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ABSTRACT

We propose a novel space-time descriptor for region-based
tracking which is very concise and efficient. The regions rep-
resented by covariance matrices within a temporal fragment,
are used to estimate this space-time descriptor which we call
the Eigenprofiles(EP). EP so obtained is used in estimating
the Covariance Matrix of features over spatio-temporal frag-
ments. The Second Order Statistics of spatio-temporal frag-
ments form our target model which can be adapted for varia-
tions across the video. The model being concise also allows
the use of multiple spatially overlapping fragments to repre-
sent the target. We demonstrate good tracking results on very
challenging datasets, shot under insufficient illumination con-
ditions.

Index Terms— Covariance Matrix, Eigenvectors, Track-
ing, Joint Diagonalization, Spatio-Temporal Fragment

1. INTRODUCTION

Research in tracking has aimed to build efficient appearance
models for objects that are robust to real-world challenges,
like illumination changes, variations in pose, scale, shape
etc. Efficient and concise space-time respresentation of ob-
jects being tracked is thus a challenging task. In tracking
literature, three main approaches have been proposed for tar-
get modeling. They are low-level (pixel-based), mid-level
(region-based) and high-level (parts, shape or pose based).
Low-level approaches include tracking interest points such
as SIFT [1] and high-level approaches involve building more
sophisticated models, like the individual body parts of a hu-
man, and tracking then simultaneously [2]. But in videos shot
under insufficient illumination, the individual parts are often
not visible and the frames are noisy and grainy, rendering
interest Points very unreliable. Rather, the target appears like
a blob or patch, which suggests a region-based (mid-level)
approach. Region-based tracking requires efficient region
descriptors,like Colour Histograms [3]. But a more powerful
and efficient method is the Covariance Descriptor [4], which
is used for Region tracking [5]. Covariance Descriptor of
a region in an image is the sample covariance matrix of the

feature vectors at locations within that particular region. This
descriptor has been shown to be robust to noise and scale.

In this paper, we propose a novel space-time descriptor
which we call the Eigenprofile. Estimation of EP is equivalent
to joint diagonalization of these covariance matrices and they
form a matrix of orthonormal vectors. We incrementally build
models for the target using EP, making use of the property that
the appearance is more or less constant over short sliding time
windows. We use the term spatial fragment(SF) to indicate
a region within an image, and temporal fragment(TF) as a
collection of frames within a time-window.The cube formed
by stacking the corresponding Spatial-Fragments, which are
the spatial regions containing object within a frame, within
a Time-Fragment as the Spatio-Temporal-Fragment (STF)
. The second-order statistics of these STFs form our target
model. The tracking proceeds by continuously adapting STF
models from target SFs over sliding TFs, and matching can-
didate SFs in new frames to these models.

The original Covariance Tracker [4] also models the tar-
get by a statistic of target SFs over a TF. This statistic is
the Intrinsic Mean of the SF Covariance Matrices from these
frames. Wu et al propose [6] for learning another statistic for
STFs, which is equivalent to pooling the features from target
SFs in different frames together and estimating the Covari-
ance Matrix. In tracking literature, a recent paradigm is the
fragment-based approach [7], where multiple image patches
(SFs) are used to build a template for an object within a sin-
gle frame. Increasing the number of SFs improve the track-
ing performance, but also require larger model size. Our ap-
proach provides considerable efficiency in storage, and this
efficiency can be utilized to increase the number of SFs.

2. EIGENPROFILES

Consider a TF of K frames, where we have Covariance
Matrices Ct+1, Ct+2, . . . , Ct+K for corresponding SFs. In
Video-based applications, we observe empirically that the
p-dimensional feature vectors in corresponding SFs in the
individual frames within a TF have almost identical princi-
pal components, which are nothing but the eigenvectors of



Fig. 1. schematic diagram of the tracking. We use SF models
from a TF of 5 successive frames to be build STF model, and
compare candidate SFs from the next frame with it.

the corresponding covariance matrices, ordered with respect
to the eigenvalues. Hence, we propose to approximate the
eigenbases of the {Ck} matrices with a common eigenbasis
which we call the Eigenprofile of that STF.

2.1. Estimation of the Eigenprofile

Each SF covariance matrix within a TF can be expressed
completely with its eigenvectors and eigenvalues as Ck =∑

j δkjekjekj
T . Under our hypothesis, it can be approxi-

mated by shared eigenvectors as

Ck ≈
p∑

j=1

δkjβjβj
T (1)

Here the β vectors form the EP for the STF obtained by
stacking these K SFs. Estimation of EP is nothing but Ap-
proximate Joint Diagonalization of the {Ck} matrices. There
is a family of Approximate Joint Diagonalization algorithms,
of which one is by Pham [8]. Given the Ck matrices, this
algorithm attempts to find a single matrix V to minimize the
following function

∑

k

(log(det(diag(V TCkV )))− log(det(V TCkV ))) (2)

However these algorithms do not make use of similarity of
eigenvectors of the input matrices in any way. Here, we pro-
pose to use this additional information to make an improved
estimate. We formulate the optimization problem as

min
β

t+K∑

k=t+1

‖Ck −
p∑

j=1

δkjβjβ
>
j ‖2F such that (3)

βT
j βj = 1∀j and βT

j βi = 0∀i 6= j

(4)

Writing the Lagrangian dual and solving it with respect to
β, we have

βj
TDjβj = αj (5)

where Dj =
∑t+K

k=t+1 2ψkjCk, which is a symmetric ma-
trix. The program is not convex, but a local solution is ob-
tained when we have βj as an eigenvector of Dj , for ev-
ery j. Then we require the Dj matrices for estimating the
Eigenprofile. But, we would like to have an estimate of EP
from the eigenvectors of the {Ck} matrices directly so that
we do not need to store the entire matrices. To facilitate this,
we use the observation that the corresponding eigenvectors
of the {Ck} matrices are quite identical to each other, i.e.
e(t+1)j ≈ e(t+2)j ≈ · · · ≈ e(t+K)j

Hence, we solve the following optimization problem

min
∑t+K

k=t+1 ||uj − ekj ||2 subject to
uT

j uj = 1

The solution to this is an estimate of the i-th eigenvector
of Dj , and is given by

uj =
∑

k ekj√
(
∑

k ekj)T (
∑

k ekj)
(6)

It is to be noted that the estimates uj of βj thus obtained
do not satisfy the orthogonality criteria, as required by the
definition of Eigenprofile. So, we orthonormalize them by
Gram-Schmidt procedure, to obtain orthonormal {βj}.

3. ESTIMATION OF STF COVARIANCE MATRIX

For the tracking application, we build the Covariance Matrix
C of the STF as the target model. We posit that C will have
the Eigenprofile β as eigenvectors. Hence C is given by C =∑

j σjβjβj
T . So we are now left with the estimation of its

eigenvalues σj to learn it completely.

3.1. Maximum Likelihood Estimate: EP-ML

We estimate the STF Covariance Matrix C using Maximum-
Likelihood Estimate (EP-ML). Within a temporal fragment,
the feature vectors in corresponding spatial fragments of in-
dividual frames should follow the same distribution. It is
known that sample Covariance Matrices of sample popula-
tions drawn from the same distribution follow the Wishart
Distribution. Assuming these sample covariance matrices Ck

are I.I.D., the probability of this set is given by

p({Ck}|C) = T

∏
k |Ck|

−p
2 e(−

1
2 (trace(C−1P

k Ck))

|C|K
2

(7)

By differentiating with respect to σj and equating to 0, the
M.L.E. of the eigenvalues σj from Equation 7 is given by

σj =
∑

k βj
TCkβj

K
≈

∑
k δkj

K
(8)



3.2. Low-Rank Approximation of STF Covariance Ma-
trix

For many features, including GaborFeatures which we have
used in our experiments,it is observed that the leading eigen-
values of Covariance Matrices of the SFs are considerably
larger compared to the rest, which rapidly trail off towards
zero. Equation 8 shows that the same has to hold for the
eigenvalues of the STF Covariance Matrix, and so it is pos-
sible to approximate the STF Covariance Matrix with only its
R leading eigenpairs, as Clow =

∑
1≤j≤R σjβjβj

T . Thus,
for p-dimensional features, STF model now consists of the
STF Mean Vector µ, R EP-vectors β of dimension p, and R
eigenvalues σ. Moreover we need not store the ST matrices
Ck from the frames, but only the R leading eigenvalues δk,
the corresponding eigenvectors ek and the mean vector µk of
the SF. The mean vector µ for STF can be easily obtained
from the SF mean vectors µk in the individual frames of the

TF, as µ =
∑

k nkµk∑
k nk

, nk being number of feature vectors

in the SF in k-th frame. Thus such an approximation of the
matrix results in some storage efficiency, especially when R
is considerably lower than p.

4. TRACKING

We now proceed to describe the framework of tracking we
used in the experiments. As the main aim of the paper is to
build a model and not a tracker, we restrict ourself to a simple
but effective tracking framework.

4.1. Spatio-Temporal Fragments

As mentioned earlier, in our tracking experiments we use mul-
tiple spatially overlapping fragments to model the target. We
build 9 STF models. If in a particular frame the object is
known to be located inside a tight rectangle centered at (x, y)
with length and breadth (dx, dy), the mean vector and SF Co-
variance Matrix of features from this rectangular SF are used
to build the Central Model, and 8 Peripheral Models are
obtained from the Mean Vectors and SF Covariance Matrices
of the rectangular SFs centered at (x+ δxdx/2, y + δydy/2)
with dimensions (dx, dy), where δx, δy ∈ {1, 0,−1}.

4.2. Dissimilarity Between Region Models

During tracking, given any new frame, we need to compare
the SFs at the candidate locations against the target model(s),
and report the location where the matching is the best. This
requires a measure to compare the STF model(s) to the can-
didate SF model(s). In case of our EP-based method, a STF
model consists of STF Mean Vector and STF Covariance Ma-
trix. We use the KL-Divergence as the measure of dissimi-
larity. In case of Covariance Tracker [5] and ICTL [6], the
measure is the Geodesic Distance (GD) between Covariance

Matrices. We also implemented ICTL using KL-Divergence
as this measure. We call this as ICTL2 in our results. For
Pham’s Algorithm of Joint Diagonalization [8], the measure
in Equation 2 is used. In this case, the STFs are represented
by the V matrix of 2, output by Pham’s algorithm. Since we
have 9 STF models R1, R2, . . . , R9 as mentioned above, at
each candidate location (x, y) we get 9 candidate SF mod-
els C1, C2, . . . , C9. We compare the candidate models to
the corresponding STF models to get a final score f(x, y) =∑9

i=1KL(Ri, Ci). In cases where GD or Equation 2 is used,
the function f is modified suitably.

The algorithm is described in details in the adjacent box.

Algorithm 1 Tracking Algorithm
Initialize the locations X1, X2, X3, X4, X5 of the target
and its size (δ1, δ2) in the first 5 frames.
Crop out 9 rectangular SFs around Xi and calculate their
mean and SF Matrices for 1 ≤ i ≤ 5.
Estimate the 9 STF models and save them.
for i = FirstFrame : LastFrame
choose N candidate locations
for i = 1 : N
Crop out 9 rectangular SFs corresponding to central and
peripheral models around candidate location Xi

Build the candidate SF models C1, C2, . . . , C9 from these.

Calculate f(Xi) with the respective STF models
R1, R2, . . . , R9

end for
Set the location to (X∗) where f(X∗) is minimum among
all candidate locations
Re-estimate the 9 STF models by replacing the oldest
frame in the TF with the current one
end for

5. EXPERIMENTAL EVALUATION

5.1. Datasets and Features

We have carried out experiments on 9 datasets. Of these 2 are
standard and 7 captured by us. We have used one sequence
(SEQ1) from PETS2000. SEQ2 is the publicly available Toni
dataset ( [9]) which involves tracking the face of a person in
an obscure room. The person also turns his head and there
is a sudden illumination change. SEQ3 and SEQ4 are indoor
videos of a person walking on a long corridor with a single
light. In SEQ3 the person walks into an obscure area with
sharp illumination gradient and in SEQ4 initially the light is
off, then it comes on and finally goes off again. The back-
ground also changes considerably. SEQ5-SEQ9 are all out-
door videos captured at night. In all the cases there is mini-
mal lighting, and it is difficult to distinguish the target from
the background clearly. In SEQ6, in the beginning the person



Fig. 2. SEQ3: The results shown are for EP-ML,ICTL and
Covariance Tracker from top to bottom. COV losse track at
the illumination gradient in the middle

SEQ EP-ML IVT COV ICTL ICTL2 Pham
1 0 0 0.37 0.02 0 0.63
2 0.07 0.68 0.70 0.70 0.16 0.38
3 0 0.50 0.50 0 0 0.50
4 0 0.72 0.70 0 0 0.70
5 0 0.65 0 0 0 0.08
6 0 0.42 0.93 0.93 0.93 0.93
7 0 0 0.67 0.72 0 0
8 0 0.24 0.41 0.49 0.36 0.33
9 0 0.72 0.86 0.50 0.50 0.78

Table 1. Fraction of frames in the videos where the output’s
overlap with Ground Truth is 0 pixels.

moves before an unevenly lit background. Moreover, there is
a sudden illumination change of the target due to the lights
of a passing vehicle. The videos are of varying length with
as short as 39 frames (SEQ1) to as long as 600 (SEQ2). We
used 12-dimensional Gabor Features (3scales, 4orientations)
for the sequences. In the eigenprofile-based method, only the
leading 3 eigenvectors are used for low-rank approximation
of the STF Covariance Matrix.

5.2. Benchmark Methods and Results

Since the proposed approach is region-based, and uses Co-
variance Matrices to model regions, we compare with related
approaches like Covariance Tracker and ICTL. Again, as EP
is obtained by Joint Diagonalization, we compare with an al-
ternative JD algorithm ( [8]). All these experiments were
performed under the same basic framework of features
and Tracking Algorithm, with only the STF model dif-
fering across the methods. Moreover, we also show re-
sults using IVT as in [10] which is not covariance-based,
but well-known. In the Ground Truth, the target’s locations
are specified by a tight rectangle around it. During track-
ing also, the method marks the inferred region with a rect-
angle. The number of frames in which the overlap of these
two rectangles is 0 is provided in Table 1. It can be seen
that our method EP-ML achieve the best performance in all
the 9 sequences. The code and data are available in http :
//clweb.csa.iisc.ernet.in/adway/tracking/.

Fig. 3. SEQ6: EP-ML,ICTL and Cov. Tracker from top to
bottom. The video is dark and blurred, EP-ML succeeds un-
like the rest

6. CONCLUSION

The experiments clearly show the superior performance of
the EP-based method over other approaches, under the same
framework. Moreover, the EP-estimation is also computa-
tionally far more efficient than the Covariance Tracker, which
involves an iterative algorithm at each frame to calculate the
Intrinsic Mean Matrix. Also, our method provides the addi-
tional advantage of storage-efficiency. This efficiency can be
utilized in increasing the number of spatial fragments without
increasing the memory footprint. The framework currently
does not have any motion-model, inclusion of which can turn
it into a highly accurate tracker.
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