0. k = k1 + k2 ∧ y + (k2 − k1) = 0 ∧ k2 ≤ k1 ∧ x < 0.

Similarly, prek(M , φ)(k) is a formula in s and k that represents the set of states from

which some state in φ can be reached in k steps.

The set of reachable states from a given set of states φs, is given by the formula

post∗(M , φ)
def
= ∃k ≥ 0. postk(M , φs)(k)

For example post∗(M , x = 0 ), where M is the system shown in Figure 1.1 are the set of

states given by the formula ∃k ≥ 0. x − k = 0 which simplifies to x ≥ 0. Similarly the

backward reachability set, for a set of states φ, namely pre∗(M , φ), can be defined as

follows

pre∗(M , φ)
def
= ∃k ≥ 0. prek(M , φ)(k)

For example pre∗(M , x = 0 ) for the system shown in Figure 1.1 are the set of states

where x ≥ 0 which is given by the formula ∃k ≥ 0. x+ k = 0. Given a system M we use

the formula φreach to denote the set of states that are reachable from the set of initial

states φinit .

Temporal properties are used to formally specify properties on sequences of states

(i.e, paths) in a transition system. CTL properties allow us to quantify over paths in a

transition system. Following the idea of Demri et al.[13] we extend the CTL grammar

to let Presburger formulas of the form φ, be the basic propositions in the temporal

properties. Temporal properties in the existential normal form of CTL can be defined

by the following grammar

ψ ≡ φ | ¬ψ |ψ ∨ ψ |EXψ |E(ψ U ψ) |EGψ (2.1)

Throughout the thesis we use ψ, ψi, etc., to denote temporal properties.

A trace from a state s0 in M is a (possibly infinite) sequence of states s0, s1 . . . such

that ∀i ≥ 0: (∃ai ∈ Σ. si
a−→ si+1). A state s0 satisfies a temporal formula ψ, written

as s0 |= ψ, as per the following definition
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• s0 |= φ ⇐⇒ s0 |= φ

• s0 |= ¬ψ ⇐⇒ s0 2 ψ

• s0 |= ψ1 ∨ ψ2 ⇐⇒ s0 |= ψ1 or s0 |= ψ2

• s0 |= EXψ1 ⇐⇒ there exists a state s1 such that s1 |= ψ1 and s1 is a successor

state of s0.

• s0 |= E(ψ1 U ψ2 ) ⇐⇒ there exists a trace s0, s1, . . . , sk in the system such that

sk |= ψ2 and ∀i, 0 ≤ i < k. si |= ψ1 ∧ k ≥ 0.

• s0 |= EGψ ⇐⇒ there exists an infinite trace s0, s1, . . . in the system such that

∀i ≥ 0. si |= ψ.

Any CTL formula involving universal path quantifiers has an equivalent CTL formula

in existential normal form. Therefore, we restrict ourselves to formulas in existential

normal form.

The problem of global model-checking (which we simply refer as model-checking) is

to find the set of states φ in the counter system M such that a state s satisfies the given

temporal property ψ if and only if s |= φ. A more specific variant of this problem is

the problem of local model-checking. Given a temporal property ψ and a set of states φ

in the counter system M , the problem of local model-checking returns true if and only

if every state s that satisfies φ also satisfies the temporal property ψ. In this thesis we

focus on the problem of global model-checking a given CTL property in a given counter

system.



Chapter 3

Generic Algorithm

Let M = 〈Q,C,Σ, φinit , G, F 〉 be a given counter system and let ψ be a given temporal

property in existential normal form. We assume that the reachable state space of the

system M , represented by formula φreach , has been pre-computed, and that the guard of

each transition in M has been refined (i.e., conjuncted) with this formula. In this thesis

we say that the set of states that satisfy the temporal property ψ is computed precisely

if the formula that we return precisely represents the set of reachable states of M that

satisfy ψ. Hence the assumption of the guard of each transition being conjuncted with

φreach is essential.

3.1 The main algorithm

Algorithm 1 takes the counter system M , the temporal property ψ and an enumerator

label (we will discuss the significance of this argument later) as arguments, and returns a

pair (φ, approx ), where φ is a formula that represents the set of states of M that satisfy ψ,

and approx is an enumeration whose value is “precise” if the returned formula is precise,

“under” if it is an under-approximation, and “over” if it is an over-approximation of

the set of states that satisfy ψ. The routines computeUntil and computeGlobal in the

algorithm (Line 17 and Line 21) use a reachability analysis technique as a black box

to model-check until and global properties, respectively. We describe these routines in

17



18 3. Generic Algorithm

over under

precise

Figure 3.1: The Lattice Approx

detail in Sections 4 and 5; it is these routines that make the algorithm generic. There

are many reachability analysis techniques for different classes of counter systems. Hence

the algorithm can be applied to a variety of classes of counter systems which have finite

branching and have a black box to compute the reachable states of the given counter

system M . We treat the enumeration set {over , under , precise} as a meet semi-lattice,

which we call the lattice Approx , with both over and under dominating precise as shown

in Figure 3.1. The input argument label and the returned enumerator approx are elements

from this lattice.

The join operation on this lattice is denoted using “t” (with join of over and under

being undefined); also, we define a negation operator “¬” on this lattice, as follows:

¬approx ≡ (approx = under) ? over : (approx = over) ? under : precise.

The algorithm has a case structure, dependent on the root operator of ψ. If ψ is

a basic proposition φi or any boolean combinations of temporal properties, then the

set of reachable states that satisfy the formula ψ can be computed in a straightforward

way. In case of negations we invert the enumerator approx . Model-checking “next” state

properties involves a computing the immediate predecessors of a set of states(Line 13):

to model-check EXψ we first find the set of states φ1 that satisfy ψ. pre(M , φ1 ) gives

the set of states that satisfies EXψ. pre(M , φ1 ) can be computed easily because the

transitions give the pre-post relation between the states of the counter system.

For until property E(ψ1 U ψ2 ), we first recursively find the set of states φ1 and φ2

that satisfy ψ1 and ψ2 respectively. Now our problem reduces to finding the set of states

that satisfy the property E(φ1 U φ2 ). This problem can not be solved using the normal

standard CTL algorithm because of the following reason: The CTL algorithm maintains

a set X which is initialized with set of states that satisfy ψ2. X is iteratively populated
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Algorithm 1 SAT (M , ψ, label)

Input: A counter system M = 〈Q,C,Σ, φinit , G, F 〉 and a temporal property ψ and an

enumerator label which indicates whether the set of states that satisfy ψ should be

computed precisely or under-approximated or over-approximated.

Output: A pair (φ, approx ), where φ is a Presburger formula representing the set of

states that satisfy the formula ψ, and approx is one of the enum values from the lattice

Approx , indicating whether φ is precise, under-approximated, or over-approximated.

1: if ψ = φi {ψ is a basic proposition.} then

2: return (φreach ∧ φi, precise)

3: else if ψ = ¬ψ1 then

4: (φ1, approx )← SAT (M , ψ1 ,¬label)

5: approx 1 = ¬approx

6: return (φreach ∧ ¬φ1, approx 1)

7: else if ψ = ψ1 ∨ ψ2 then

8: (φ1, approx 1)← SAT (M , ψ1 , label)

9: (φ2, approx 2)← SAT (M , ψ2 , label)

10: return (φ1 ∨ φ2, approx 1 t approx 2)

11: else if ψ = EXψ1 then

12: (φ1, approx )← SAT (M , ψ1 , label)

13: return (pre(M , φ1 ), approx )

14: else if ψ = E(ψ1 U ψ2 ) then

15: (φ1, approx 1)← SAT (M , ψ1 , label)

16: (φ2, approx 2)← SAT (M , ψ2 , label)

17: (φ, approx 3)← computeUntil(M,φ1, φ2, label)

18: return (φ, approx 1 t approx 2 t approx 3)

19: else if ψ = EGψ1 then

20: (φ1, approx 1)← SAT (M , ψ1 , label)

21: (φ, approx 2)← computeGlobal(M,φ, label)

22: return (φ, approx 1 t approx 2)

23: end if
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with the set of immediate predecessors of X that satisfy ψ1 till X reaches a fix-point.

This fix-point computation need not terminate in general. Accelerations compute the

set of reachable states of single loops in one step. Hence they help in computing a

possibly infinite set of states in one go rather than multiple iterations and help in ter-

mination of until properties. The routine computeUntil computes the set of states that

satisfy E(φ1 U φ2 ) using reachability analysis tools, which use acceleration techniques,

as black-box. It takes the the counter system M and a set of states φ as the input (the

parameter label is discussed later) and returns the set of states φ and an enumerator

approx indicating whether φ is precise or under-approximation or over-approximation

of the set of states that satisfy E(φ1 U φ2 ). Implementing this routine is discussed in

detail in Section 4.

To model-check the formula ψ ≡ EGψ1 (Line 19), we first compute the set of states

φ1 that satisfy ψ1. We then call the routine computeGlobal which takes the the counter

system M and a set of states φ (the parameter label is discussed later) as the arguments.

The routine computeGlobal uses acceleration techniques to compute the set of states that

satisfy EGφ in the counter system M . It returns the set of states φ and an enumerator

approx indicating whether φ is precise or under-approximation or over-approximation of

the set of states that satisfy EGφ.

3.2 Ensuring sound approximations

Note that routines computeUntil and computeGlobal may, in general, under- or over-

approximate the formulas they return. However, certain constraints are required on

these behaviors, as otherwise the algorithm as a whole would not be able to soundly

determine for each sub-property whether it is being solved precisely, or in an over- or

under-approximated manner. For instance consider the property ψ ≡ ψ1 ∨ ψ2; if one

of ψ1, ψ2 is under-approximated and the other one is over-approximated, then we can

say nothing about the approximation direction of ψ itself. In general, for the algorithm

to return the direction of approximation of any temporal property ψ, it should not be
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the case that one of the subproperties of ψ is under-approximated and the other is over-

approximated. This can happen only when ψ ≡ ψ1 ∨ψ2 or ψ ≡ E(ψ1 U ψ2 ). To ensure

that Algoritm 1 returns the direction of approximation, we take an enumerator label as an

input, which is an element from the lattice Approx . Algorithm 1 computes the direction

of approximation of each each sub-property of ψ in the top-down phase. In the top down

phase of Algorithm 1, every subproperty other than negation is assigned the same label

as the root property. That is, if a property ψ ≡ ψ1 ∨ ψ2 has to be under-approximated,

the the algorithm enforces its sub-properties ψ1 and ψ2 to be under-approximated and

thus ensuring that the join in lattice Approx exists (Line 10 Algorithm 1). In case of

negation, the label is also negated with the “¬” operator. The idea is that if label is

precise in a call to Algorithm 1 then we necessarily need to compute a precise formula

for ψi; if label is over (under) then we are free to compute either a precise or an over-

approximated (under-approximated) formula for ψi. In the bottom up phase of the

algorithm it computes the set of states that satisfies every sub-property of ψ in such

a way that the returned set of states for each call, respects the computed direction of

approximation of the particular sub-property.

In this thesis we provide a version of the routine computeGlobal that under-approximates

the set of states that satisfy EGφ. The over-approximating version of the above routine

is provided in [14] which is not the contribution of the author of this thesis.

The routines computeUntil and computeGlobal that we provide return the direction

of approximation. This returned direction may not be the same as the one provided

in the argument. For example, if label for the property EGψ1 is under , the routine

computeGlobal(M,φ1, label) may return precise if the set of states that satisfy the for-

mula EGψ1 is computed precisely. Algorithm 1 would return precise as the direction

of approximation. We assume that the enumerator approx returned by the routines

computeUntil and computeGlobal is dominated by the enumerator label . In general the

direction of approximation returned by Algorithm 1 will be v (dominated) by the enu-

merator in the argument.

Theorem 1. Given a temporal property ψ and a counter system M , let the Algorithm
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SAT (M , ψ, label) return the enumerator approx along with the formula φ that represents

the set of states that satisfy the property ψ. Then approx v label and φ approximates

the set of states that satisfy ψ in the direction given by the returned enumerator approx

provided the routines computeGlobal and computeUntil are implemented correctly. Each

routine is said to be correct if the enumerator and set of states returned by them is such

that it approximates the precise set of states that satisfy the property given to the routine

in the direction given by the enumerator returned by the routine.

Proof. We prove the above theorem by induction on height of the temporal property ψ.

Induction Hypothesis: Let ψ be a formula of height k. Then approx v label and φ =

SAT (M , ψ, label) approximates the set of states that satisfy ψ in the direction given by

the returned enumerator approx provided the routines computeGlobal and computeUntil

are implemented correctly.

Base case: ψ is a basic proposition φi. Then SAT (M , ψ, label) returns (ψ ≡ φi ∧

φreach , precise) which precisely represents the set of reachable states that satisfy ψ. Also

the returned enumerator precise v label for any label ∈ Approx .

Induction Step: Let ψ be a formula of height k+1. Then we will prove the hypothesis

case by case.

• If ψ ≡ EXψ1 or ψ ≡ ψ1 ∨ ψ2 then it is easy to see that the hypothesis holds.

• Let ψ = ¬ψ1 and (φ1, approx ) = SAT (M , ψ1 ,¬label). It is easy to see that the

set of states that satisfy ψ is given by the formula ¬φ1 ∧ φreach . By Induction

Hypothesis, approx v ¬label . By the semantics of the negation operator in which

was mentioned earlier in this section, ¬approx v label .

• Let ψ ≡ E(ψ1 U ψ2 ), (φ1, approx 1) = SAT (M , ψ1 , label) and (φ1, approx 1) =

SAT (M , ψ2 , label). Then by induction hypothesis approx 1 v label and approx 2 v

label . Since the routine computeUntil is correct, the enumerator approx 3 which

was returned by computeUntil approx 3 v label . Therefore (approx 1 t approx 2 t

approx 3) v label .
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• Let ψ ≡ EGψ1 and (φ1, approx 1) = SAT (M , ψ1 , label). approx 1 v label . Since

the same enumerator label is passed as an argument to the routine computeGlobal

and by the assumption that the routine computeGlobal is correct, the enumerator

approx 2 returned by computeGlobal is such that approx 2 v label . Therefore the

returned enumerator approx = approx 1 t approx 2 is dominated by label .





Chapter 4

Until Properties

Given a counter system M and the set of states φ1 and φ2, in this section, we give an al-

gorithm that computes the set of states that satisfy the property E(φ1 U φ2 ). Note that

Algorithm 1 requires the implementation of the routine computeUntil(M,φ1, φ2, label),

that computes the set of states that satisfy E(φ1 U φ2 ). The inputs to the routine are

the counter system M , Presburger formulas φ1 and φ2 and an enumerator label which

is an element from the lattice Approx shown in Figure 3.1. The enumerator label indi-

cates whether the set of states that satisfy E(φ1 U φ2 ) have to be computed precisely

or under-approximated. The routine returns a pair (φ, approx ) where φ represents the

set of states that satisfy the property E(φ1 U φ2 ) in the counter system M and approx

represents whether φ is precise or is an under-approximation of the set of states that

satisfy E(φ1 U φ2 ) in the counter system M .

4.1 Our Approach

Note that a state satisfies the property E(φ1 U φ2 ) if it satisfies φ2 or it satisfies φ1 and

it has a path to a state that satisfies φ2 and all states along that path satisfy φ1. To

ensure the latter, we refine the system M with the formula φ1, to obtain a refined system

M1. We use the function refineSystem(M , φ1 ) for this, which basically strengthens the

guard of each transition by conjuncting it with φ1. Now any state from which a transition

25
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can be fired in M1 must satisfy φ1. It is easy to see that the states such that there is

a path in M1 (of length ≥ 1) from the state to some state in φ2 are exactly the ones

that satisfy the property E(φ1 U φ2 ) in M . Hence our problem reduces to finding the

set of states from which we can reach φ2 in the counter system M1. There are many

reachability analysis tools which provide the routines for the same.

Algorithm 2 gives the implementation of the routine computeUntil . The algorithm

takes the system M and the set of states φ1 and φ2 (we will discuss the use of label later)

and returns the set of states φ that satisfy E(φ1 U φ2 ) in the counter system M along

with the enumerator approx indicating whether φ is precise or under-approximation or

over-approximation of the set of states that satisfy E(φ1 U φ2 ). We first refine the input

system M with respect to φ1 (Line 1) to get the new system M1. The routine preStar

(Line 2) takes a counter system M1 as the input and a set of states φ2 and returns the

set of states φ, that are predecessors of φ2 in the machine M1, along with an enumerator

indicating whether φ under-approximates or precisely represents the set of states that are

predecessors of φ2 in the machineM1. The routine preStar uses reachability analysis tools

(discussed in Sec 5.1) as a black-box. These black-boxes provide the routine pre∗(M1 , φ2 ).

These black-boxes use accelerations to compute the set of states that are reachable by

any number of iterations of a single loop in one step. They compute a growing under-

approximation of the reachable set of states and when no new reachable states are found,

they terminate and return the set of states φ that are predecessors of φ2 in the counter

system M1. The routine preStar returns these set of states along with the enumerator

precise indicating φ precisely represents the predecessors of the φ2 in the counter system

M1.

The routine preStar returns precise results whenever it terminates and returns an

under-approximation whenever termination is forced. Terminating the routine forcefully

involves premature termination of the black-box which would have computed an under-

approximation of the reachable states. Therefore, if label is under , we can choose to

forcibly terminate the black-box which computes pre∗(M1 , φ2 ) at any time, and make the

routine preStar return its under-approximated formula along with the enumerator under .



4.1. Our Approach 27

Algorithm 2 computeUntil(M,φ1, φ2, label)

Input: A counter system M , set of states φ1 and φ2 and an enumerator indciating

whether the formula E(φ1 U φ2 ) has to be computed precisely or over-approximated

or under-approximated.

Output: A set of states φ and the enumerator approx indicating whether φ is pri-

cise or under-approximation or over-approximation of the set of states that satisfy

E(φ1 U φ2 )

1: M1 ← refineSystem(M , φ1 )

2: (φ, approx )← preStar(M,φ2, label)

3: return (φ, approx )

The returned formula represents an under-approximation of the set of states that satisfy

the property E(φ1 U φ2 ). We prove our precision results in Theorem 2 and Lemma 1

later in this section. If label is over then, we can run the routine preStar(M,φ1, φ2)

till a predetermined timeout with the intention of computing a precise solution. If the

routine does not terminate in the specified timeout, then we an return (φ1 ∨ φ2,over) as

an over-approximation of the set of states that satisfy E(φ1 U φ2 ). On the other hand,

if label is precise, we have no choice but to wait for preStar to terminate.

Illustration

Consider the example system M shown in Figure 1.1 in Section 1, and the property

E((x ≥ 10 ) U (x = 10 )). The recursive calls to process the two sub-properties of this

property simply return the Presburger formulas x ≥ 10∧y ≥ 0 and x = 10∧y ≥ 0, respec-

tively. This is because any value of y less than 0 is not reachable in the system. We then

refine the system M with x ≥ 10∧y ≥ 0 to obtain a refined system M1 (i.e., conjunct x ≥

10∧ y ≥ 0 with the guards of all transitions), and compute pre∗(M1 , (x = 10 ∧ y ≥ 0 )).

The routine preStar terminates and returns (x ≥ 10 ∧ y ≥ 0, precise), which is precisely

the set of reachable states that satisfy E((x ≥ 10 ) U (x = 0 )) in the system M .
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4.2 Correctness of the routine computeUntil

In this section we prove that Algorithm 2 precisely returns the set of states that satisfy

E(φ1 U φ2 ) in the counter system M whenever the black-box preStar terminates. We

also prove in Lemma 1 that whenever the black-box is terminated prematurely we get

an under-approximation of the set of states that satisfy the property E(φ1 U φ2 ).

Theorem 2. Given a counter system M and a set of states φ1 and φ2, Algorithm 2

precisely returns the set of states that satisfy E(φ1 U φ2) provided the routine preStar

terminates.

Proof. Claim A: If a state s |= E(φ1 U φ2 ) in the counter system M then s ∈

pre∗(M1 , φ2 ) where M1 is the refinement of M with respect to φ2.

Let ψ ≡ E(φ1 U φ2 ) and let φ ≡ pre∗(M1 , φ2 ). Note that the guards of transitions in

the refined system M1 are conjuncted with φ1 and during the pre-pass it is conjuncted

with φreach , which defines the reachable set of states. Hence only reachable set of states

that satisfy φ1 satisfy the guards in the refined system M1. Let s |= ψ, and let s be

reachable in the counter machine M . Let ga = G(a) and fa = F (a) be the guards and

actions for a given transition a in the counter system M

s |= E(φ1 U φ2 )

=⇒ ∃k ≥ 0.∃s0, . . . , sk. sk |= φ2 ∧ (∀i, 0 ≤ i < k.∃a ∈ Σ. si |= ga∧

fa ∧ si |= φ1) ∧ s = s0

=⇒ ∃k ≥ 0. ∃s0, . . . , sk. sk |= φ2 ∧ (∀i, 0 ≤ i < k.∃a ∈ Σ. si |= (ga ∧ φ1)∧

fa) ∧ s = s0

=⇒ ∃k ≥ 0. ∃s0, . . . , sk. sk |= φ2 ∧ (∀i, 0 ≤ i < k.∃a1 ∈ Σ1. si |= ga1∧

fa1) ∧ s = s0

=⇒ s |= pre∗(M1 , φ2 ) (4.1)

Proof of the converse is as follows:
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Claim B: If a state s satisfies pre∗(M1 , φ2 ) then s |= E(φ1 U φ2 ) in the counter system

M where M1 is the refinement of M wrt to φ1.

s |= pre∗(M1 , φ2 )

=⇒ ∃k ≥ 0.∃s0, . . . , sk. sk |= φ2 ∧ (∀i, 0 ≤ i < k. ∃a1 ∈ Σ1. si |= ga1∧

fa1) ∧ s = s0

=⇒ ∃k ≥ 0.∃s0, . . . , sk. sk |= φ2 ∧ (∀i, 0 ≤ i < k. ∃a ∈ Σ. si |= (ga ∧ φ1)∧

fa) ∧ s = s0

=⇒ s |= E(φ1 U φ2 ) =⇒ s |= ψ (4.2)

Note that in Equations 4.1 and 4.2, ga1 = ga ∧ φ1 and fa1 = fa are the guards and

actions in the refined system M1 which is a refinement of M with respect to φ1.

Lemma 1. If routine computeUntil returns a set of states φ and the enumeration ‘under’

when termination is forced, then φ is an under-approximation of the set of states that

satisfy E(φ1 U φ2) in the counter system M .

Proof. The routine computeUntil returns the enumerator under whenever the routine

preStar is terminated forcefully. The proof of the theorem is straight froward from

Claim B in proof of Theorem 2.





Chapter 5

Computing “Global” properties

Let M = 〈Q,C,Σ, φinit , G, F 〉 be the input counter system and EGφ be a temporal

property to be verified. In this section we discuss two approaches that compute an

under-approximation of the set of states of M that satisfy the property EGφ. We begin

this section by introducing some terminology that is required to discuss these approaches.

A given counter system M = 〈Q,C,Σ, φinit , G, F 〉 is said to be flat if for every

control state q0 ∈ Q, there is at most one control state sequence q0, q1, . . . qi, q0 such that

∀j, 0 ≤ j < i. (∃a ∈ Σ. qj
a−→ qj+1) ∧ (∃b ∈ Σ. qi

b−→ q0) ∧ (@j, k. 0 ≤ j ≤ i ∧ 0 ≤ k ≤

i ∧ (j 6= k =⇒ qj 6= qk)). Informally, in a flat system all the cycles among its control

states are simple cycles.

A trace from a set of states φ (represented as traces(M , φ)) is a sequence of states

s0, s1, s2, . . . such that s0 satisfies φ and ∀i ≥ 0.∃a ∈ Σ.si
a−→ si+1. traces(M , φ) is the

set of all traces from every state in φ.

A system N = 〈Q1, C,Σ1, φ
init
1 , G1, F1〉 is said to be a pQ-flattening (flattening, in

short) of M = 〈Q,C,Σ, φinit , G, F 〉, if

• N is flat.

• There exists a mapping function pQ : Q1 → Q. That is for every q1, q1 and pQ(q1)

have the same natural number encoding.

• For every a1 ∈ Σ1 there exists a unique a ∈ Σ. such that (ga1 ≡ ga ∧ fa1 ≡ fa).

31
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That is, the guards and actions of the transitions in the flattening N are same as

the guards and actions, as the transitions in the system M .

Note that every transition a1 in the system N has a corresponding transition a in the

system M whose guards and actions are the same. Hence it is easy to see that given a set

of states φ in M , traces(N , φ) ⊆ traces(M , φ). The flattening N may not preserve the

reachable states of M either. We say that the flattening is of size k if it has k transitions.

A system N = 〈Q1, C,Σ1, φ
init
1 , G1, F1〉 is said to be a pQ-trace-flattening (trace flat-

tening in short) of M = 〈Q,C,Σ, φinit , G, F 〉 with respect to a set of states φ if

• N is a pQ-flattening of M and

• traces(N , φ) = traces(M , φ)

The system M is said to be trace-flattable with respect to a set of states φ, if there

exists a system N which is a trace-flattening of M with respect to to φ.

5.1 Introduction to some reachability analysis tools

In this section, we first define the external sub-routines that we need and also introduce

some reachability analysis tools that provide the implementation of these routines. Any

black box that provides these routines can be used in the the implementation of our

routines computeUntil and computeGlobal .

• preStar : Given a counter system M and a set of states φ the routine computeUntil

requires to compute the set of predecessors of φ (Line 2 in Algorithm 2) i.e,

pre∗(M , φ).

• compute prek(N, φ): We need a black-box compute prek which takes a counter

system N and a set of states φ and returns a Presburger formula for prek(N , φ)(k).

prek(N , φ)(k) represents the set of states that have paths of length k to some state

that satisfies φ. This black-box requires the input counter system N to be flat. This

is closely related to the black-box that computes pre∗(N , φ) because pre∗(M , φ) ≡

∃k ≥ 0. prek(N , φ)(k).
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• isTraceFlattening(M,N, φ): The routine computeGlobal requires to check whether

a system N is a trace flattening of M with respect to a set of states φ, that is, to

check whether traces(M , φ) = traces(N , φ).

We will now discuss the tools that provide the implementation of the above routines.

The tool FAST [12, 10] is one such tool. FAST provides the implementation of the

routine pre∗(M , φ). Fast terminates whenever (a) the counter system M is flat (b) for

every transition a ∈ Σ, ga is a Presburger formula and fa is an affine function of the form

s′ = As+b where A is a vector of size m×m, and b is a column vector of size m and m is

the number of counters in the system (c) multiplicative monoid ofA is finite. If the system

is not flat, then FAST generates a flattening N of M then computes pre∗(M , φ). Since a

flattening need not preserve the reachable states of the system, FAST explores different

flattenings until it finds a flattening N1 such that pre∗(N1 , φ) ≡ pre∗(M , φ), that is, the

states from which φ can be reached in both M and N are same. FAST may go into non-

termination in the process of exploring different flattenings. A premature termination of

FAST will give an under-approximation of the set of states that satisfy pre∗(M , φ). The

routine to compute pre∗(M , φ) which is incorporated in FAST necessarily terminates on

flat systems and also on systems that have a trace flattening with respect to φinit , but

also terminates on many other systems that do not have these properties, provided the

guards and actions of M adhere to the restrictions stated above. But prek(N , φ)(k) can

be computed using FAST if M is flat. Given a flat system M , during the computation of

pre∗(M , φ) FAST computes the formula for prek(M , φ)(k) and then existentially quantifies

over k to compute pre∗(M , φ). If the input system M is flat then prek(M , φ)(k) can be

computed precisely. Hence the tool FAST can be used as a black-box for computing

compute prek in flat systems.

The tool TREX another reachability analysis tool which computes the set of reachable

states on a different class of counter systems. The restrictions on the guards and actions

of the transitions of the input counter system are shown in Table 5.1. TREX provides an

implementation for the routine pre∗(M , φ). It can also be used to compute prek(M , φ)(k)

provided M is flat. But the formula returned by TREX may not be in Presburger Logic
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FAST TREX LASH

Accelerations yes yes yes

Guards Presburger xi ≤ xj + c, xi ≤ c, xi ≥ c convex sets

Actions s′ = As + b xi = xj + ci, xi = ci s′ = As + b

Automatic cycle search yes yes no

Table 5.1: Comparison of various reachability analysis tools

in all cases.

The tool LASH addresses a class of counter systems similar to FAST as shown in

Table 5.1. But it does not provide automatic cycle detection schemes which is necessary

to accelerate cycles in the input counter system. LASH provides the routine to compute

pre∗(M , φ), provided the cycles in M that need to accelerated are specified manually.

It can also be used to compute prek(M , φ)(k) of manually specified simple cycles in the

counter system M . More detailed comparisons of these tools is available in [15, 16, 17].

The third black-box that we need is isTraceFlattening(M,N, φ). Demri et al [13] give

a decision procedure to check whether a given flattening N of M is a trace-flattening of M

with respect to a set of states φ. Their decision procedure returns true if traces(M , φ) =

traces(N , φ) else they return false. We use the same decision procedure as the black-box

isTraceFlattening(M,N, φ). The implementation involves a pre∗ query on the counter

system N which is a flattening of the counter system M . Therefore an reachability

analysis tool like FAST or TREX can be used to implement this back-box provided it is

able to compute pre∗ of some set of states in the counter system N .

5.2 Implementing the routine computeGlobal(M,φ, label)

The routine computeGlobal(M,φ, label) is expected to compute the set of states that

satisfy EGφ in the counter system M . Note that the third parameter label is an element

from the lattice Approx (introduced in Section 3) that indicates the expected direction

of approximation of the set of states that satisfy the property EGφ. We provide two
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routines with different approximation capabilities and the parameter label decides which

of these routines to be chosen (discussed later). A state s in M satisfies EGφ if and

only if there is an infinite trace T ∈ traces(M , s) such that all states in T satisfy φ.

Let M1 = refineSystem(M , φ) be the refinement of M with respect to φ. A transition a

which could be fired from a state s in the system M can be fired in M1 if and only if

s |= φ. Hence every trace T1 ∈ traces(M1 , s) will be such that each state si which is not

stuck (from which there are no outgoing transitions) in T1 will satisfy φ along with the

guard of the transition. Hence any state s which satisfies EGφ in M will have atleast

one infinite path from it in M1. Hence our problem reduces to finding the set of states

that have atleast one infinite path in M1.

Recall that prek(M , φ)(k) is a Presburger formula that represents the set of states from

which there are paths of length k to some state that satisfies φ in the counter system

M . Since M1 is a refinement of M with respect to φ, prek(M1 , φ)(k) represents the set of

states which have paths of length k to a state that satisfies φ along which all states also

satisfy φ. Any state s that satisfies EGφ should have a path of infinite length in the

counter system M1. The set of states that have a path from from itself to some state that

satisfies φ for all values of k ≥ 0, are given by the formula ∀k ≥ 0. prek(M1 , φ)(k). Any

state s satisfies this formula if and only if s satisfies the property EGφ. We formally

prove this in Theorem 3. Hence our strategy will be to use the black-box compute prek

(discussed in Section 5.1) to generate a Presburger formula (in s, k) for prek(M1 , φ)(k),

and then prefix the formula with “∀k ≥ 0”. This formula will precisely represent the set

of states that satisfy the property EGφ.

Theorem 3. Given a counter system M = 〈Q,C,Σ, φinit , G, F 〉, the set of states that

satisfy the formula EGφ in M is precisely given by the set of states that satisfy the

formula ∀k ≥ 0. prek(M1 , φ)(k), where M1 = refineSystem(M , φ).

Proof. Let M1 be the refined system returned by refineSystem(M , φ). Let s be a state

in M which is reachable from φinit . Let s |= EGφ.
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s |= EGφ

=⇒ ∃s1, s2, . . . .∀i ≥ 1.∃a ∈ Σ. si |= ga ∧ fa ∧ si |= φ ∧ s = s1

=⇒ ∀k ≥ 0. ∃s1, s2, . . . , sk.∀i, 1 ≤ i < k. (∃a ∈ Σ. si |= (ga ∧ φ)∧

fa) ∧ sk |= φ ∧ s = s1 (5.1)

Since M1 is a refinement of M with respect to φ ga1 = ga∧φ and fa1 = fa are the guards

and actions of the refined system, Equation 5.1 can be rewritten as

∀k ≥ 0. ∃s1, s2, . . . , sk.∀i, 1 ≤ i < k. (∃a1 ∈ Σ1. si |= ga1∧

fa1) ∧ sk |= φ ∧ s = s1

=⇒ s |= ∀k ≥ 0. prek(M1 , φ)(k)

The converse of the theorem can be proved as follows: Let s satisfy φ ≡ ∀k ≥

0. prek(M1 , φ)(k). Let s be reachable.

=⇒ ∀k ≥ 0. ∃s1, s2, . . . , sk.∀i, 1 ≤ i < k. (∃a1 ∈ Σ1. si |= ga1∧

fa1) ∧ sk |= φ ∧ s = s1

=⇒ ∃s1, s2, . . . .∀i ≥ 1. (∃a1 ∈ Σ1. si |= ga1 ∧ fa1 ∧ si |= φ) ∧ s = s1

[ By König’s Lemma2 ]

=⇒ ∃s1, s2, . . . .∀i ≥ 1. (∃a ∈ Σ. si |= ga ∧ fa) ∧ si |= φ) ∧ s = s1

=⇒ s |= EGφ

2If G is a connected graph with infinitely many vertices such that every vertex has finite degree, then
G contains an infinitely long simple path.
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The two different techniques that we propose in this section generate a flatten-

ing N of the system M1, and then compute prek(N , φ)(k)
1. The first approach non-

deterministically chooses a flattening but the second approach systematically generates

flattenings till it finds a flattening which satisfies a certain property.

Approach 1: A simple under-approximation technique.

Let M be the given system and M1 be the refinement of M with respect to φ. If M1 is flat

we can compute prek(M1 , φ)(k) precisely by using the black-box compute prek described

in Section 5.1 and we are done. If M1 is not flat then we need to generate a flattening

N of M1 and then use the black-box to compute prek(M , φ)(k). The reason we need a

flattening is because the compute prek computes prek(M , φ)(k) precisely on flat systems.

Throughout this thesis, when we say compute prek(M , φ)(k), we mean to that we invoke

the black-box compute prek to compute prek(M , φ)(k). Note that the counter system

that is passed as an argument to the black box is always flat.

In case the input counter system M is not flat, we first refine the counter system M1

with respect to φ1. We then generate a flattening of M1. Note that there exists many

different flattenings of M and hence in both the cases we non-deterministically choose

a flattening. Let N be a flattening that was chosen non-deterministically as shown in

Algorithm 3. Since N is flat we compute prek(N , φ)(k) precisely and then append a

∀k ≥ 0 (Line 3) in front of the computed formula. The set of states that satisfy the

formula ∀k ≥ 0. prek(N , φ)(k) are precisely the set of states that satisfy the property

EGφ in the counter system N1. However this is an under-approximation of the set of

states that satisfy the formula EGψ in the counter system M . This is because the

chosen flattening N might not contain all the traces that are present in the counter

system M1 from the set of states φ. That is, N might be a flattening of M1 such that

traces(N , φ) ⊂ traces(M1 , φ).

The flattening in Line 2 of Algorithm 3 can be chosen non deterministically or any

1Instead of computing ∀kprek (N , φ)(k), any approach that computes a Presurger formula representing
the set if states that satisfy EGφ in N can be used
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Algorithm 3 computeGlobal(M,φ, label)

Input: A counter system M , Presburger formula φ and an enumerator label from the

lattice Approx and label = under .

Output: A Presburger formula φ and the enumerator under .

1: M1 ← refineSystem(M , φ).

2: Choose a flattening N of M1

3: X ≡ ∀k ≥ 0. prek(N , φ)(k).

4: return (X, under)

heuristics can be used. Also some of the black-boxes that provide routines to compute

pre∗ generate a flattening of the input counter system. Hence some of the black-boxes

that we describe in Section 5.1 can also be used to generate flattenings of the system M .

To check whether the set of states that is returned by Algorithm 3 is precise, we can

check if traces(M1 , φ− X ) = traces(N , φ− X ) (correctness of this check is discussed

later) using the black-box isTraceFlattening(M1, N, φ−X). If the black-box returns

true, then we say that the X precisely represents the set of states that satisfies the

property EGφ. Otherwise we do not have any idea whether X is precise or an under-

approximation of the set of states that satisfy EGφ. We do not incorporate this check in

this naive algorithm and we always return under . Note that the routine computeGlobal is

required to return a pair: a Presburger formula and an enumerator indicating whether the

returned formula is precise or over/under-approximation of the set of states that satisfies

EGφ. We always return the enumerator under along with the computed formula for

∀k ≥ 0. prek(N , φ)(k).

This approach is always guaranteed to terminate and it always returns the enumerator

under . The routine computeGlobal has an argument label which is passed by Algorithm 1

in Line 21. This argument can be either precise or under . Therefore this approach is

applicable if and only if the label that was passed is under . Therefore the routine satisfies

the assumption mentioned in Section 3 that the returned enumerator is always dominated

by the one given as the argument.
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y′ = y + 1

[y ≥ 0 ∧ y ≥ 0]/

x = 0 ∧ y = 0

t3

q0 q1

t2

x′ = x+ 1

[x ≥ 0 ∧ y ≥ 0]/

Figure 5.1: Refinement N1 of the system in Figure 1.3 with respect to y ≥ 0

Illustration: Consider the example counter system M shown in Figure 1.1 in Sec-

tion 1. Let EG(y ≥ 0 ) be the property to be verified. We refine the system M with

respect to y ≥ 0 and choose a flattening N as shown in Figure 5.1.

Since this system is flat, we can compute prek(N , y ≥ 0 )(k). prek(N , y ≥ 0 )(k) is

given below in Formula 5.2

∃k1, k2. ∃x′, y′. (

y′ = y + k1 ∧ x′ = x ∧ k1 ≥ 0

∧ ∀i. (0 ≤ i < k1 =⇒ y + i ≥ 0)

∧ x′′ = x′ + k2 ∧ y′′ = y′ ∧ k2 ≥ 0

∧ ∀i. (0 ≤ i < k2 =⇒ (x′ + i ≥ 0 ∧ y′ ≥ 0))

∧ k = k1 + k2 ∧ y′′ ≥ 0.) (5.2)

Formula 5.2 can be simplified to get a formula with only x, y and k as free variables.

We then conjuct the Formula 5.2 with k ≥ 0 and then universally quantify over k to

get the formula for ∀k ≥ 0. prek(N , y ≥ 0 )(k). The set of states that satisfy ∀k ≥

0. prek(N , y ≥ 0 )(k) is y ≥ 0. Note that this precisely represents the set of states that

satisfy the property EG(y ≥ 0 ) in the counter system M (though the algorithm returns

under).

As another example consider the property EG(x < 0 ∧ y ≥ 0 ) that is to be verified

in the counter system shown in Figure 5.2. The counter system has two counters x and
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[x ≥ 0]/

x′ = x− 1

[y > 0 ∧ y ≤ 10]/
y′ = y − 1

y′ = y + 1

[y ≥ 0 ∧ y < 10]/

q0

t1
t2

t4
t3x = 0 ∧ y = 0

[x ≥ 0]/

x′ = x+ 1

Figure 5.2: Counter system M

y′ = y + 1
[y ≥ 0 ∧ y < 10 ∧ x < 0]/

q0

x < 0 ∧ y ≥ 0

t31

Figure 5.3: Flattening of the counter system shown in Figure 5.2

y. This counter system differs from the one shown in Figure 1.1 in terms of values that

the counters x and y can take. In the current example, the counter x can take a value −1

in addition to positive values of x and counter y can take values between 0 and 10 only.

To model-check the counter system M shown in Figure 5.2, we first produce a flattening

N and then refine it with x < 0 ∧ y ≥ 0 as shown in Figure 5.3. We then compute

the set of states that satisfy ∀k ≥ 0 prek(N , x < 0 ∧ y ≥ 0 )(k). None of the states in

N will satisfy the formula and the algorithm returns false. This is because every trace

from a state with a counter value y ≥ 0 ends at y = 10 and traces with y > 10 does

not satisfy the guard of any of the transitions that change the value of counter y in N .

The only negative value of x which can be taken is −1 after which the value of counter

x can not be changed. Hence every trace in the counter system N will be at most of

length 11. But every state which satisfies (y ≥ 0 ∧ y ≤ 10 ∧ x < 0) actually satisfies the
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formula EGx < 0 ∧ y ≥ 0 in the counter system M . Hence the formula returned by the

approach is an under-approximation of the set of states that satisfy EG(x < 0 ∧ y ≥ 0 ).

This is mainly because N does not preserve certain important traces present in M1 (and

hence in M) .

Approach 2: Iterative method to implement the routine computeGlobal

In this section we give an implementation of computeGlobal(M,φ, label), which precisely

computes the set of states that satisfy the property EGφ whenever it terminates. Note

that Approach 1 that we proposed suffered from the limitation that we were not able to

compute precisely the set of states that satisfy EGφ in the given system M in systems

as shown in Figure 5.2. This was because of the fact that Approach 1 generates a single

flattening which may or may not preserve traces in the system. Hence we iteratively

produce different flattenings until we find the one that preserves a certain important

traces that M exhibits.

Let us say that we refine the system M with respect to φ to get a new system M1. A

naive property would ask M1 to be trace-flattable with respect to φ. That is, there exists

a flattening N of M1 such that traces(M1 , φ) = traces(N , φ) Since N is a trace-flattening

of M1 every trace in M1 is preserved in N and hence prek(M1 , φ)(k) ≡ prek(N , φ)(k).

Because N is flat, we can compute prek(N , φ)(k) precisely. This trace flattening N of M1

with respect to φ can be generated by unrolling the loops in M1 as described by Demri

et al, [13].

By generating a trace-flattening of M1 with respect to φ, all the traces in the system

M1 are equivalent to the traces in the flattening N of M1. However, by the semantics of

EGφ, we need to look for the states that have at least one infinite path in M1. Hence it

is unnecessary to preserve all traces. Hence the naive property of generating a flattening

N of M1 such that traces(M1 , φ) = traces(N , φ) can be weakened. To find a state s

that satisfies EGφ, we need to generate a flattening that has at least one infinite trace

from a state s if it exists and the flattening need not have any other trace from the

state s which was originally present in the flattening. In other words, once we generate
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a flattening N of M1 and check if all traces from the set of states that do not satisfy

EGφ in the system N are present in the counter system M1. That is we check whether

traces(M1 , φ− X ) = traces(N , φ− X ) where X represents the set of states that satisfy

EGφ in the flattening. This is because there might be a state s1 such that there is a

transition s1
a−→ s in M1 and this may be missing in N . In such a case we would miss an

infinite trace from s1 if there existed an infinite trace from the state s. Hence we need to

check whether traces from all states that do not have an infinite path in M1 are present

in N . We iteratively generate flattenings N of M1, and compute the set of states X that

satisfy ∀k ≥ 0. prek(N , φ)(k). We then check if traces(M1 , φ− X ) = traces(N , φ− X ).

If so then we return X as the precise set of states that satisfy EGφ in the counter system

M as shown in Algorithm 4. We prove the correctness of this algorithm in Theorem 4

in Section 5.4.

The algorithm first refines the input system M with respect to φ (Line 1 in Algo-

rithm 4) to get the new system M1. The algorithm iteratively produces bigger flatten-

ings of M1 (Line 5). After producing each flattening N of M1, we compute X ≡ ∀k ≥

0. prek(N , φ)(k) in each case in Line 7. Since N is flat ∀k ≥ 0. prek(N , φ)(k) can be com-

puted precisely by using the black-box to compute the formula for prek(M , φ)(k) and then

universally quantifying over k. We then check if isTraceFlattening(M,N, φ−X) holds

(Line 8). The routine isTraceFlattening(M,N, φ−X) returns true if traces(M1 , φ− X )

= traces(N , φ− X ). This is a black-box (discussed in Section 5.1) for us to check

traces(M1 , φ− X ) = traces(N , φ− X ). If yes we return X as the set of states that

satisfy EGφ along with the enumerator precise in Line 9.

Note that the way in which we enumerate the flattenings in Line 5 is not arbitrary.

We enumerate them in increasing order of length i.e, in a breadth first way. This is to

ensure the completeness property (the details of which we provide later).

The routine computeGlobal need not terminate in all cases. At any point of time the

algorithm may be forced to terminate and return X along with the enumerator under

saying that X represents the under-approximation of the set of states that satisfy EGφ.

Note that this routine can be forced to terminate only if label is under . Else we will
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Algorithm 4 computeGlobal(M,φ, label)

Input: A system M and the set of states φ and an enumerator label ∈ under , precise.

Output: A set of states X and an enumerator approx which indicates the direction of

approximation of X with respect to the set of states that satisfy EGφ in M . The

returned enumerator approx v label in the Lattice Approx

1: M1 ← refineSystem(M , φ)

2: k ← 1

3: X ← ∅

4: while not forced to terminate do

5: FLAT ← All flattenings of M1 of length k

6: for all N ∈ FLAT do

7: X ← ∀k ≥ 0.prek(N , φ)(k)

8: if isTraceFlattening(M1, N, φ−X) then

9: return (X, precise)

10: end if

11: end for

12: k ← k + 1

13: end while

14: return (X, under)

have to wait for the routine to terminate and if it terminates we return X along with the

enumerator precise. As described in Section 3 the algorithm computeGlobal is expected to

return an enumerator approx such that, approx v label , where label is the last argument

to computeGlobal . When the method is invoked with the label = under , the algorithm

returns under or precise, and when label = precise we wait for the algorithm to terminate

and return precise. Hence in both cases the value that we return is dominated by the

one given in the argument.

We discuss in detail a class of systems on which Algorithm 4 necessarily terminates

in Section 5.3. We formally prove that Algorithm 4 gives precisely the set of states

that satisfy the property EGφ whenever it terminates and under-approximates the set
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y′ = y − 1
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t4
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Figure 5.4: Refinement of counter system shown in Figure 5.2 with respect to (x <

0) ∧ (y ≥ 0)

of states that satisfy the property when it is forced to terminate in Section 5.4.

Illustration: Consider the counter system shown in Figure 5.2. Suppose we want

to model-check the property EG(x < 0 ∧ y ≥ 0 ). Note that Approach 1 returned false

which is an under-approximation of the set of states that satisfied above the property.

The set of states that satisfy the property (x < 0∧y ≥ 0) is given by φ ≡ (x < 0∧y ≥

0) is passed as the argument to the routine computeGlobal along with the machine M .

Let the enumerator label passed to the routine be precise. We first refine the system M

with φ to get the refined system M1 which is shown in Figure 5.4.

We then generate a flattening N of M1 as shown in the Figure 5.3. The flat-

tening shown in the figure is a flattening of length 1. Note that this was the same

flattening produced by Approach 1. None of the states in N would satisfy ∀k ≥

0. prek(N , (x < 0 ∧ y ≥ 0 ))(k). The set X would remain empty after Line 7 during the

first iteration of Algorithm 4. Now we call the routine isTraceFlattening(M,N, φ−X).

φ−X is the set of states given by the formula (x < 0∧y ≥ 0). Now in the counter system

N there is no transition that decrements the value of the counter y which is present in the

counter system M1. For example the transition from a state y = 1 to the state y = 0 that

was present in the counter systemM1 is missing inN . In general, every state with value of

y ≥ 0∧y ≤ 10 has a missing transition and hence a missing trace which was present in the
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q0 q1

y′ = y + 1

[y ≥ 0 ∧ y < 10 ∧ x < 0]/

[y > 0 ∧ y ≤ 10 ∧ x < 0]/

y′ = y − 1

x < 0 ∧ y ≥ 0

t31

t41

Figure 5.5: A Flattening of counter system shown in Figure 5.2

counter system M1 but not in N . Therefore the routine isTraceFlattening(M1, N, φ−X)

would return the value false indicating traces(M1 , φ− X ) 6= traces(N , φ− X ).

We therefore generate a bigger flattening of the counter systemM1 shown in Figure 5.4

during the second iteration of Algorithm 4. Let us say that we generate a new flattening

N of M1, with two control states, as shown in Figure 5.5. The transitions t31 and t41

increment and decrement the values of counter y in the system N respectively. We

compute ∀k ≥ 0. prek(N , φ)(k) where φ ≡ (x < 0 ∧ y ≥ 0). The set of states that

satisfy the formula is given by x < 0 ∧ y ≥ 0 ∧ y ≤ 10. This is because from every

value of y between 0 and 10 you can increment and decrement infinitely. Now the

routine isTraceFlattening(M,N, φ−X) will return true. This is because, the set of

states φ − X is (y ≥ 11) ∧ (x < 0) and none of these states satisfy the guard of any

transition in the counter system M1 shown in Figure 5.4. Therefore traces(M1 , φ− X ) =

traces(N , φ− X ). We then return (x < 0 ∧ y ≥ 0 ∧ y ≤ 10) along with the enumerator

precise as the set of states that satisfy the property EG(x < 0 ∧ y ≥ 0 ) in the counter

system M .

Note that the traces in the flattening N showed in Figure 5.5. The flattening does

not have have all the traces in the counter system M1. For example the trace from a

state (x = −1 ∧ y = 0)
t3−→ (x = −1 ∧ y = 1), (x = −1 ∧ y = 1)

t3−→ (x = −1 ∧ y = 2) . . .

is missing the system shown in Figure 5.5. But the state (x = −1∧ y = 0) has the trace

(x = −1 ∧ y = 0)
t31−→ (x = −1 ∧ y = 1), (x = −1 ∧ y = 1)

t31−→ (x = −1 ∧ y = 0) . . . in
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N , which is infinite. This trace is sufficent to prove that (x = −1 ∧ y = 0) satisfies

EG(x < 0 ∧ y ≥ 0 ). This is the same case for every state with x = −1 and y ≥ 0∧ y ≤

10. Therefore the flattening N is not completely trace equivalent with the counter system

M1. This is our main optimization which enables to answer global properties on a larger

class of system than trace-flattable systems.

5.3 Termination and precision characteristics of the

two approaches

In this section we give the termination characteristics of the two approaches described

in Section 5.2. Note that both approaches provide the implementation of the routine

computeGlobal .

The Approach 1 that we proposed will necessarily terminate in all cases. But it is

not clear how to determine whether the computed set of states is precise or an under-

approximation of the set of states that satisfy the property EGφ. The second approach

tries to overcome this drawback. It gives precise results whenever it terminates. But

the algorithm may go into non-termination. The algorithm may be made to terminate

forcefully and hence obtain an under-approximation of the set of states that satisfy

the property EGφ. In the rest of this section we give a comparison between the two

approaches regarding their precision.

We always return the enumerator under in Approach 1 because it is not clear how to

determine whether the set of states returned is precise or an under-approximation of the

set of states that satisfies EGφ. Let us assume that there exists some way to say whether

the returned solution by Approach 1 is precise (though the algorithm returns under).

Then, in such a case we would like to answer the question whether Approach 2 will

necessarily terminate. We now give an example of a system on which Approach 1 happens

to give a precise result (although it returns the enumerator under) but Approach 2 does

not terminate.

Therefore if Approach 2 is forced to terminate then it will give an under-approximated
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[y < x]/
y′ = y + 1

x′ = x+ 1

[x < n]/

∧n > 0

x = 0 ∧ y = 0

q0

t1

t2

Figure 5.6: Counter system M

[x ≤ n ∧ x ≥ 0]/
x′ = x+ 1 y′ = y + 1

[y < x ∧ x]/

t3

q0 q1

t2

x ≥ 0

Figure 5.7: A flattening N of the counter system M shown in Figure 5.6

solution. The second illustration in Section 5.2 gave the example of a system on which

Approach 1 computed an under-approximated result but Approach 2 computed a precise

solution. This indicates the fact that the two approaches are incomparable. Consider

the counter system shown in Figure 5.6. “n” is a parameter to the system. Note that

there is a bound on the lengths of all possible traces in the system namely, 2n. Therefore

for any set of states φ, EGφ is false. Consider the property EG(x ≥ 0 ). Approach 1

produces a flattening N and then refine it with respect to x ≥ 0, as shown in Figure 5.7.

We then compute the set of states that satisfy ∀k ≥ 0.prek(N , (x ≥ 0 ))(k). None of the

states in N will satisfy the above formula and Approach 1 returns (false, under) as the

solution. Note that false happens to be the precise answer (even though the returned

approximation enumerator does not capture this).
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Now consider Approach 2. We first refine the system M with respect to to (x ≥ 0) to

get the systemM1. Algorithm 4 iteratively generates flattenigns till it finds a flatteningN

of M1 such that traces(M1 , φ− X ) = traces(N , φ− X ), where X is the set of states that

satisfy EG(x ≥ 0 ) in N . During each such iteration the set X is computed, and in each

of those iterations X remains false. Now for the algorithm to terminate, the generated

flattening N should be such that traces(N , x ≥ 0 ) = traces(M1 , x ≥ 0 ). But such a flat-

tening N of the system M1 does not exist because the transitions t1 and t2 can be nested

arbitrarily. Thus any generated flattening N of M1 will be trace equivalent with M1 with

respect to to the set of states x ≥ 0. That is traces(N , x ≥ 0 ) 6= traces(M1 , x ≥ 0 ) for

any flattening N of M1 and hence the algorithm goes into nontermination. Therefore

Approach 2 need not always terminate whenever Approach 1 gives precise results.

5.4 Theorems on correctness and termination of Ap-

praoch 2

We now state and prove the various claims that we made earlier in this section. All the

theorems assume that the input counter system M is finite-branching. We also assume

the existance of black-box API’s that were described in Section 5.1.

In the following theorem, we prove that the routine computeGlobal precisely computes

the set of states that satisfy ∀k ≥ 0 prek(M1 , φ)(k) and therefore the set of states that

satisfy the property EGφ in the counter system M .

Theorem 4. Given a counter system M and a set of states φ, Algorithm 4 returns

precisely the set of states that satisfy EGφ in M whenever it terminates.

Proof. Let X be a Presburger formula representing a set of states in the counter system

M1, returned by Algorithm 4 upon termination.

Claim A: Consider a state s ∈ X. We will prove that s |= ∀k ≥ 0. prek(M1 , φ)(k)

where M1 is a refinement of M with respect to to φ. Then by Theorem 3, it follows that

s |= EGφ in the counter system M .
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Let N be the last flattening of M1 that was produced by Algorithm 4 prior to termi-

nation. Then, s ∈ X

=⇒ s ∈ ∀k ≥ 0. prek(N , φ)(k). Since N is a flattening of M1, traces(N , φ) ⊆

traces(M1 , φ). Therefore every state which satisfies ∀k ≥ 0. prek(N , φ)(k) will satisfy

∀k ≥ 0. prek(M1 , φ)(k).

=⇒ s |= ∀k ≥ 0. prek(M1 , φ)(k).

Then by Theorem 3, s |= EGφ in the counter system M .

Claim B: If a state s /∈ X then s 6|= EGφ in M .

Let N be the final flattening of M1 using which the set X was computed. s /∈ X

=⇒ s /∈ ∀k ≥ 0. prek(N , φ)(k). Therefore by definition of ∀k ≥ 0. prek(N , φ)(k) there is

no infinite length path in N starting from s. Now since s /∈ X and since we terminate

only when traces(M1 , φ− X ) = traces(N , φ− X ) it follows that there is no infinite

length path in M1 from the state s. Then by theorem 3 s 6|= EGφ in the counter system

M .

Theorem 4 proves that Algorithm 4 gives precisely the set of states that satisfy the

property EGφ. The following lemma states that Algorithm 4 under-approximates the

set of states that satisfy the property EGφ in the input counter system M when forced

to terminate.

Lemma 2. Given a counter system M and a set of states φ, Algorithm 4 returns an

under-approximation of the set of states that satisfy EGφ in the counter system M when

prematurely terminated.

Proof. The proof follows directly from Claim A in the proof of Theorem 4.

Theorem 4 and Lemma 2 give the characteristics of correctness and precision of

Algorithm 4, both when it terminates and when forced to terminate.

Termination characteristics of Approach 2: For the rest of this section, we give

a characterization of the class of systems on which Approach 2 necessarily terminates1.

1K Vasanta Lakshmi, who is a PhD student with Dr. K V Raghavan, has come up with this
characterization and I’m including it for the sake of completeness.
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Though the characterization is not syntactic, it helps to prove that trace-flattable systems

are a strict subset of the class of systems that satisfy the characterization.

Note that the implementation of the routine computeGlobal(M,φ, label) provided in

Approach 2 computes X, of the set of states that satisfies EGφ in the counter system

M . The algorithm terminates whenever the traces in the flattened system N from the

set of states φ−X are the same as in the system M1, which is a refinement of M with

respect to to φ. That is, traces(M1 , φ− X ) = traces(N , φ− X ). That is, by definition

of X, every state in X satisfies EGφ and every trace from a state which does not satisfy

EGφ must be present in the system M1 and its flattening N . When there exists such a

flattening N of M then Algorithm 4 will terminate. This is formally stated and proved in

Theorem 5. We then prove in Lemma 3 that trace flattable systems, that were addressed

by Demri et al [13], are a strict subset of the class of systems that are defined by the

characterization.

Theorem 5. Given a counter system M , let M1 be the refinement of M with respect to to

φ. Let X be the set of states that satisfy EGφ in M . Algorithm 4 terminates if and only

if (a) there exists a flattening N of M1 such that every state that satisfies EGφ in M has

at least one infinite trace in N (b) the systems M1 and N are trace equivalent with respect

to the set of states that do not satisfy EGφ that is traces(M1 , φ− X ) = traces(N , φ− X )

and (c)prek and pre∗ queries terminates on flattenings of M1.

Proof. Let N be a flattening of M1 such that (a) every state that satisfies EGφ in M , has

at least one of in N and (b) the systems M1 and N are such that traces(M1 , φ− X ) =

traces(N , φ− X ). Since there is at least one infinite trace from every state s in X in the

counter systemN , s ∈ ∀k ≥ 0. prek(N , φ)(k). Also traces(N , φ− X ) = traces(M1 , φ− X ).

Therefore the trace equivalence check in Line 8 in Algorithm 4 will return true and hence

algorithm will terminate. The only thing that remains to prove is that we will definitely

find such a flattening N if it exists. Note that we explore different flattenings of increas-

ing lengths in a breadth first manner. Since N is a flattening of M1, N is of finite length

and hence breadth first generation of flattenings (in Line 5) will find it.
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In the following lemma, we prove that we terminate on all trace-flattable systems.

Lemma 3. Given a counter system M , if M is trace flattable then the routine compute-

Global definitely terminates for any given φ, i.e, the class of systems that the routine

computeGlobal terminates is a strict superset of trace-flattable systems.

Proof. If the system M is trace-flattable then there exists a flattening N of M such

that traces(M , φinit) = traces(N , φinit). Let X be the set of reachable states that satisfy

EGφ in the counter system M . Due to trace equivalence, it follows that X precisely

represents the set of states that satisfy EGφ in M . Also from trace equivalence it

follows that traces(M , φ− X ) = traces(N , φ− X ). Therefore Algorithm 4 will definitely

terminate when it generates the flattening N with the precise answer X. The generation

of X is guaranteed as per Theorem 5 (Note that the algorithm may terminate even before

the system N is generated).

Also all the systems that we show in Chapter 6 including the running example shown

in Figure 1.1 are not trace-flattable and Algorithm 4 terminates on these systems. There-

fore Algorithm 4 terminates on the class of counter systems that is a strict superset of

trace-flattable systems.

Note that the characterization that we state is on the system M1. M1 is the refinement

of M with respect to to φ. The formula φ is which represents a set of states is depen-

dent on the temporal property that is provided as the input to Algorithm 1(Section 3).

Therefore the characterization we state in on the system and the temporal property. But

if the system M is trace-flattable then we terminate on any given property.





Chapter 6

Empirical Work

Many practical systems such as broadcast protocols, cache coherence protocols and syn-

chronization protocols can be modeled as counter systems. We give some practical ex-

amples of counter systems that have natural temporal properties that can be expressed

in CTL, and checked by Algorithm 1. We discuss the implementation issues and the

black-boxes used in implementing the routines computeUntil and computeGlobal .

6.1 Details of our Implementation

We have a partial implementation of Algorithm 1. The implementation is intended only

to do precise computations and hence the third argument label has to be precise in every

recursive call. We therefore omit this parameter from the input as well as the enumerator

that indicates the direction of approximation from the output. That is if the algorithm

terminates, then we will have precise results. The routine computeUntil requires black-

boxes to compute pre∗(M , φ) for a given counter system M . We use the tool FAST [12]

for implementing the black-box preStar . The implementation of this routine is complete

and is used in the evaluating all until the properties mentioned in this section.

We use Approach 2 for the implementation of the routine computeGlobal . The rou-

tine computeGlobal requires the implementation of the black-boxes compute prek and

isTraceFlattening(M,N, φ), where N is a flattening of the counter system M . The black

53
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box compute prek computes a Presburger formula prek(N , φ)(k) for the given flat counter

system N . We use the tool FAST to compute this for flat systems. For a given input

counter system M , FAST was modified to iteratively generate flattenings N of M with

increased sizes. During each iteration, we modified the acceleration engine in FAST to

return the formula for prek(N , φ)(k) for a given set of states φ. We then universally

quantify with ∀k ≥ 0 using the API’s available in the FAST toolkit. Then we use the

black-box isTraceFlattening(M,N, φ) proposed by Demri et al, [13] to check whether

traces(M , φ− X ) = traces(N , φ− X ) where X is the set of states that satisfy EGφ

in M . They do not provide this implementation and therefore we have implemented

that in the tool FAST and have modified the termination condition of FAST based

on the result of the above check. This implementation which involves computation of

∀k ≥ 0. prek(N , φ)(k) and isTraceFlattening(M,N, φ) is in the testing phase. Hence the

results for global properties that we mention in this chapter are manually simulated and

we are yet to obtain the results from the implementation.

6.2 Benchmark Examples

The systems that we consider for evaluation are mostly cache coherence protocols, broad-

cast protocols, etc. These protocols have been modeled as counter systems and are avail-

able with the FAST tool. These protocols have been studied extensively for analyzing

the safety properties (i.e, reachability). All these systems are not trace-flattable and they

do not fall in the class of systems addressed by any of the existing approaches [13, 2, 18].

We identify several natural temporal properties on these examples and we discuss each

class of these examples in detail. Though the systems were available as a part of the fast

tool, we identified the temporal properties ourself on these systems based on the domain

knowledge of the systems.

Cache Coherence Protocols: A coherency protocol is a protocol which maintains

the consistency between all the caches in a system of distributed shared memory. The

protocol maintains memory coherence according to a specific consistency model. Many
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dirty′ = 1]
valid′ = 0,

invalid ≥ 1
[invalid′ = invalid+ valid+ dirty − 1,

dirty′ = 0]
valid′ = valid+ 1,
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[invalid′ = invalid+ dirty − 1,
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dirty′ = 1]
valid′ = 0,
[invalid′ = invalid+ valid+ dirty − 1,
valid ≥ 1

t3 t2

t1

Figure 6.1: MSI Cache Coherence protocol

different cache coherence protocols can be modeled as counter systems. Each of these

protocols can be modeled as a counter system. Each cache line in a given protocol can

be in different states. The counters in the system represent number of processors in a

given state for a particular cache line. The transitions in the system represent reads

and writes by a processor whose cache line is in a specific state. For example consider

the MSI protocol shown in Figure 6.1. Each counter in this automaton Modified, Shared

and Invalid represents the number of processors in modified, shared and invalid states

for a given cache line. Transition t1 represents a read miss by a processor in invalid

state. The actions show that all processors that previously had a modified copy write to

the memory and move to an invalid state ((invalid′ = invalid + dirty − 1) ∧ (dirty′ =

0)), and the requesting processor gets a copy from memory and moves to shared state

(valid′ = valid+ 1).

We briefly discuss each cache coherence protocol and a sample temporal property on

each of these protocols. Note that all these example systems are modeled as counter

automata and are available as a part of the FAST tool.

1. SYNAPSE.fst: This automaton models the MSI cache coherence protocol. The

protocol requires that if a cache line of a processor is in a shared state then it

remains in the shared state until there is a write to the cache line along all paths.

This is a property that involves both global and until queries.
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2. MESI.fst: This protocol has a counter that models the number of processors in the

exclusive state for a given cache line in addition to the ones that were described by

the MSI protocol. The protocol requires that whenever a cache line of a processor is

in the exclusive state, no other processors have the same cache line in the modified

state along all paths. It involves a reachability query which translates to an until

query in existential normal form.

3. MOESI.fst: In addition to the four common MESI protocol states, this protocol

has a fifth ”owned” state representing a cache line that is both modified and shared.

A property that holds in this system is that a cache line in this protocol remains

in the exclusive state until a processor writes to the cache line. This is posed as an

until query.

4. DRAGON.fst: The dragon protocol is same as the MOESI cache coherence proto-

col. The shared dirty state has the same semantics as that of the owned state in

the MOESI protocol. The dirty state is similar to modified state of the MOESI

protocol. A property of this protocol is that when the cache line of every processor

is there in the shared state, it remains in the shared state until the processor in

the shared dirty state writes to the cache cache line. This is an until query in the

system.

5. Berkeley.fst: The protocol has four cache states: invalid, unowned, exclusive, and

non-exclusively owned. The invalid and the exclusive cache states have the same

meaning as in MESI protocol. The unowned state is similar to shared state of the

MESI protocol. In this protocol, a cache block in the non-exclusive owned state

may be updated only after informing other caches which result in invalidation of

cache blocks of other processors. This is expressed as a query on the next states.

6. FIREFLY.fst: The firefly protocol is similar to the MESI protocol. It differs from

MESI in the fact that a cache line is never invalidated. Therefore, in this system,

when there are no processors which have a cache line in the invalid state, the
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number of processors with their cache lines in the invalid state continues to be zero

across all execution sequences infinitely. This is a reachability query in the system.

Other systems: We now focus on the next set of examples which are specific systems

that are modeled as counter systems.

7. centralserver.fst: This is an automaton that models the client and server objects

in a client server system. There are two resources ‘C’ and ‘D’ and each of these

resources have respective queues and multiple processing units. The central server

puts every request from the the client to respective queues and allocates the re-

source when there are pending requests in the wait queue of each resource. The

values of different counters in the system model the number of pending requests in

the queue and also the number of requests that are currently being served for each

resource. There are counters that save the state of other counters when the server

is stopped and the state is restored when the server starts. A property of this client

server model is that every request for a resource from the client is be granted. If

we consider the queues and the processing units of the resource D then along all

execution paths, the processing units must be serving at least one request till there

are no more requests in the waiting queue for D. Our algorithm says that every

reachable state in this system does not satisfy this property. This is because of two

major reasons: a) The server might keep allocating the requests to the resource

C from the clients without granting the resource D even when there are pending

requests in the waiting queue of D. b) The server might be in its loop of processing

stopping and restarting without servicing both the requests. This involves both

until and global queries.

8. Lift.fst: This system models the behavior of a lift. The counters in the system

model the current floor of the lift, the floor from or to which a request was made

and the direction in which the lift is supposed to at each floor. Let us assume

that the request was from a floor that was higher than the current floor. Then

the counter which indicates the direction of movement of the lift at each floor
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should contain the value which enables the lift to move upwards till the floor from

which the request was made is reached along every possible path the lift can take.

Model-checking this property involves both until and global queries.

6.3 Results

Sl No Temporal Property Satisfying states
flattening

size

time

taken

(in ms)

1 valid ≥ 1 =⇒ A((valid ≥ 1 )U(dirty = 1 )) φreach 3 12

2 AG

 exclusive ≥ 1 =⇒

modified = 0

 φreach − 9

3 E((exclusive = 1 ) U (modified = 1 ))

((exclusive = 1 ) ∨

(modified = 1 )) ∧

φreach

− 9

4 E(φ1 U (φ2 ∨ φ3 ))† (φ1 ∨ φ2 ∨ φ3) ∧ φreach − 1

5 AX

 invalid ≥ 1 ∧

exclusive = 1


(invalid = 0) ∧

φreach ∧

(unowned+

nonexclusive ≥ 1)

− −

6 AG(invalid = 0 ) invalid = 0 ∧ φreach − 4

7 A((busyD ≥ 1 )U(waitD ≥ 1 )) (waitD ≥ 1) ∧ φreach 5 4985

8 A((a ≥ 1 )U(c = g))

((c = g)∨

((a ≥ 1) ∧ (c < g)))

∧ φreach
4 12

†φ1 =



invalid = 0 ∧

shared dirty = 0 ∧

shared ≥ 1 ∧

exclusive = 0 ∧

dirty = 0


φ2 =



invalid = 1 ∧

shared dirty = 1 ∧

shared ≥ 0 ∧

exclusive = 0 ∧

dirty = 0


φ3 =



invalid = 1 ∧

shared dirty = 0 ∧

shared ≥ 1 ∧

exclusive = 0 ∧

dirty = 0



Table 6.1: Non-Trace Flattable Counter Systems

Table 6.1 gives more information about the systems and the natural temporal prop-

erties that introduced in Section 6.2 along with certain aspects of performance of our

approach. The number in the first column represents the corresponding counter system

that was discussed in Section 6.2. The second column formally describes the property
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Counter System Temporal Property

train.fst EG((b ≥ s + 9 ) ∧ (d ≥ 9 ))

Dragon.fst EG(dirty = 0 )

Illinois.fst EG(valid >= 1 )

Futurebus.fst EG(pendingR ≥ 1 )

Futurebus.fst EG(pendingW ≥ 1 )

ttp2.fst EG(df = cf )

Table 6.2: Counter systems on which the properties are yet to be verified

these systems were expected to satisfy. The property was informally defined in Sec-

tion 6.2 along with the existing benchmark. Some properties are written in a form other

than existential normal form, mainly for the purpose of readability. These properties

were converted to properties in existential normal form before they were being evalu-

ated. The systems 1, 7 and 8 have both until and global properties. The systems 3 and 4

have until properties and system 5 has a next state property. The properties in systems

2 and 6 are reachability queries. The third column gives the set of states that satisfy

the temporal property. The fourth column indicates the flattening size. We mention it

only for global properties. The flattening size is the size of the flattening that provided

the precise result when the routine computeGlobal terminated during the evaluation of

underlying global property. Note that flattening size is the number of transitions that

are present in the flattening. For until and next state properties this was not evaluated

and hence the entry in the table is marked with a −. The final column is the time taken

by the routines computeUntil and computeGlobal measured in milliseconds.

We have identified several other systems and examples of global properties on these

systems. These examples have not been solved or using our algorithm and we will be

using these examples to evaluate the implementation. The systems are listed in Table 6.2.

The properties were taken based on the behavior of the input counter system.

We describe every system and the corresponding property of each system shown in
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Table 6.2. The first column gives the name of the counter system (as in the FAST toolkit)

and the second column gives the formal representation of the property to be verified on

these systems. All the properties involve only global queries.

1. train.fst: The counter system models the running status of a train. It indicates

control states indicate whether the train is running, stopped or is on time or is

running late. The counters together indicate whether train is speeding up, slowing

down or has stopped. One of the requirement of this systems is that should be no

path along which the train speeds up indefinitely.

2. Dragon.fst: This protocol was discussed earlier in this Section 6.2. We identify

another temporal property that there exists no processor whose cache line is in the

dirty state if there are no writes to the cache line.

3. Illinois.fst: This is same as the MESI cache coherence protocol. We want to prove

the property that the cache line remains in a shared state infinitely if there are no

writes to the cache line.

4. futurebus.fst: This is a coherence protocol for single or multibus multiprocessor

system. In this protocol, the reads and writes are not performed as and when

a read or write instruction is issued. All local read or write misses are given a

higher priority over remote read or write misses. The remote reads and writes

are queued. Therefore a requirement would be that every read and write in the

queue is eventually serviced. Therefore such a system should falsify the property

EG(pendingR ≥ 1 ) and EG(pendingW ≥ 1 ), where pendingR and pendingW are

the counters that represent the number of pending reads and writes. Each of these

is represented as a separate property in Table 6.2.

5. ttp2.fst: It models the Time Triggered Protocol (TTP) which was primarily de-

signed for vehicular and industrial applications. The detailed working and modeling

of the protocol is described in [19]. The protocol has a number of stati Therefore

we are waiting for the implementation to be completed to evaluate these systems.
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ons out of which some are faulty. In a situation where there are faulty stations,

the working stations form a clique among themselves and communicate among

other stations in the same clique. One of the requirements of the protocol is that

the counters df and cf , that represent number of faulty systems, should be equal

infinitely.

We have around 5 other systems and properties, from fast toolkit, which we would

like to verify and have not been mentioned here. These properties (along with the ones

mentioned in Table 6.2) were difficult to simulate manually. We do not have the solutions

that are expected to be returned by Algorithm 1 on these systems.





Chapter 7

Related Work

The seminal work on temporal property checking in infinite-state systems is the one by

Bouajjani et al. [2], for push-down systems. Given a CTL property E(ψ1 U ψ2 ) they

propose to refine the system with ψ1 and compute a pre∗(ψ2) on this refined system. For

a global CTL property of the form EGψ1 , they refine the system with ψ1 and compute

the set of states that satisfy ψ1 ∧ pre∗(pre(ψ1)). The structural properties of pushdown

systems ensure that these computations return the precise set of states that satisfy the

corresponding CTL property. Our refinement idea for answering “until” properties using

refinement is similar to theirs, although we compute pre∗ using a provided reachability

black box. Using an existing reachability black-box helps us to answer temporal proper-

ties in a larger class of counter systems. However, their approach for “global” properties,

when applied to counter systems directly will only return the set of states in the refined

system which are part of a concrete cycle or are in pre∗ of a concrete cycle. This in

general gives an under-approximation. The solution would not contain the set of states

that have infinitely long paths along which no state repeats. We provide two approaches

to answer “global” properties that specifically address counter systems.

The initial work in model-checking for counter systems was done by Bultan et al. [20].

They answer safety and liveness properties in counter systems. This approach is based

on symbolically encoding the transition relations and the states of counter system using

Presburger formulas. Using this representation, they answer the “next” state properties
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by doing a pre operation. For the fix-point computations of “global” and “future”

(which is a simpler case of “until” property) properties, they repeatedly apply pre and

post operations, without using any accelerations (i.e., pre∗ or post∗). These fix point

computations need not terminate in general. For instance, their algorithm will not

terminate on the example given in Section 1. They do not answer the “until” properties

in general and hence they do not address the entire fragment of CTL, which we do. Our

approach uses accelerations, which help us to terminate on a much wider class of systems

than theirs.

The closest work to ours is by Demri et al. [13]. They propose an algorithm that takes

a flat counter system M and a temporal property ψ and returns a Presburger formula

that represents the set of states in M that satisfy ψ. Their approach is as follows: first

they compute a Presburger formula φ1 which precisely represents the set of traces in

M . This, in general, is possible only with flat systems whose cycles can be accelerated.

Using φ1 they construct a Presburger formula φ2 that represents the temporal property

ψ. Finally they construct a Presburger formula φ to check if along all valid paths from

a state, φ2 holds. The set of states that satisfy φ satisfy the temporal property ψ. They

can check precisely CTL∗ properties for flat systems whose cycles can be accelerated.

They also give a semi decision procedure to model-check a fragment of CTL∗ with no

nested path quantifiers for non-flat but trace-flattable systems. They use the heuristics

in FAST to generate a flattenings of the given system M by unrolling the nested loops

in M . Once they generate a flattening N of M , they check whether traces(M , φinit) =

traces(N , φinit). They provide a decision procedure to check whether check whether a

given system M and a flattening N of M have the same set of traces from a set of input

states φi. If traces(N , φinit) = traces(N , φinit) then they model-check the system N .

Otherwise they keep on generating a new flattenings. The way FAST explores different

flattenings is breadth first. Hence they are guaranteed to find a trace flattening of the

system if one exists.

The main difference of our approach from theirs is that they are not inductive; that

is they try to answer the entire property in one go rather then solving each sub-property
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of the given temporal property on the given system M at a time. The major advantage

of this approach is that finding the set of states that satisfy the sub-property of the given

temporal property in a system M requires only that the subset of the traces in M that

are pertinent to the sub-property be preserved in N . For example if a property EGφ

has to be verified in a counter system M it is not necessary to generate the flattening

which preserves traces from the set of states that do not satisfy φ. Preserving a subset of

traces enables us to check precisely CTL on certain systems which only have flattenings

do not preserve all traces. Also, we necessarily terminate on all flat and trace flattable

systems, which is the class of systems addressed by Demri et. al [13] We are also able

to handle approximations whenever necessary, which is something they do not address.

The example discussed in Section 1 is a non-trace flattable system, on which we can

solve various properties precisely. So are the examples that we show in Section 6.

Most recently, Cook at al [21] gave an approach to model-check CTL in programs.

They first give a model-checking procedure to verify the universal fragment of CTL

(fragment of CTL with only “forall” path quantifiers) in C programs. They take a

program, a set of initial states and a temporal property ψ in the universal fragment of

CTL as input and return a boolean value. The returned value is true if all initial states

satisfy the property. Given a program P whose transition relation is R and a set of

initial states I, they first generate a program P ′, which returns false in case the initial

states of the program do not satisfy the property. They can use the program analysis

tools to infer that the program never returns false. They then extend their work in

[22] to answer the existential fragment of CTL (and hence the entire CTL). The basic

idea behind this extension is their observation that answering existential quantification

can be reduced to answering universal quantification if the state space of the system

is restricted appropriately. When an existential query is asked, instead of a universal

query, the counter example returned may be used to repeatedly prune the state space of

the system thereby finally reduce to answer the universal quantification on a restricted

state space. Their approaches for answering CTL properties have a restriction that the

transition relation has a finite number of ranking functions, i.e, the transition relations
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are disjunctively well founded. One major difference of our work from their’s is that

they address the problem of local model-checking: that is, given a set of initial states

in a transition system and a temporal property ψ, they say whether the initial states

satisfy ψ. In our case we address a more general problem of global model-checking. That

is, given a counter system M and a temporal property ψ, we find the set of states in

the counter system that satisfy the property ψ. We are currently unclear on the class of

systems on which their approach terminates and hence it is difficult for us to compare

our class of systems with theirs.

Another approach for model-checking of counter systems was proposed by Bozelli

et al. [18]. They consider temporal properties in GCCTL∗, which is the logic similar

to CTL∗, whose basic propositions in the properties are gap order constraints. These

constraints can represent the lower and upper bounds on the values of counters and

the equality or difference between pairs of counters. They prove that model-checking

the entire fragment of GCCTL∗, is undecidable. They consider temporal formulas in

E-GCCTL∗ and A-GCCTL∗ where the basic propositions are conjunctions of gap order

constraints on counters. They prove that it is decidable to model-check these formulas on

counter systems where guards and actions of transitions are conjunctions on gap-order

constraints. The logics CTL and E-GCCTL∗ as well as A-GCCTL∗ are incomparable.

The major difference about our approach and theirs is that the ability to incorporate

black-boxes. We answer CTL properties on systems for which black boxes are available

and the systems have a finite branching property. There are some gap-order systems on

which we terminate and there are gap order systems that we do not handle because they

violate the finite branching property. Our class of systems is incomparable with theirs

as gap order constraints cannot model actions of the form x′ = x + y + c. Most of the

example systems shown in Section 6 cannot be analyzed by their approach because they

use non-gap-order constraints to model their transitions.

Ball et al. [23] give a framework to create abstractions of systems such that a property

on the system can be proved to be false. They give sufficient conditions under which

various forms of temporal properties can be falsified. They do not provide an algorithm
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for model-checking.

The work on computing loop bounds by Gulwani et al. [24] proposed a loop flattening

algorithm which is close to our algorithm for finding trace flattenings of a given system.

The focus of their paper is mostly on finding precise transitive closure of programs and

they do not provide any algorithm for model-checking CTL properties.

We now discuss some literature around reachability analysis of counter automata,

which can potentially be used as black-boxes in our algorithms. Finkel et al[10], give a

class of counter systems called Finite Linear Systems, where every transition defines a

Presburger linear function on the set of counters and the multiplicative monoid generated

by the actions of the counters is finite. This class is a superset of the class of systems

considered by Boigelot [25]. They give a procedure to compute a Presburger formula

representing the transitive closure of a loop as a pre-post relation on counter values. The

acceleration techniques described by Finkel at al [10] can be used for both forward and

backward reachability analysis. These techniques are implemented in the tool FAST [26].

Comon et al [8] show that reachability is decidable for flat counter systems whose

actions are conjuncts of the form x#y+c where x, y ∈ C ∪ C ′, c ∈ Z and # ∈ {=,≥,≤}.

The class of systems that is considered by Comon et al is incomparable with ours since

they cannot express actions of the form x + y + z = c where x, y, z are counters in the

system. On the other hand the actions that they consider are relations while the actions

of the transition that we consider here are functions. Hence we cannot express an action

of the form x′ ≤ x+5. We cannot directly extend our algorithm to these class of systems

since there can be infinite branching at a node. But our algorithms can be applied to a

subclass of these systems that have finite branching property.

Ibarra et al [27, 9]. give a class of multi counter systems called reversal bounded

multi-counter machines where every counter alternates between increasing and decreasing

modes finite number of times. Reachability is decidable in reversal bounded multi counter

systems. We are yet to explore and check whether Algorithm 1 can be applied to such

systems.





Chapter 8

Key Aspects of our Approach

In this section we compare and contrast our approach with the existing techniques in

literature along with bringing out the key aspects of our approach that enable us to

perform better than existing techniques. We also describe in detail our contributions.

The inductive nature of our algorithm allows us to answer temporal properties in

systems that are not addressed by the existing techniques. All the example systems that

we consider in the thesis are neither flat nor trace-flattable systems. The approach by

Demri et al [13] needs a single “global” flattening which preserves all traces in the input

system. On the other hand we have the flexibility to explore different flattenings of M for

different sub-properties of the input temporal property each of which preserves a possibly

different subset of the traces from the input system M . This feature is possible because

of refinement. When a non-trace-flattable system is refined, the system could essentially

become flat or trace-flattable. Therefore we do better than the previous approaches which

do not use refinement even on non-nested CTL properties. Thus this is an orthogonal

contribution in addition to inductiveness. However refinement is possible only because of

the fact that the algorithm is inductive. This is because each sub-property of the input

temporal property might require a different refinement and therefore a different set of

traces which are necessary for solving a sub-property are preserved. Therefore flat and

trace-flattable systems, where reachability is decidable, are a special case for us, wherein

we terminate with precise results (like them).
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We also incorporate approximations to our algorithm. In this thesis we focus on

under-approximation routines for answering “global” and “until” properties. The exist-

ing approaches try to answer the property precisely and with that objective they might

go into non-termination. On the other hand, we try to incorporate approximations

and output the direction of approximation of the set of states that satisfy the temporal

property.

Precision, Correctness and Termination. We have proved various aspects of

correctness, precision and termination of our approach. For “until” properties we algo-

rithm gives precise results as long as the underlying reachability technique terminates

and gives precise results. However on forced termination we get under-approximated

results even in cases where black-boxes do not terminate. We give a characterization of

the set of systems on which our algorithm terminates. The set of systems that fall under

this characterization are a strict super-set of flat and trace-flattable systems which were

targeted by Demri et al [13].

For “global” properties, our two different approaches have different characteristics.

The first approach terminates in all cases and in general, gives an under-approximation

of the set set of states that satisfy the global property. The second approach need not

terminate in all cases, but when ever it terminates, it returns precisely the set of states

that satisfy the given global property. During each iteration, the algorithm computes a

the set of states that definitely satisfy the global property in the given system. Hence

forced termination of the algorithm would result in an under-approximated solution to

the set of states that satisfy the global property.

The existing techniques have the ability to give only precise results and they do not

incorporate approximations. This is because they try to answer the temporal property

at one go along the paths in the system, with the ability to give only precise answers.

Usefulness: We show that several example systems provided by other researchers [12] to

demonstrate applicability of counter systems to modeling realistic protocols are amenable

to our model-checking technique. These examples are addressed by previous reachability
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techniques [10], but are not in the class addressed by previous model-checking tech-

niques for CTL properties. The properties that we identify on these systems are natural

temporal properties. Our approaches terminate on these systems and properties, and

we precisely answer the properties in each case using FAST [12] as the black-box for

reachability analysis.





Chapter 9

Conclusions

In this thesis we give an approach to model-check CTL temporal properties on counter

systems where a reachability-analysis technique is available as a black box. Like previous

techniques, we are precise on flat and trace-flattable systems. We also terminate on

systems that are not trace-flattable. However, unlike previous techniques, we provide

approximation techniques to address systems on which we do not terminate. Note that

we provide only the under-approximation versions of the routines. The routine that over-

approximates the set of states that satisfy a global property is given by Lakshmi et al

in [14]. We also give an empirical validation of our algorithm using real world examples

and some natural temporal properties on these systems where our approach is able to

answer precisely. Existing approaches cannot answer these temporal properties on these

systems.

We would like to mention a few directions for future work. We would like to extend our

approach such that whenever the underlying reachability-analysis technique terminates

(with full precision) on a system M , then our approach also provably terminates on it

(with full precision), either for all CTL properties, or at least a significant fragment of

these properties. Secondly, we would like to expand the class of temporal properties

that we address to include LTL and CTL∗. Finally, we would also like to explore the

suitability of using other reachability analysis techniques [9, 11, 8] as a black box. The

major reason why we need to study these classes separately is that the refinements in
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our algorithm can make the refined counter system system fall out of the class of counter

system eventhough the input counter system falls within the class addressed by these

black boxes. It might be necessary to impose certain restrictions on the basic propositions

in the temporal properties and coming up with these restrictions will be a challenging

task.
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