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Abstract

In recent times there has been an explosion of online user-generated video content. This has

generated significant research interest in video analytics. Human users understand videos based

on high-level semantic concepts. However, most of the current research in video analytics are

driven by low-level features and descriptors, which often lack semantic interpretation. Existing

attempts in semantic video analytics are specialized and require additional resources like movie

scripts, which are not available for most user-generated videos. There are no general purpose

approaches to understanding videos through semantic concepts.

In this thesis we attempt to bridge this gap. We view videos as collections of entities

which are semantic visual concepts like the persons in a movie, or cars in a F1 race video.

We focus on two fundamental tasks in Video Understanding, namely summarization and scene-

discovery. Entity-driven Video Summarization and Entity-driven Scene discovery are important

open problems. They are challenging due to the spatio-temporal nature of videos, and also due

to lack of apriori information about entities. We use Bayesian nonparametric methods to solve

these problems. In the absence of external resources like scripts we utilize fundamental struc-

tural properties like temporal coherence in videos- which means that adjacent frames should

contain the same set of entities and have similar visual features. There have been no focussed

attempts to model this important property. This thesis makes several contributions in Com-

puter Vision and Bayesian nonparametrics by addressing Entity-driven Video Understanding

through temporal coherence modeling.

Temporal Coherence in videos is observed across its frames at the level of features/descriptors,

as also at semantic level. We start with an attempt to model TC at the level of features/descriptors.

A tracklet is a spatio-temporal fragment of a video- a set of spatial regions in a short sequence

(5-20) of consecutive frames, each of which enclose a particular entity. We attempt to find a

representation of tracklets to aid tracking of entities. We explore region descriptors like Covari-

ance Matrices of spatial features in individual frames. Due to temporal coherence, such matrices

from corresponding spatial regions in successive frames have nearly identical eigenvectors. We

utilize this property to model a tracklet using a covariance matrix, and use it for region-based
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Abstract

entity tracking. We propose a new method to estimate such a matrix. Our method is found

to be much more efficient and effective than alternative covariance-based methods for entity

tracking.

Next, we move to modeling temporal coherence at a semantic level, with special emphasis

on videos of movies and TV-series episodes. Each tracklet is associated with an entity (say a

particular person). Spatio-temporally close but non-overlapping tracklets are likely to belong

to the same entity, while tracklets that overlap in time can never belong to the same entity.

Our aim is to cluster the tracklets based on the entities associated with them, with the goal

of discovering the entities in a video along with all their occurrences. We argue that Bayesian

Nonparametrics is the most convenient way for this task. We propose a temporally coherent

version of Chinese Restaurant Process (TC-CRP) that can encode such constraints easily, and

results in discovery of pure clusters of tracklets, and also filter out tracklets resulting from false

detections. TC-CRP shows excellent performance on person discovery from TV-series videos.

We also discuss semantic video summarization, based on entity discovery.

Next, we consider entity-driven temporal segmentation of a video into scenes, where each

scene is characterized by the entities present in it. This is a novel appplication, as existing work

on temporal segmentation have focussed on low-level features of frames, rather than entities.

We propose EntScene: a generative model for videos based on entities and scenes, and propose

an inference algorithm based on Blocked Gibbs Sampling, for simultaneous entity discovery

and scene discovery. We compare it to alternative inference algorithms, and show significant

improvements in terms of segmentation and scene discovery.

Video representation by low-rank matrix has gained popularity recently, and has been used

for various tasks in Computer Vision. In such a representation, each column corresponds to a

frame or a single detection. Such matrices are likely to have contiguous sets of identical columns

due to temporal coherence, and hence they should be low-rank. However, we discover that none

of the existing low-rank matrix recovery algorithms are able to preserve such structures. We

study regularizers to encourage these structures for low-rank matrix recovery through convex

optimization, but note that TC-CRP-like Bayesian modeling is better for enforcing them.

We then focus our attention on modeling temporal coherence in hierarchically grouped

sequential data, such as word-tokens grouped into sentences, paragraphs, documents etc in a

text corpus. We attempt Bayesian modeling for such data, with application to multi-layer

segmentation. We first make a detailed study of existing models for such data. We present

a taxonomy for such models called Degree-of-Sharing (DoS), based on how various mixture

components are shared by the groups of data in these models. We come up with Layered

Dirichlet Process which generalizes Hierarchical Dirichlet Process to multiple layers, and can
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Abstract

also handle sequential information easily through Markovian approach. This is applied to

hierarchical co-segmentation of a set of news transcripts- into broad categories (like politics,

sports etc) and individual stories. We also propose a explicit-duration (semi-Markov) approach

for this purpose, and provide an efficient inference algorithm for this. We also discuss generative

processes for distribution matrices, where each column is a probability distribution. For this

we discuss an application: to infer the correct answers to questions on online answering forums

from opinions provided by different users.
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Chapter 1

Introduction

1.1 Motivation

The current age is popularly called the Information Age, due to the progress of digital technol-

ogy which can collect, store and process vast amount of information to create a knowledge-rich

society. Advent of the internet, and especially social media has caused an explosion of data, in-

cluding user-generated content. Such data are mainly of three different types: text, image/video

and audio. There is also multimedia data, which combines two or more of these types. Advance-

ment in the technology of database, hardware and networking has enabled the efficient storage

of such humongous amount of data over networked systems of servers, as well as fast retrieval in

response to queries. However, though a large volume of data can be expected to contain a large

amount of information/knowledge, finding these can be like looking for a proverbial needle in

a haystack unless the data is well-organized and well-represented. For example, when an user

searches a video-sharing website like Youtube with a textual query phrase, (s)he is returned

a large number of videos. Many of these videos may be totally irrelevant to the query, while

many others may be quite long, with the desired part hidden somewhere in it. Hence, the ready

availability of data does not mean ready availability of knowledge/information. To this end,

we need Data Mining and Machine Learning which can analyze the data, filter out junk, and

represent the rest in a semantically concise way, so that users can easily find the information

that they want from the ocean of data.

For efficient semantic analysis and concise representation of data, it is important to exploit

structures in the data. Some of the data in the internet is structured, having well-known and

well-defined patterns, and sometimes also having associated annotations or meta-data. But

much of the data, especially user-generated data is unstructured, where the patterns may not

be clear or well-known, and annotations are usually missing. For example, some production
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companies upload their movie videos along with textual scripts, which contain detailed informa-

tion about the characters, and also shot and scene changes. But much more often users shoot

or record movie videos directly from the television and upload these videos on the internet,

without scripts or any other meta-data. To analyze such data, we need to make use of all the

implicit structural information that we can think of.

The broad aim of this thesis is to tap into the implicit structural information for user-

generated data on the internet, and use them for semantic analysis of data. We focus on

videos and text documents. We attempt to model semantic concepts and structural information

through Bayesian methods. We demonstrate experimentally that our proposed models are

useful in several applications which may allow users to efficiently browse online content and

access the information they want.

1.2 Entities and Temporal Coherence

Raw data like a video or a text document is an ordered collection of pixels or word-tokens

respectively. But these contain some latent semantic concepts, which are useful to human

beings in making sense of the data. For example, a video may contain people, objects or

actions by which the viewers understand the video. These are semantic concepts unlike the

pixels. In this thesis, we refer to the semantic visual concepts in videos as entities.

Entities can be of various types- such as persons, all kinds of objects say aeroplane, car

or cat, or even actions such as walking or running. One video may contain entities of different

types, though an application may focus on any one type. Again, a video can contain several

entities of a single type. For example, a movie involves several persons, each of whom is an

entity of the type “person”.

To a viewer, a video is a collection of entities of different types, rather than a dense collection

of pixels. Similarly in text documents, under the collection of words there are topics. In this

thesis, we assign importance to such semantic concepts, and explore novel applications that

focus on them. However, there is no concrete definition of these, and so it may be hard to

represent them mathematically. Once this is done, the challenge is to discover or learn these

semantic concepts from the raw data, and represent and analyze the observed data in terms of

them.

Videos, audio streams, text documents etc are sequential in nature. A video is a sequence

of frames (or images), a text document is a sequence of word-tokens and an audio file is a

sequence of phonemes. Such data is a sequence of data-points each of which is associated with

a time-stamp. Each data-point can be represented with various features (depending on the

type). Sequential data has one important property: temporal coherence (TC)- which means

4



Figure 1.1: Temporal Coherence: Above, 5 successive frames of a video, all having same near-identical
visual and semantic contents. Below, the entity (car) has near-identical visual features in all frames

that temporally close datapoints are similar, and the number of datapoints where sharp changes

occur compared to neighbors are relatively few. Such similarity is usually at a semantic level,

but it may also be at a feature-level. For example, in a video successive frames are often visually

similar, especially in a movie or a TV-series where the camera tends to focus on a person while

(s)he speaks his/her dialogue, and changes in visual content can occur only when the dialogue

ends. Such similarity of visual content in successive frames is an example of feature-level

temporal coherence. Semantically, the temporal coherence comes from the fact that successive

frames (except changepoints) contain the same set of entities, like characters, objects or actions.

Such semantic-level temporal coherence is also observed in other forms of data. For example, in

a text document successive word-tokens are usually associated with a particular topic, except

at a few changepoints, which generally coincide with change of sentences or paragraphs.

The TC property can be used to greatly simplify automated analysis of such sequential

data. In a temporally coherent sequence, if the changepoints are known it is not necessary

to individually analyze all datapoints independently, as most of them will be similar to their

neighbors. Even if the changepoints are not known, the analysis of each datapoint can be more

robust to noise, as it can be reinforced with the analyses of its temporal neighbors. For example

in case of face recognition in video, even if the face in a particular frame is not well-posed and

difficult to recognize independently, we will know that it is probably the same as that in the

neighboring frames, due to TC.

Utilization of TC also greatly helps in concise representation of sequential data. Due to TC

at feature-level, sequential data contains a degree of redundancy, which can be discarded using

a more concise representation based on the appropriate features. For example, if we have 5

successive image frames that are visually similar, then the matrices of RGB values from these

images will be quite similar (entry-wise), and hence they can be represented by the mean RGB

matrices, from those of the individual images.

However, semantic-level TC is harder to model, as we must find an appropriate mathematical

representation of the semantic concept. This concept is an entity in case of a video which may
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be represented by an image, and in case of text documents the concept is a topic which can

be represented as a probability distribution over the vocabulary. However, the values of these

are not observed, and need to be learnt from the data. The utilization of TC can considerably

improve this learning, and the question is how to make the utilization. In this thesis we study

Bayesian generative models for the data, and we argue that TC can be easily modeled this

way. The semantic concepts are then learnt by Bayesian inference, which may be challenging

due to the complex nature of the models. In this thesis, we also propose appropriate inference

algorithms to this end.

1.3 Bayesian Modeling of Sequential Data

Various machine learning techniques have been considered for various applications that involve

data with some structural/sequential properties. The most prominent ones are Bayesian gen-

erative models. Such models are based on a process by which the data are assumed to have

been generated. They are quite intuitive, and so this is an attractive way of modeling data

with various structural properties, such as temporal coherence.

Bayesian models represent the latent semantic concepts by probability distributions, called

mixture components {φk}. For example, the semantic concept called “topic” for text documents

is modeled as a discrete disctribution over the vocabulary. This is based on the intuition that,

a “topic” is usually characterized by some prominent words, which can also differentiate topics.

For example, a probability distribution which gives maximum weightage to words like “Obama”,

“Senate”, “Democrat” can be interpreted as related to the semantic topic “United States Pol-

itics”, while a distribution with maximum weightage on “iceberg”, “warming”, “carbon” etc

are probably related to “Climate change”.

In a generative model, the individual data-points {Yi} are considered to be drawn from such

components Yi ∼ φZi , where Zi is the index of the component assigned to the i-th datapoint.

The exact forms of the mixture components depend on the application and the type of data

being used. The most common ones are Gaussian and Dirichlet.

The interesting questions are 1) how to assign Zi to any datapoint i? 2) how many mixture

components should be used? The first question needs to be answered in the light of the struc-

tural/sequential properties of the data. For example, if the data is grouped (like word-tokens

grouped into documents) then for each group we can have a group-specific multinomial distri-

bution, from which the Z-variables are drawn. If the data is sequential, then the distribution of

Zi should depend on the Z-values assigned to the predecessors of i. Most existing models are

Markovian, i.e. Zi depends only on Zi−1. Temporal Coherence can be modeled by adding extra

probability of Zi being same as Zi−1. Additional structural information need to be handled
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appropriately. The Z-variables take discrete values, and hence also cause a clustering of the

datapoints, within and across the groups (for example, clustering of words belonging to the

same topic). We may consider several levels of clustering in case of hierarchically grouped data

(for example, if we want to cluster the documents themselves).

An important issue is the number of components to be used. Most existing Bayesian methods

fix it to some empirical value. These models are called parametric. But generally it is not

possible to decide or fix the number of components for an unknown dataset found from the

web. It is also not feasible to try out different values and choose the best one based on data

likelihood, because of the sheer scale of the problem. We need to learn the number of topics

from the data itself. To aid this, we use the field of Bayesian Nonparametrics, which assume

potentially infinite number of components, and figure out the true number from the data.

Once the Bayesian model has been designed, the next step is to find the values of the latent

variables (like {Z} and {φ}), using which we can write the joint distributions. While direct

inference is intractable because the joint distributions are too complex, it is possible to use

approximate inference like Gibbs Sampling, where we initialize the variables and sample one

variable at a time, keeping the rest unchanged. It is difficult to sample continuous variables

like {φ}, so these are usually marginalized out, and estimated later (from the {Z}-values).

1.4 Applications and Challenges of Video and Text Data

Videos are very common in the web domain, due to popular video sharing sites like Youtube,

Dailymotion etc, as well as social media and various sports and news sites. Videos are collections

of frames, each of which is a static image. However, the successive frames usually have a lot in

common, and it is unwise to treat the frames independently. Given a video, lots of questions

may be asked: What is the video about? Who are the people appearing in it? What are the

major objects occurring in it? What are the activities shown in it? Computer Vision is the

area of Computer Science which aims to make sense of images and videos, and help to answer

such questions.

The standard approach of Computer Vision is to represent each image or video with visual

features. An image is composed of pixels which have intensity values (RGB). These values, as

well as other low-level features (complex functions of these values) can be used to represent

images and videos. These features include image gradients, SIFT points, Gabor filter outputs,

Haar features etc for images, and optical flows, 3D interest points etc for videos. Appropriate

features need to be chosen for every application. Some of the standard problems of Computer

Vision, which can be considered solved to a reasonable extent, are Face Detection (discovering

and localizing human faces in images/videos), Face Recognition (classifying human faces), de-
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Figure 1.2: Tracking: A person being tracked (with red box) across video frames

tection and recognition of various objects etc. These tasks are done by making use of various

low-level features as mentioned above. Machine Learning algorithms like Boosting, Principal

Component Analysis, SVM, Multiple Kernel Learning etc are used on these features for learn-

ing predictive models. Again, the outputs of these tasks can be used as high-level features for

various other tasks. For example, a face detector like [80] can be run on each frame of a video,

and these detected faces can be clustered/linked together to make a list of the persons present

in the video.

In this thesis, we consider three tasks regarding videos. The first one is about tracking an

entity across a video, i.e. marking/localizing its position in every frame. The most common

application is in surveillance. We consider particularly challenging scenarios with respect to

illumination- the field of view can be dark, there may be places which are more dark than

others, or there can be sudden changes in lighting (example: power-cut), and the challenge is

to continue the tracking despite these distractions. The second and third tasks are related to

TV-series or movie videos involving several entities, like persons. One task is to discover the

entities (of a particular kind, say persons) appearing in the video, along with all frames of their

occurrences. The entity discovery results can be used to summarize the video in a semantically

meaningful way. The third is about temporally segmenting the video into scenes and shots.

We define a scene as a subset of the video entities. In our work, we represent persons by their

faces, and use Face Detectors like [80].

The most common form of data in the internet is textual. This includes various documents

and articles in collections or archives, called corpus in text mining jargon. Such collections of

documents usually cover a limited number of topics. For example, the set of all papers published

in a Machine Learning conference can be considered as a corpus. They will generally talk about

a limited number of topics such as classification, clustering, deep learning, probabilistic models,

convex optimization etc. Again, the set of stories in a news website will cover a set of topics-

each related to some contemporary incident. A lot of text mining tasks are based on topics.

For example, we can classify/cluster documents into groups, each of which represents a set of

topics. A long document can also be segmented into parts, where each part is about a particular
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Figure 1.3: Person Discovery from videos: Video frames from a TV-series episode (top), and the
corresponding persons (represented by faces) (bottom)

Figure 1.4: Scene Discovery from videos: Video frames from a TV-series episode (top), and the
temporal segments representing scenes) (bottom)
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topic. Finally, if a topic can be suitably represented, then discovering the prominent topics in a

corpus can be a way of summarizing documents and/or the full corpus. Bayesian models, called

Topic Models are very popular for this type of applications. They consider a large but finite

vocabulary of words and represent each topic as a probability distribution over this vocabulary.

The idea is that each topic is characterized by a few important words, which should have higher

probability in the associated distribution. Various topic models are proposed to capture certain

specific features of the data for specific applications- like the Focused Topic Model [85] which is

designed for the situation where each document has a small set of topic which occur prominently

in that document.

In this thesis we consider textual transcripts of news broadcast on TV, radio etc. They have

a specific structure: broad news categories like politics, national affairs, sports etc come in a

fixed order of importance, and within each broad category there are individual news stories.

Our aim is to segment the transcripts into major categories and individual stories. This task

also requires learning topics.

1.5 Research Gaps

Now, we discuss how current research in Computer Vision, Text Mining and Machine Learning

are not adequate for our purpose.

1.5.1 Lack of focus on entities in Video Analytics

Video Analytics include many applications related to videos. Many of them are aimed at pro-

viding concise and comprehensive understanding of videos. These include, among others, video

summarization, video segmentation and scene discovery, detection of face, object or actions in

videos, generating textual descriptions of videos and so on. However, many of these tasks fail

to recognize that people understand videos using semantic concepts like entities.

Video summarization aims at generating a concise and representative visualization of the

video, so that people can form an idea about its content without watching it fully. But existing

methods (say [18]) provide a few keyframes, chosen based on low-level visual features, as the

summary. But these keyframes need not carry any significant information about the entities.

Some recent methods like [69] which try to bridge this gap make use of additional information

like movie scripts, which are generally unavailable for user-uploaded videos on the internet. The

same criticisms also hold good about Scene Discovery of videos. Scene Discovery proceeds by

temporally segmenting the video into shots, and trying to cluster these shots to form scenes [21].

But such segmentation and clustering are usually on the basis of low-level features of frames

and shots. The few methods which attempt to do these semantically, based on the persons
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present, again depend on scripts or other external sources of information.

Recently, there has been significant progress in object detection [27]. It is possible to detect

various types of entities throughout a video by deploying an array of entity-specific detectors,

and report the types of entities found [2]. Very recently, there have been attempts to generate

textual descriptions of videos based on these detections.But that cannot differentiate between

different entities of the same type. A face detector can locate faces, but cannot say which sets

of faces belong to the same person. We need to do further analysis like clustering using these

detections for that purpose.

1.5.2 Lack of models for Temporal Coherence in Videos

Temporal Coherence is a very important aspect of videos. This property can provide a lot of

advantage to video-based tasks compared to image-based ones. It is manifested in many ways-

at feature-level as well as at semantic level. Its potential as an implicit supervisory signal was

first recognized in [65]. Almost all existing research on videos utilizes the property at feature-

level, in some way or the other. For example, tracking is a well-studied problem in computer

vision. Tracking methods create online appearance models for the target based on the processed

frames, and try to match it in the new frame to locate the target. Thus, it exploits the property

that the target’s appearance will remain reasonably same in the new frame.

However, when it comes to modeling TC at semantic level, there have been few attempts

to do it. Recent works on face clustering or face recognition in videos rarely incorporate

the property in their generative models, and instead utilize it through pre-processing or post-

processing. For example, HMRF-based face clustering [89] first detects and tracks faces, chooses

a few representative detections from each track, carry out clustering based on appearance, finds

the most frequent cluster assignment among the representatives of each track, and assigns the

whole track to that cluster. Various generative models for different kinds of videos such as [35]

assign variables to frames independent of the assignments to its neighboring frames. While

there are some works where the models consider semantic-level TC in some way or other, such

efforts are quite disparate.

Low-rank matrix methods have recently become popular for videos. They have found ap-

plications in background subtraction [5][14], video denoising [39] and face recognition. Each

column in the matrix represents a video frame, or part of a frame (such as detection). The

rationale is that, since video frames are similar, the matrix can be modeled as low-rank. Accord-

ingly, various low-rank matrix recovery methods have been proposed. However, such methods

do not consider feature-level or semantic-level TC. While they do give decent performance on

the tasks they have been tested on, we find that they fail quite miserably in capturing TC.
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1.5.3 Lack of models for Temporal Coherence in Documents

The situation is even worse in case of text documents. There has been a tremendous amount

of research about document modeling, mostly using Bayesian models popularly called topic

models. These have been used to model various kinds of effects in text document and corpora,

such as rare topics that occur promimently in a few documents (Focused Topic Models) [85],

non-prominent topics [19], a hierarchy of topics and many more. However, a very large fraction

of these models considers a document to be a bag-of-words, where topic assignment to each

word-token (or sentence in some cases) is done independent of the assignments to its neighbors.

Very few models recognize that a document is sequentially generated, and the ordering of words

are absolutely important.

One rare work related to text that does consider topic coherence is the CFACTS model [44]

for modeling of customer reviews about products. [25] is another work aimed at segmenting

a document based on topics. But these works have not really been followed up by the topic

modeling community, and the trend of using bag-of-words representation for documents has

hardly changed. Moreover, these models are parametric, and use a fixed number of topics.

This is generally not possible for an unknown set of documents on the web, and we need to

learn the number of topics from the data itself using Bayesian nonparametrics. A Bayesian

nonparametric model called sticky HDP-HMM [30] models temporal coherence for sequential

data, but it has not been used prominently in document modeling.

1.5.4 Lack of qualitative analysis of Bayesian models

Finally, a large number of Bayesian models- both parametric and nonparametric- have been

developed over the last decade. Most of them have a general structure: they use a finite

or infinite number of mixture components, and consider that each data-point is generated

from one mixture component. There are mixture distributions to assign components to data-

points. Many of the models consider data-points that are grouped at many levels [76, 91], say

into documents, paragraphs and sentences. Apart from that, there are design choices for the

models. The mixture distributions and mixture components may or may not be shared by all the

groups. The number of components may be finite or infinite. Temporal coherence may or may

not be modeled. Specific design choices about these points can make a model suitable for some

applications but unsuitable for others. A large number of models have been proposed for various

applications, and some of them have been compared experimentally on these applications.

However, there has been no proper attempt to put these models into perspective, study the

design choices made by them, and explore the choices hitherto unexplored. Nor has there been
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any attempt to generalize the models.

1.6 Contributions of this Thesis

This thesis looks into several problems related to modeling of temporal coherence in sequential

data having various structural characteristics. It also considers a variety of applications in two

domains of data: videos and text. The thesis can broadly be divided into two parts. The

first part focuses on modeling of videos for a number of applications. The second part focuses

on Bayesian models for grouped sequential data (text documents), including ways to model

TC, and algorithms for segmentation with application to news transcripts. An additional part

focuses on Bayesian modeling of short questions and categorical answers. There is also some

overlap between the parts.

1.6.1 Video modeling and analysis

The most important contribution of this thesis is in the domain of videos. The major contri-

butions are two-fold:

1. We use entity-based representation and analysis of videos, unlike most existing works

which represent and analyze videos using low-level features. Our end-goals are also defined

in terms of entities, and we use appropriate measures. We lay special emphasis on entity-

centric videos like movies/TV-series episodes, which primarily focus on some entities (like

persons) who are few in number compared to the number of frames where they occur.

2. We emphasize the Temporal Coherence property of videos. We exploit feature-level TC

to find concise representation of the data, and model semantic-level TC to improve per-

formance on various entity-driven tasks.

The more specific contributions of this thesis regarding videos are as follows:

Tracklet-based Video Representation: A tracklet is a collection of detections of a

particular entity (a rectangular region around the entity) in a short temporal segment of a

video, usually 5-20 frames. Tracklets have been used in video literature for the past 7 years,

usually in context of tracking. An innovative aspect of our work is that we use tracklets as

our lowest unit of representation for entities in videos. In much of our work (Chapters 4,5),

we represent the video as a sequence of tracklets, each associated with an entity. The logic is

that due to feature-level TC, the detections of the same entity in successive frames are visually

almost identical, so it makes sense to club such detections together as tracklets and work with

them rather than the individual detections.
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Robust tracklet representation for Entity Tracking: For tracklet-based video mod-

eling, we need a representation for tracklets. One simple way, used in much of this work, is

to represent each individual detection as a vector of pixel intensity values and a tracklet with

the mean of such vectors. But this is not enough for some applications like continuous entity

tracking (Chapter 3) under challenging scenarios, such as when there are abrupt changes in il-

lumination, which cannot be handled by pixel intensity. For this purpose we use a more robust

descriptor for individual detections- namely covariance matrix of Gabor features. We find that

such matrices from successive frames have near-identical eigenvectors, which we approximate

with a shared basis (Eigenprofile), and use it to build a Covariance Matrix descriptor for the

tracklet.

Generative model for entities and scenes in movie/TV-series videos Most movies

and TV-series episodes are person-centric, i.e. involves a few persons who appear repeatedly.

They consist of temporal segments called scenes, each of which involves a subset of these persons.

In Chapter 5 we consider a video as a sequence of tracklets, each of which is associated with a

entity (person) and a scene. We propose a generative approach which models entities as mixture

components, tracklets as draws from these components, and scenes as sparse distributions over

components.

Bayesian nonparametric modeling of TC In videos, semantic-level TC dictates that

temporally close tracklets are more likely to have the same associated entity and scene. We

handle this in our generative model, using a Markovian approach, in Chapters 4,5.

Entity Discovery in Videos In Chapter 4, we consider the task of discovering the entities

(say persons) who appear in the videos, along with all frames where they occur. Unlike existing

methods for this task, we do not make use of meta-data like scripts, or other training videos

where the entities have been marked. This is achieved by clustering the tracklets, where each

cluster is associated with an entity. Since the number of entities is not known, the Bayesian

nonparametric approach helps to find out the suitable number of clusters to be formed. We

approach the task in three settings- once where we disregard temporal structures like scenes and

shots, once when we consider shots with known boundaries, and once when we simultaneously

discover the scene boundaries. We also consider this task on streaming videos. Further, we

show that our approach can also filter out tracklets created by false entity detections.

Entity-driven Video Summarization Video summarization methods return a few frames

(keyframes) or short segments that are considered to be representative of the whole video.

However, the representativeness is usually considered in terms of low-level features. In this work

(Chapter 4), we take an entity-driven approach to summarization, based on entity discovery

(mentioned above). Also, all video summaries are supposed to be concise and representative,
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but well-defined measures for these are absent. We define these quantities in terms of the

entities and their associated tracklets.

Entity-driven Temporal Segmentation (Scene Discovery) Videos have a hierarchical

temporal structure, as they are organized into long, heterogeneous scenes and short homoge-

neous shots. Shot changes can be detected easily by change in visual features of frames, but

scene changes are more difficult to define and detect. In Chapter 5 we define scenes in terms

of entities, and model each scene as a sparse distribution over entities. We propose algorithms

for temporal segmentation of the data where each segment should correspond to a scene.

Low-rank Matrix representation for videos Matrix-based video representations are

quite common, where each column corresponds to a frame (or part of it). Due to TC, it

is known that adjacent columns are similar, and hence the matrix is modeled as low-rank.

However, all existing approaches to low-rank matrix-based modeling try to minimize the rank

through the singular values, which does not at all capture the TC property in the columns, as we

find in Chapter 6. We try to enforce this within the existing convex optimization framework,

by adding suitable regularizers, and see a slight improvement in performance. But we see

that Bayesian non-parametric modeling of such low-rank matrices using a distribution over

the columns gives a better performance, and also considerable computational efficiency, since

it avoids the expensive step of singular value decomposition used in the convex optimization

methods.

1.6.2 Bayesian models for grouped sequential data

In the first part of the thesis , we represented a video as a sequence of tracklets. The sequence

is temporally coherent, and contains additional structure: there are subsequences (scenes) each

of which has an associated distribution over the mixture components. The aim of segmentation

is to discover these subsequences. It can also be looked upon as linear clustering of the data.

In the second part of the thesis (Chapter 7), we look at a generalized version of the problem:

Bayesian modeling for Hierarchically Grouped sequential data, where a group is a (usually pre-

defined) contiguous block of data. Our aim is multi-level clustering of the data-points as well

as the groups themselves. The main contributions are as follows:

A comparative study of Bayesian Models for Grouped Data Lots of Bayesian models

(parametric/non-parametric) have been proposed for grouped data, primarily for text applica-

tions. These include the topic models. However, these models differ from each other on issues

like how many levels of grouping they consider, to what extent they share the mixture compo-

nents (i.e. to what extent they allow clustering of the groups at different levels) and so on. In

this work we introduce a taxonomy called Degree-of-Sharing (DoS) for this kind of data, using
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which we theoretically compare various existing Bayesian models.

Markovian modeling of TC in hierarchically grouped data Most of the existing

models (which we compare above) are suitable for completely/partially exchangeable data. But

we focus on sequential data, which exhibit temporal coherence, perhaps at multiple levels of

grouping. To model TC, we attempt to tweak the existing models through a Markovian ap-

proach, which encourages each datapoint/data-group to be assigned the same mixture compo-

nents/distributions as their predecessors. This process is generalized to any number of “layers”.

We call this model as the Layered Dirichlet Process, which can also be specialized to various

existing models by adjusting settings.

Semi-Markovian modeling of TC in hierarchically grouped data Markov models

are limited in the sense that they work only locally but cannot influence the global structure

of the data. But in certain types of sequential data, a global structure is known, which must

be captured through the model. Semi-Markovian/Explicit-duration models help in some cases

like this, which we explore.

Inference Algorithms for Sequence Segmentation The above discussion on grouped

sequential data deals with the case where the groupings are known. But in case they are not, we

have a task of linear clustering/segmentation, which has already been studied in the previous

part in context of temporal segmentation of videos. Here, we consider a more generalized setting,

and study inference algorithms for the Markovian and semi-Markovian models of sequential data

that we discussed above.

Hierarchical Segmentation of news transcripts News transcripts have a hierarchical

structure: there are broad categories like politics, sports etc which appear in a fixed order,

and individual news stories within them. We want to segment them simultaneously at both

levels- i.e. into categories and individual stories. This task perfectly fits into the framework

for hierarchically grouped sequential data with unknown grouping. We compare both the

Markovian and Semi-Markovian approaches discussed above, and find the latter to be more

appropriate.

1.7 Organization of this Thesis

Finally, we describe the structure of this thesis. We define some of the terms we have used

extensively, and also the contents of the chapters.

1.7.1 Definitions

Some jargon which we have used in this work:

• Entity A semantic concept having a visual representation. Persons, various kinds of

16



objects and actions are all entities. In a particular application, we may focus on only one

type of entities, such as persons. In a movie video, each person (character) is considered

an entity. Again, in a F1-racing video, each car is an entity.

• Spatial Fragment A (usually) rectangular region in a video frame. Each spatial fragment

has a spatio-temporal location in a video, where the spatial location is its coordinates

within the frame, and its temporal location is the frame index.

• Temporal Fragment A collection of adjacent frames in a video

• Spatio-temporal Fragment A collection of spatio-temporally close spatial fragments.

They are usually from adjacent frames.

• Detection A spatial fragment in a video frame that encloses an entity. It can be found

by running an entity-specific detector such as [80, 27].

• Tracklet A spatio-temporal fragment associated with an entity. Specifically, in a tracklet

each spatial fragment encloses the entity.

• Shot A temporal fragment of a video where each frame contains the same set of entities

• Scene A temporal fragment of a video that is associated with a set of entities, which is

different from the set of entities in the neighboring frames or shots outside the TF. It is

usually a sequence of contiguous shots.

• Appearance Model A mathematical description for an entity

• Tracking Locating an entity in the frames of a video. In each new frame, it is located

by making use of its location and appearance model in the previous frames

• Entity Discovery Finding appearance models for all entities in a video, and also find

all locations of each of them

• Video Summarization Finding a concise and representative visual description of the

video. It is usually a collection of frames (called keyframes) or temporal fragments

• Entity-driven Video Summarization Finding a concise and representative visual de-

scription of the video which provides information about the entities

• Temporal Segmentation Partitioning the video into non-overlapping temporal frag-

ments
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• Scene Discovery Temporal segmentation of a video where each segment coincides with

a scene

• Grouped data Data where each data-point Yi is associated with observed group variables

(G1
i , . . . , G

L
i ). These variables are associated with levels or layers 1, 2, . . . , L.

• Hierarchically grouped data Grouped data where Gl
i = Gl

j =⇒ Gl′
i = Gl′

j where

l′ ≤ l, for every pair of datapoints (i, j). In other words, groups in a higher layer entirely

cover groups at a lower layer.

• Hierarchical clustering Associating cluster indices (Z1
i , . . . , Z

L
i ) to data-points, such

that Z l
i = Z l

j =⇒ Z l′
i = Z l′

j where l′ ≤ l, for every pair of datapoints (i, j). In other

words, clusters in a higher layer entirely cover clusters at a lower layer.

• Segmentation Associating variables Si to each data-points such that, for each datapoint

i, Si = Si−1 or Si = Si−1+1. Informally it is partitioning sequential data into non-

overlapping sets of contiguous data-points

• Hierarchical Segmentation Associating segmentation variables Sli to each datapoint

at each layer, such that Sli = Slj =⇒ Sl
′
i = Sl

′
j where l′ ≤ l, for every pair of datapoints

(i, j). In other words, segments in a higher layer entirely cover segments at a lower layer.

• News story An event of contemporary interest, which can be modeled by a probability

distribution over the vocabulary

• News category A high-level concept such as politics or sports, with which several stories

may be assoiated

• Temporal Coherence at Semantic level: The property that at any layer l, Z l
i =

Z l
prev(i) with high probability, where prev(i) is the predecessor of datapoint i defined in

some way. In various applications considered here, this may mean any of the following

depending on the concept:

1. Successive frames contain same set of entities

2. Successive tracklets associated with same set of entities

3. Successive frames associated with same shot

4. Successive shots associated with same scene

5. Successive word-tokens (or sentences) associated with same story

18



6. Successive word-tokens (or sentences) associated with same news category

• Temporal Coherence at Feature level: The property that Yi ≈ Yprev(i) with high

probability

1.7.2 Organization of the Chapters

Chapter 2 we briefly describe the relevant literature. We discuss prior work related to image

and video processing, various video analytics applications, Bayesian nonparametrics and low-

rank matrix recovery. In Chapter 3 we describe our tracklet representation, which is used

for tracking entities from videos. Chapter 4 discusses temporal coherence modeling through

Bayesian nonparametric approach, and its application to entity discovery and entity-driven

summarization. Chapter 5 presents a Bayesian nonparametric model and inference algorithms

for entity-driven scene discovery. Modeling temporal coherence in low-rank matrix based video

representations is briefly explored in Chapter 6. After that, in Chapter 7 we make a detailed

study of models for grouped sequential data, along with an application to news transcript

segmentation. Finally, in Chapter 8 we describe a Bayesian model for user expertise to elicit

correct answers from opinions provided by users.
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Chapter 2

Related Works

In this chapter, we will review some of the background material that is relevant to this thesis.

There are broadly two parts: Computer Vision and Machine Learning. In the first part we

will first look into traditional problems in videos, such as Face Detection and Representation,

Tracking, Tracklets etc. Next, we will look into modern applications of videos, that require

semantic analysis of the videos, using the tools discussed earlier. The second part of the chapter

looks at the basics of Bayesian Nonparametrics and a few introductory models, followed by a

discussion of Bayesian approach to sequence segmentation. Finally we discuss Low-rank Matrix

Recovery and Constrained Clustering.

2.1 Video Processing and Representation

A video is a collection of frames, where each frame consists of persons/objects/actions. To

understand videos we need a way of automatically detect and identify them. The big problem

is that, most of these do not have any well-defined template, by matching which they can be

detected or identified in the images. This is because of their complex appearances, and also

because of their variability. For example, if we are interested in detecting cars in images, we

are faced with the problem that cars can be of various sizes, shapes and colours. Moreover,

the same car appears different from different directions and angles, and it can also be partly

occluded. Such uncertainties make the task of detection and identification of people/objects

so difficult. Computer Vision makes use of sophisticated image features and machine learning

algorithms to learn robust models from many training examples.

2.1.1 Face/Object Detection and Representation

Face detection is the task of locating human faces in images. This is one of the most well-

researched problems in Computer Vision, and has been solved to a large extent. Today, even
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mobile phones and cameras are equipped with Face Detection software. One of the most popular

face detection algorithms is the Viola-Jones Face Detector [80], which represents image regions

using Haar-like Features, and uses a Machine Learning technique called Boosting. Given any

new image, Viola-Jones face detector examines all rectangular windows of different sizes in the

image, and classifies them as face or non-face. The final output of face detection is a set of

rectangular regions in the image, each of which is believed by the algorithm to enclose faces.

Recently detectors have been built for various other objects such as cars, aeroplanes, trees etc.

These are based on Part-based object models proposed by Felzenwalb et al [27], learnt using

Latent Variable Support Vector Machine.

The same technique for face/object detection can be applied to videos also, on a per-frame

basis. However, domain adaptation is an issue for every face/object detector, because the

set of images on which it has been trained is usually significantly different from the ones on

which it is expected to perform the detections after deployment. It has also been argued

that detectors trained on static images often give suboptimal performance on videos. Domain

adaptation methods update trained models with a few training samples, both positive and

negative, from the new domain. Domain Adaptation for detectors to videos has been studied

recently in [71] [74].

The detections from images/videos are often used as input for other tasks. For example,

detected faces may be used for face classification or clustering for person identification. For

further processing it is necessary to represent the detections. One of the simplest, and yet

quite effective representation technique is to convert the rectangular sub-images to greyscale,

scale them down to fixed dimensions and vectorize them. Thus, each detection is represented

with a vector of greyscale pixel values. In case colour information is important and should be

preserved, the images should not be converted to greyscale, but the vectorization should be

done separately for the three colour channels, and then these three vectors should be joined to

form a single long vector. This vectorization technique has been used successfully in several

recent papers related to face recognition, like [59] [87]. In case of videos, these vectors are

juxtaposed to form a matrix. The main virtue of this representation is its simplicity, while its

main drawback is that it is susceptible to illumination changes. A more robust representation

is the Covariance Matrix [79] of suitably illumination-invariant features, like Gabor filters [58].

Both pixel intensity vectors and Covariance Matrices are general enough to be used for faces

as well as different objects. Some specialized face representations like STASM [52] are also

available, which locate facial feature points, and compute feature vectors like SIFT [47] around

them.
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Figure 2.1: Corresponding Spatial fragments from 5 successive frames, each showing a person
walking, linked together to form an STF

2.1.2 Tracking and Tracklets in Videos

Tracking is the task of locating one or more objects in the successive frames of a video. Research

in tracking has aimed to build efficient appearance models for objects that are robust to real-

world challenges, like illumination changes, variations in pose, scale, shape etc. Efficient and

concise space-time representation of objects being tracked is thus a challenging task. In tracking

literature, three main approaches have been proposed for target modeling. They are low-level

(pixel-based), mid-level (region-based) and high-level (parts, shape or pose based). Low-level

approaches include tracking interest points such as SIFT [46] and high-level approaches involve

building more sophisticated models, like the individual body parts of a human, and tracking

then simultaneously [3]. But in videos shot under insufficient illumination, the individual

parts are often not visible and the frames are noisy and grainy, rendering interest Points very

unreliable. Rather, the target appears like a blob or patch, which suggests a region-based

(mid-level) approach. Region-based tracking requires efficient region descriptors,like Colour

Histograms [17]. But a more powerful and efficient method is the Covariance Descriptor [79],

which is used for Region tracking [61]. Covariance Descriptor of a region in an image is the

sample covariance matrix of the feature vectors at locations within that particular region. This

descriptor has been shown to be robust to noise and scale.

We use the term spatial fragment(SF) to indicate a region within an image, and temporal

fragment(TF) as a collection of frames within a time-window. The cube formed by stacking

the corresponding Spatial-Fragments (SF), which are the spatial regions containing object

within a frame, within a Time-Fragment (TF) as the Spatio-Temporal-Fragment (STF).

Covariance Tracker [61] models the target by a statistic of target SFs collected over a TF.

This statistic is the Geodesic Mean of the SF Covariance Matrices from these frames. Wu et al

propose [90] for learning another statistic for STFs, which is equivalent to pooling the features
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from target SFs in different frames together and estimating the Covariance Matrix.

During tracking, it is important to build an appearance model for the entity being tracked,

and continuously update it (eg. [68]). Building such appearance models not only helps in the

tracking process itself, but also in grouping the created tracks themselves, for further processing.

As an example, [73] tries to create appearance models for each object from multiple views

(which may never simultaneously appear in any frame), to improve the tracking and also for

object-level grouping of tracks.

In tracking literature, a recent paradigm is the fragment-based approach [1], where multiple

image patches (SFs) are used to build a template for an object within a single frame. Increasing

the number of SFs improve the tracking performance, but also require larger model size. An-

other recent approach [34] uses multiple images patches and their relative positions for tracking

using a discriminative learning framework - namely structured support vector machines.

Object Detection has recently seen significant developments (like [27]), and it is often

possible to have object-specific detectors. If such detectors are available for the target being

tracked, it is possible to locate the target in some frames using such a detector, and the link the

detections based on spatio-temporal locality. This approach is called Tracking by Detection( [3]).

Tracking targets over long videos is often difficult, especially if there are multiple detections

per frame. This can be solved hierarchically, by associating the detections in a short window of

frames (typically 10-20) to form tracklets [36] and then linking these tracklets from successive

windows to form tracks. Unlike normal tracking which is done online, tracking-by-detection is

usually done offline, because detectors cannot run at real-time video speed. A compromise is

to run the detector on only a subset of the frames.

A tracklet is an STF, that has an entity associated with it. Any set of spatio-temporally

close SFs from a short segment of frames, each of which encloses an entity, can be clubbed

together to form a tracklet.

2.1.3 Temporal Coherence in Videos

TC is a fundamental property of videos. As already discussed, TC can occur at both feature

level and semantic level. Most papers related to videos exploit feature-level TC in some way or

other. For example, all approaches to tracking make assumptions such as the target entities are

present in successive frames, and have similar position and appearance. Again, some papers

like [65] make use of TC as a supervisory signal. In tasks aimed at treatment of raw videos, such

as video denoising [39], temporal up-sampling [50], resizing [83], retargetting [95] etc, the aim

is to maintain temporal coherence- the similarity of successive frames- with the aim of making

the video visually aesthetic.

24



However, relatively few papers attempt to model semantic-level TC. [55] defines Temporal

Coherence at semantic level: successive frames should contain the same objects, and enforces

it using deep belief networks. Some other papers have independently tried to utilize semantic-

level TC in their models. For example, in case of label propagation [6], label assignment

is done to pixels or superpixels in a frame based on the label assignments to corresponding

pixels/superpixels in the previous frame. Again, in the video object model [16], the assignment

of object category label to each superpixel is influenced by the assignments to its spatial as

well as temporal neighbors. However, these are all disparate, and there has been no conscious

attempt at modeling this important phenomena.

2.2 Video Analytics

Person Discovery in Videos is a task which has recently received attention in Computer

Vision. Cast Listing [4] is aimed to choose a representative subset of the face detections or

face tracks in a movie/TV series episode. Another task is to label all the detections in a video,

but this requires movie scripts [98] or labeled training videos having the same characters [75].

Scene segmentation and person discovery are done simultaneously using a generative model in

[45], but once again with the help of scripts. An unsupervised version of this task is considered

in [89], which performs face clustering in presence of spatio-temporal constraints as already

discussed. For this purpose they use a Markov Random Field, and encode the constraints as

clique potentials. Another recent approach to face clustering is [92] which incorporates some

spatio-temporal constraints into subspace clustering.

Tracklet Association Tracking is a core topic in computer vision, in which a target object

is located in each frame based on appearance similarity and spatio- temporal locality. A more

advanced task is multi-target tracking [94], in which several targets are present per frame. A

tracking paradigm that is particularly helpful in multi-target tracking is tracking by detection [3],

where object-specific detectors like [27] are run per frame (or on a subset of frames), and the

detection responses are linked to form tracks. From this came the concept of tracklet [36]

which attempts to do the linking hierarchically. This requires pairwise similarity measures

between tracklets. Multi-target tracking via tracklets is usually cast as Bipartite Matching,

which is solved using Hungarian Algorithm. Tracklet association and face clustering are done

simultaneously in [88] using HMRF.

Finally, Video Summarization has been studied for a few years in the Computer Vision

community. The aim is to provide a short but comprehensive summary of videos. This summary

is usually in the form of a few keyframes, and sometimes as a short segment of the video around

these keyframes. A recent example is [18] which models a video as a matrix, each frame
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as a column, and each keyframe as a basis vector, in terms of which the other columns are

expressed. A more recent work [62] considers a kernel matrix to encode similarities between

pairs of frames, uses it for Temporal Segmentation of the video, assigns an importance label

to each of these segments using an SVM (trained from segmented and labeled videos), and

creates the summary with the important segments. However, such summaries are in terms

of low-level visual features, rather than high-level semantic features which humans use. An

attempt to bridge this gap was made in [69], which defined movie scenes and summaries in

terms of characters. This work used face detections along with movie scripts for semantic

segmentation into shots and scenes, which were used for summarization. Another attempt at

semantic summary in terms of action was attempted in [63], however they have been tried only

for short sequences, and the non-chronological nature of the summaries make them confusing.

Video Scene Discovery is another task related to temporal segmentation of videos. A

video of a movie or TV-series generally consists of many shots- short temporal segments in

which the camera is fixed and all frames show the same set of entities (say persons). A scene is

a bigger temporal segment, covering a contiguous set of shots which are semantically related.

Shot discovery and scene discovery are both temporal segmentation tasks, but the former is

easy and the latter difficult. Shot discovery can be done by linearly clustering frames based

on temporal features. Scene discovery is usually done by further clustering the shots. Various

methods have been described in [21]. Most of them cluster and link shots based on low-level

feature similarity. A few methods like [69] do attempt scene discovery in terms of characters,

but these again require movie scripts or labeled training datasets which allow them to do face

recognition of the characters.

2.3 Bayesian Nonparametrics

DP Mixture Model and Complete Exchangeability: A random measure G on Θ is

said to be distributed according to a Dirichlet Process (DP) [28] (G ∼ DP (α,H)) with base

distribution H and concentration parameter α if, for every finite partition {Θ1,Θ2, . . . ,Θk}
of Θ, (G(Θ1), G(Θ2), . . . , G(Θk)) ∼ Dir(αH(Θ1), αH(Θ2), . . . , αH(Θk)). The stick-breaking

representation shows the discreteness of draws G from a DP:

φk ∼ H; βk = β̂k

k−1∏
i=1

(1− β̂i)

β̂i ∼ Beta(1, α);G =
∑
k

βkδφk (2.1)
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We write βk ∼ GEM(α).

Given N independent draws {θi}Ni=1 from G as above, the predictive distribution of the next

draw, on integrating out G, is given by p(θN+1|θ1 . . . θN) ∝
∑K

k=1 Nkδφk + αH, where {φk}Kk=1

be the K unique values taken by {θi}Ni=1 with corresponding counts {Nk}Kk=1. This shows the

clustering nature of the DP. Using the DP as a prior results in an ‘infinite mixture model’ for

data {Yi}Ni=1 with the following generative process:

G ∼ DP (α,H); θi
iid∼ G; Yi

iid∼ F (θi), i = 1 . . . N (2.2)

where F is a measure defined over Θ. This is called the DP mixture model [28]. This can

alternatively be represented using the stick-breaking construction and integer latent variables

Zi as follows:

β ∼ GEM(α); φk ∼ H, k = 1 . . .∞ ; Zi ∼ β; Yi ∼ F (φZi), i = 1 . . . N (2.3)

An important notion for hierarchical Bayesian modeling is that of exchangeability [9, 22].

Given any assignment z = {z̄1, z̄2, . . . , z̄N} ∈ S to a sequence of random variables {ZN}, where S

is a space of sequences, exchangeability (under joint distribution P on S) defines which permu-

tations zπ = {z̄π(1), z̄π(2), . . . , z̄π(N)} of the assignment have the same probability (under P ). In

general, any notion of exchangeability E is defined using a statistic, which we call Exchangeabil-

ity Statistic SE(Z). A model, defining a joint distribution P , is said to satisfy exchangeability

E if SE(z) = SE(zπ) implies P (z) = P (zπ), for all permutations π on {1, . . . , N}.
Given a sequence Z ∈ S, define SC(Z) = {Ni}Ki=1 as the vector of counts of the K unique

values occurring in it, where Ni is the count of the ith unique value. Using SC(Z) as the

exchangeability statistic leads to the definition of Complete Exchangeability (CE), under which

all permutations are equiprobable.

De Finetti’s Theorem [20] shows that if an infinite sequence of random variables z is in-

finitely exchangeable (meaning that every finite subset is completely exchangeable) under a joint

distribution P (Z), then the joint distribution can be equivalently represented as a Bayesian hi-

erarchy:

P (Z) =

∫
θ

P (θ)
∏
i

P (Zi|θ)dθ (2.4)

It can be shown that a sequence drawn from a DP mixture model, using a similar hierarchical

generation process, satisfies Complete Exchangeability.
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HDP Mixture Model and Group Exchangeability: Now consider grouped data of the

form {Yi, Di}Ni=1, where Di ∈ {1, D} indicates the group to which Yi belongs. The Hierarchical

Dirichlet Process (HDP) [76] allows sharing of mixture components {φk} across groups using

two levels of DPs:

φk ∼ H, k = 1 . . .∞; β ∼ GEM(γ), θj ∼ DP (α, β), j = 1 . . . D

Zi ∼ θDi ; Yi ∼ F (φZi), i = 1 . . . N (2.5)

This generative procedure for the data is called the HDP mixture model. We have mod-

ified the representation to make the group variable explicit, which we can build upon for

our work. Note that the HDP can also be represented directly using measures instead of

indices. The HDP mixture model can be shown to satisfy a notion of partial exchangeability

called Group Exchangeability. For grouped data of the form {Zi, Di}Ni=1, where the Zi and Di

variables take K and D unique values respectively, define SG(z, g) = {{Nj,k}Kk=1}Dj=1, where

Nj,k =
∑N

i=1 δ(Zi, k)δ(Di, j). Group Exchangeability (GE) is characterized by the exchange-

ability statistic SG(Z,D). For GE models, all intra-group permutations are equiprobable, but

probability changes with exchange of values across groups.

Other Group Exchangeable Nonparametric Models: For grouped data {Yi, Di}Ni=1, the

Nested Dirichlet Process (NDP) [67] proposes the following generative model with two layers

of latent variables (Z2, Z1) for each data item:

φk,l ∼ H, k, l = 1 . . .∞; θ1
k ∼ GEM(β), k = 1 . . .∞; θ2 ∼ GEM(α);

Z2
g ∼ θ2, g = 1 . . . G;Z1

i ∼ θ1
Z2
Di

;Yi ∼ φZ2
Di
,Z1
i
, i = 1 . . . N (2.6)

This is hierarchical clustering, i.e. the clusters of datapoints defined by Z1 are themselves

clustered by Z2. The indices g represent such second-level clusters.

Unlike the HDP, only some groups share mixture components. Additionally, unlike the HDP

they also share distributions over these components.

The MLC-HDP [91] models hierarchically grouped data of the form {Yi, D1
i , D

2
i , D

3
i }Ni=1,

which is grouped at 3 different levels, and proposes the following generative process:

φk ∼ H, k = 1 . . .∞; β3 ∼ GEM(γ3), β2 ∼ GEM(γ2), β1 ∼ GEM(γ1);

θ3 ∼ DP (α3, β3), θ2
k ∼ DP (α2, β2), θ1

l ∼ DP (α1, β1), k, l = 1 . . .∞;

Z3
a ∼ θ3 ∀a; Z2

ab ∼ θ2
Z3
a
∀a∀b; Z1

abc ∼ θ1
Z2
ab
∀a∀b∀c; Yi ∼ φZ1

D3
i
,D2
i
,D1
i

, i = 1 . . . N
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Unlike NDP where the clusters of one level are themselves clustered, here the pre-defined

groups are clustered. Since these groups are hierarchical, the clustering is also hierarchical, but

restricted by the grouping. The indices a, b, c denote clusters at different levels of the grouping

hierarchy. Unlike NDP, here the mixture components can be shared by all groups, and two

groups can have identical distributions over these components with non-zero probability.

2.4 Bayesian Sequence Segmentation

Now we come to the segmentation problem for a sequence {Yi, Zi} where the the variables Yi

are observed while Zi ∈ {1, 2 . . .} are latent, with distribution P (Y, Z) = P (Z)P (Y |Z). Given

any assignment to the {Zi} variables, segments are defined as maximal sub-sequences (s, e)

such that Ze = Zs = Zi for s ≤ i ≤ e. Since {Zi} variables are random, a natural definition

for the segmentation problem is to first perform inference to find the optimal assignment to

{Zi} according to the posterior distribution P (Z|Y ), and then identifying segments for this

assignment. Instances of this problem include segmentation according to topics for textual

documents, and according to speaker in conversational audio. Naturally, distinguishing between

different permutations is critical for segmentation of grouped (un-grouped) data, and GE (CE)

assumptions for P (Z) are not appropriate, since all permutations are equiprobable. Therefore,

HDP (DP) mixture models are not suitable for such segmentation tasks. These call for more

discerning models that satisfy other notions of exchangeability that distinguish between different

segmentations of {Yi, Zi} represented by different assignments to {Zi}.

Markov Models To model (ungrouped) data {Yi} with such properties, the Hierarchical

Dirichlet Process- Hidden Markov Model(HDP-HMM) [30] considers the mixture components

Zi as states of an HMM with infinite state-space. This is done by identifying the groups as

well as the mixture components in the HDP with the HMM states. Now θj ∼ DP (α, β) is

considered as transition distribution for the jth state, and is used to generate the next state:

θj ∼ DP (α, β), j = 1 . . .∞; Zi ∼ θZi−1
; Yi ∼ φZi , i = 1 . . . N (2.7)

A special case of this is the Sticky HDP-HMM (sHDP-HMM) [30], which increases the prob-

ability of self-transition as θj ∼ DP (α+ κ,
αβ+κδj
α+κ

), to enforce sequential continuity of mixture

components which occur naturally in speech (where a mixture component represents a speaker)

and text (where a mixture component represents a topic). This is the Bayesian approach to

modeling Temporal Coherence. Though originally developed for single sequences, the HDP-

HMM and sHDP-HMM models can also be extended for grouped data.

Consider the following statistic: SM(Z) = ({Nij}K,Ki=1,j=1, s), where Nij is the number of
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transitions from the ith unique value to the jth unique value in the sequence Z, and Z1 = s.

Using SM as the exchangeability statistic leads to the definition of Markov Exchangeability

(ME) [22]. Intuitively, this means that two different sequences are equiprobable under the

joint distribution, if they begin with the same value and preserve the transition counts between

unique values. Representation theorems, similar to De Finetti’s theorem, exist for Markov

Exchangeability as well [22]. It can be shown that the HDP-HMM and sticky HDP-HMM

mixture models satisfy Markov Exchangeability.

Semi-Markov Models Markovian approaches like sHDP-HMM model temporal coherence

by providing additional weightage κ to the latent variable Zi−1 for each datapoint Wi. Depend-

ing on κ, long runs of Z-value are expected before a change, i.e. Zi 6= Zi−1. This way, the

Markovian approach can help to model segments, and an expected length of each segment can

also be computed. But it may be argued that such a modeling is local and not global. These

models do not define segments explicitly and the segmentation is achieved as a by-product of

the assignment of mixture components. Also in cases that where the number of segments is

fixed and known, this approach cannot ensure that the required number of segments will be

formed. To answer such criticisms there are Hidden Semi-Markov Models (HSMM) [97], also

called explicit duration models. It defines a distribution over the duration of every possible value

of Z. At point i a tuple (z, d) is sampled, which means that Zi = Zi+1 = · · · = Zi+d−1 = z.

If this sampling is done at point i, (z, d) may be drawn conditioned on Zi−1. This can also be

extended to the case where the number of states, i.e. set of possible values of Z is unknown,

where another Bayesian nonparametric model can be employed along the lines of HDP- namely

HDP-HSMM [40]. Explicit-duration models for some more complex structures in the data are

discussed in [37].

Hierarchical Models Neither sHDP-HMM nor HDP-HSMM are hierarchical model, i.e.

they associate only one latent variable Zi to each datapoint Yi. Topic Segmentation Model [24]

is a two-level hierarchical model. It represents each segment with a mixture distribution, and

each point has an associated binary variable to decide whether or not a new segment begins

from it. Each segment uses a separate distribution over the mixture components. However, it

uses a fixed number of mixture components, and does not take into account the assignment to

predecessors while assigning mixture components to the datapoints.

The main challenge for the Bayesian approach lies in the inference. Exact inference al-

gorithms have been considered for Product Partition Models [26][93] by considering a prior on

lengths of segments. However, the complex hierarchical models require approximate inference.

sHDP-HMM [29] performs inference by Gibbs Sampling, where the latent variable assignments
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to each datapoint are sampled conditioned on the assignments to its neighboring datapoints.

For Topic Segmentation Model [24] a split-merge inference algorithm is considered, where each

initial changepoint is provided a binary variable which indicates whether or not it is a true

changepoint. The inference by Gibbs Sampling involves sampling this variable along with the

mixture component assignments.

A Bayesian model for co-segmentation of sequences is the Beta Process Hidden Markov

Model (BP-HMM) [86] that considers mixture components to be shared among several se-

quences. It has been used for modeling human actions in videos. However, it is neither hierar-

chical nor does it model TC. Spatial Co-segmentation of videos using Bayesian nonparametric

framework has been studied recently [16], using Distance-dependent Chinese Restaurant Pro-

cess [8] to model spatial coherence. LaDP [53] has also been used for co-segmentation of news

transcripts.

2.5 Low-rank Matrix Recovery

A problem of great current interest in Machine Learning is low-rank matrix recovery. It finds

applications in mainly in Computer Vision, Collaborative Filtering and Recommender Systems.

The input to the problem is a matrix M , and the task is to find a low-rank matrix X that is

close to the given matrix. Generally two settings are considered:

1. Low-rank Matrix Completion: Here, the given matrix is incomplete, with entries

missing uniformly at random (in some works the uniformity assumption is relaxed). The

original task is to find a low-rank matrix that agrees with the observed entries Ω of given

matrix, i.e. XΩ = MΩ.

min
X

rank(X) such that XΩ = MΩ (2.8)

The most common application of this problem is in collaborative filtering and recom-

mender systems, like movie rating predictions [51]. The matrix is considered to be a

movie rating matrix, where Xij is the rating provided by user i to movie j. Only a small

number of movies have been rated by users, and the target is to predict the remaining.

The matrix is considered to be low-rank because it is expected that the ratings given by

users are partly correlated. The problem also finds application in Computer Vision, like

denoising of images and videos [39]. The matrix entries are pixel intensity values, and the

noisy pixels are considered to be missing. Such matrices are considered to be low-rank

because of spatio-temporal coherence of images and videos.
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2. Low-rank Matrix Extraction: Here the given matrix is supposed to be the low-rank

matrix superposed with a sparse noise matrix, and the aim is to extract the low-rank

matrix. This problem is written as

min
X

rank(X) + ||S||0 such that M = X + S (2.9)

||S||0 is the number of non-zero elements of S, and trying to minimize it is equivalent to

making S sparse, as desired.

The most important application of this problem is in background subtraction [14] in surveillance

videos. Each column corresponds to a frame. The low-rank matrix captures the background

which is still, and hence almost all the columns of this matrix should be identical. The sparse

noise matrix captures the foreground.

Other versions of this problem include cases where some columns are arbitrarily corrupted,

in addition to missing entries. The task is to detect the corrupted columns, and fill up the

missing entries in the remaining columns.

2.5.1 Convex Optimization Approach

Most common approaches to the above problems make use of convex optimization. Since rank

and sparsity are both non-convex functions, some convex relaxations are needed. It is noted

that the rank of a matrix is equal to the number of non-zero singular values, i.e. the `0 norm of

the singular value matrix. It is known that `1 norm is a good convex relaxation of the `0 norm,

hence the `1 norm of the singular values (sum of absolute values), also called the nuclear norm

(||X||∗) is used as the convex relaxation of rank in almost all the papers.

Robust Principal Component Analysis(RPCA) [14] is a procedure for low-rank matrix ex-

traction. It considers that a fully observed matrix M is the sum of a low-rank matrix X and a

sparse matrix S, and attempts to recover both (X,S) from M . For sparsity, the non-convex `0

norm is replaced by the convex `1 norm. The problem is posed as follows:

min
X,S
||X||∗ + ‖S‖1 where X + S = Y (2.10)

where ||X||∗ denotes the nuclear norm. The formulation has proven to be successful in appli-

cations like Background subtraction and face recognition [59].

The seminal papers [13] [12] about low-rank matrix completion solved this problem using

Semi-definite programming. They also provided some theoretical results, where they proved

that some matrices that satisfy certain properties can be exactly recovered with high probability,

32



when a sufficient fraction of its entries are observed. Later approaches to low-rank matrix

completion approaches usually relax the equality constraint on the observed entries. Instead

they use it in the objective function, to minimize the Frobenius norm difference on the observed

entries. The program is reduced to:

min
X
||X||∗ + γ||X −M ||2Ω (2.11)

where γ balances the two parts. This problem is often solved by proximal algorithms, which

include thresholding the singular values [11]. OPTSPACE [42] is aimed for low-rank matrix

completion from an incomplete noisy matrix Y . This proceeds by repeatedly pruning extra

entries, projecting the pruned matrix into a low-rank space and minimizing the objective func-

tion 2.12, where U , V are orthogonal matrices.

F (U, V ) = min
S

∑
(i,j)∈Ω

(Yij − (USV T )ij)
2 (2.12)

The paper [15] considers the case where some of the columns are corrupted, i.e. the noise

matrix is column-sparse. So instead of the sparsity-inducing `1 norm used for RPCA, they use

the column-sparsity inducing `2,1 norm, which is a mixed norm. It attempts to induce sparsity

in the vector whose entries are the `2 norms of the columns, in effect trying to set most of the

columns to zero. The program is given by

||X||∗ + λ||S||2,1 such that MΩ = XΩ + SΩ (2.13)

The problem is solved using Augmented Lagrange Multiplier (ALM) method.

A completely different approach is considered in [51], where the matrix X is written as

X = ABT , where A,B are thin matrices, so that X has low rank. This method proceeds by

estimating A and B by solving a series of linear equations, depending on the observed entries.

Apart from the standard nuclear norm for rank and `1 norm for sparsity, other kinds of norms

are explored in [57].

2.5.2 Bayesian Approach

These methods take a probabilistic view of Equation 2.10 and try to impose the low rank

constraints as priors. In Bayesian Robust PCA (BRPCA) [23] X is modeled as X = U(DZ)W

where U ,V are orthogonal matrices of singular vectors, D is the diagonal matrix of singular

values, and Z is a binary matrix with Beta-Bernoulli prior, to sparsify the singular values of
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X and reduce its rank. The same Beta-Bernoulli prior is also used for S. This paper discusses

handling Markovian dependency between columns of S. Various priors for the singular values

are explored in [78].

Sparse Bayesian Matrix Recovery (SBMR) [5] employs Variational methods, and models the

desired matrix as the product of two matrices, X = MNT , thus limiting the rank. Gaussian

priors are put on the columns of M and N independently. This approach can handle both

the problems of matrix extraction and completion. This method is significantly faster than

BRPCA.

2.5.3 Constrained Clustering

Independent of videos, Constrained Clustering is itself a field of research. Constraints

are usually must-link and don’t-link, which specify pairs which should be assigned the same

cluster, or must not be assigned the same cluster1. The constraints can be hard [81] or

soft/probabilistic [48]. Constrained Spectral Clustering has also been studied recently [82] [41],

which allow constrained clustering of datapoints based on arbitrary similarity measures.

1A detailed survey is found in http://www.cs.albany.edu/davidson/Publications/ KDDSlides.pdf
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Chapter 3

Concise Tracklet Representation for

Entity Tracking in Videos

3.1 About this Chapter

In this chapter, we discuss concise representation of video tracklets by exploiting feature-level

temporal coherence in videos. For this purpose, we have used the Covariance Matrix descriptor-

a robust and concise region descriptor for videos. The main application we considered is tracking

of entities in videos, which is robust to illumination conditions. This is particularly relevant in

the context of surveillance. Also, the proposed representation for video tracklets can be useful

in many other video applications.

Publications: This work has been published in IEEE International Conference on Accous-

tics, Speech and Signal Processing (ICASSP), 2012 held in Kyoto, Japan.

1. Adway Mitra, Anoop K.R., Ujwal Bonde, Chiranjib Bhattcharyya, K.R. Ramakrishnan.

Eigen-Profiles of Spatio-temporal Fragments for Adaptive Region-based Tracking, ICASSP

2012

3.2 Introduction

Tracking of entities in video is important in many applications, especially surveillance. It is

especially important for tracking methods to be robust to abrupt illumination changes and poor

illumination condition. This can be achieved only by using suitable features and descriptors

for appearance modeling of the target. At the same time, the appearance model for the target

must also be adaptive, i.e. should be progressively updated to account for gradual changes

in appearance due to changing camera angle, pose and lighting condition. This requires a
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STF/tracklet- collection of the most recent detections of the target within a short temporal

window, based on which the updated models can be computed. These detections are used to

build the updated appearance model for the target. The update is done either in every frame,

or after short intervals.

It is a challenge to build an effective appearance model using robust features which can

also be updated very efficiently. It is known that invariance to illumination can be achieved

by representing images with filter outputs as features [84].Region descriptors like Covariance

matrices of Gabor features are known to be robust to illumination, but need to be estimated

properly for effective update of the model. Also, in a new frame, several candidate target

SFs are sampled based on the target’s movement model, and we need an effective measure

to compare each candidate SF with the target appearance model. Existing tracking methods

based on Covariance Matrices like Covariance Tracker [61] and Incremental Covariance Tensor

Learning [90] keep updating the entity appearance models in each frame based on STFs, i.e. the

target detections in the past few frames. Covariance Tracker computes the Intrinsic Mean of the

covariance matrices from the individual target SFs in the most recent frames (in a TF), and uses

this as the tracklet covariance matrix. Candidate locations are compared to this model using

the distance between Covariance Matrices on the Riemannian manifold. The intrinsic mean

and the distances on the manifold are not efficient to compute, and the model cannot adapt

well to abrupt changes in illumination. ICTL is equivalent to pooling together the features

from all the target SFs in the TF, and estimating a covariance matrix for the tracklet, which

gives away the temporal information. This is also found to be incapable of adapting to abrupt

changes, though it can be computed more efficiently than intrinsic mean.

In this chapter, we propose Eigenprofile: a novel descriptor for Spatio-Temporal Fragments

(STF)/tracklets. Estimation of EP is equivalent to joint diagonalization of covariance matrices

from SFs in the individual frames, and EP is a set of orthonormal vectors. We incrementally

build models for the target using EP, making use of Feature-level Temporal Coherence property.

The second-order statistics of these STFs form our target model, which is estimated using the

EP. The tracking proceeds by continuously adapting STF models from target SFs over sliding

TFs, and matching candidate SFs in each new frames to the current STF model, by KL-

divergence. This model is easier to compute than intrinsic mean, and is also seen to adapt

well to abrupt illumination changes. The main contribution of this work is to propose an

illumination-invariant STF representation which can be efficiently used for tracking, but can

also be used as a robust representation for tracklets for various other applications.

36



3.3 Eigenprofiles

A SF is a rectangular region in a frame, and encloses several pixels. At all or some of these

pixels, p-dimensional feature vectors can be computed. These features can be pixel intensity

values, pixel coordinates, image gradients, filter outputs and various others, or combinations of

several types. The sample covariance matrix of these p-dimensional vectors measured within

the SF forms the Covariance Matrix descriptor for the SF.

Consider a TF of K frames, where we have Covariance Matrices Ct+1, Ct+2, . . . , Ct+K for

corresponding SFs. Due to feature-level temporal coherence, p-dimensional feature vectors in

corresponding SFs in the individual frames within a TF are likely to be similar. We observe

empirically that they have almost identical principal components. These principal components

are nothing but the eigenvectors of the corresponding covariance matrices, ordered with respect

to the eigenvalues. Hence, we propose to approximate the eigenbases of the {Ck} matrices with

a common eigenbasis which we call the Eigenprofile of that STF.

3.3.1 Estimation of the Eigenprofile

Each SF covariance matrix within a TF can be expressed completely with its eigenvectors and

eigenvalues as Ck =
∑

j δkjekjekj
T . Under our hypothesis, it can be approximated by shared

eigenvectors as

Ck ≈
p∑
j=1

δkjβjβj
T (3.1)

Here the β vectors form the EP for the STF obtained by stacking these K SFs. Estimation

of EP is nothing but Approximate Joint Diagonalization of the {Ck} matrices. There is a family

of Approximate Joint Diagonalization algorithms, of which one is by Pham [60]. Given the Ck

matrices, this algorithm attempts to find a single matrix V to minimize the following function∑
k

(log(det(diag(V TCkV )))− log(det(V TCkV ))) (3.2)

However these algorithms do not make use of similarity of eigenvectors of the input matrices

in any way. Here, we propose to use this additional information to make an improved estimate.

We formulate the optimization problem as

min
β

t+K∑
k=t+1

‖Ck −
p∑
j=1

δkjβjβ
>
j ‖2

F such that (3.3)

βTj βj = 1∀j and βTj βi = 0∀i 6= j
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(3.4)

Writing the Lagrangian dual and solving it with respect to β, we have

βj
TDjβj = αj (3.5)

where Dj =
∑t+K

k=t+1 2ψkjCk, which is a symmetric matrix. The program is not convex, but a

local solution is obtained when we have βj as an eigenvector of Dj, for every j. Then we require

the Dj matrices for estimating the Eigenprofile. But, we would like to have an estimate of EP

from the eigenvectors of the {Ck} matrices directly so that we do not need to store the entire

matrices. To solve this, we use the observation that the corresponding eigenvectors of the {Ck}
matrices are quite identical to each other, i.e. e(t+1)j ≈ e(t+2)j ≈ · · · ≈ e(t+K)j. Hence, we solve

the following optimization problem

min
t+K∑
k=t+1

||uj − ekj||2 subject to (3.6)

uTj uj = 1

(3.7)

The solution to this is an estimate of the i-th eigenvector of Dj, and is given by

uj =

∑
k ekj√

(
∑

k ekj)
T (
∑

k ekj)
(3.8)

It is to be noted that the estimates uj of βj thus obtained do not satisfy the orthogonality

criteria, as required by the definition of Eigenprofile. So, we orthonormalize them by Gram-

Schmidt procedure, to obtain orthonormal {βj}.

3.4 Estimation of STF Covariance Matrix

For the tracking application, we build the Covariance Matrix C of the STF as the target

model. We posit that C will have the Eigenprofile β as eigenvectors. Hence C is given by

C =
∑

j σjβjβj
T . So we are now left with the estimation of its eigenvalues σj to learn it

completely.
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3.4.1 Maximum Likelihood Estimate: EP-ML

We estimate the STF Covariance Matrix C using Maximum-Likelihood Estimate (EP-ML).

Within a temporal fragment, the feature vectors in corresponding spatial fragments of individ-

ual frames should follow the same distribution. It is known that sample Covariance Matrices

of sample populations drawn from the same distribution follow the Wishart Distribution. As-

suming these sample covariance matrices Ck are I.I.D., the probability of this set is given by

p({Ck}|C) = T

∏
k |Ck|

−p
2 e(− 1

2
(trace(C−1

∑
k Ck))

|C|K2
(3.9)

By differentiating with respect to σj and equating to 0, the M.L.E. of the eigenvalues σj from

Equation 3.9 is given by

σj =

∑
k βj

TCkβj
K

≈
∑

k δkj
K

(3.10)

3.4.2 Low-Rank Approximation of STF Covariance Matrix

For many features, including Gabor Features which we have used in our experiments,it is

observed that the leading eigenvalues of Covariance Matrices of the SFs are considerably larger

compared to the rest, which rapidly trail off towards zero. The equation 3.10 shows that the

same has to hold for the eigenvalues of the STF Covariance Matrix, and so it is possible to

approximate the STF Covariance Matrix with only its R leading eigenpairs, as

Clow =
∑

1≤j≤R

σjβjβj
T (3.11)

Thus, for p-dimensional features, STF model now consists of the STF Mean Vector µ, R EP-

vectors β of dimension p, and R eigenvalues σ. Moreover we need not store the ST matrices

Ck from the frames, but only the R leading eigenvalues δk, the corresponding eigenvectors ek

and the mean vector µk of the SF. The mean vector µ for STF can be easily obtained from the

SF mean vectors µk in the individual frames of the TF, as µ =
∑
k nkµk∑
k nk

, nk being number of

feature vectors in the SF in k-th frame. Thus such an approximation of the matrix results in

some storage efficiency, especially when R is considerably lower than p.

3.5 Tracking

We now proceed to describe the framework of tracking we used in the experiments. As the

main aim of the work is to build a model and not a tracker, we restrict ourself to a simple but

effective tracking framework.
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3.5.1 Spatio-Temporal Fragments

As mentioned, in our tracking experiments we use multiple spatially overlapping fragments to

model the target. We build 9 STF models. If in a particular frame the entity is known

to be located inside a tight rectangle centered at (x, y) with length and breadth (dx, dy), the

mean vector and SF Covariance Matrix of features from this rectangular SF are used to build

the Central Model, and 8 Peripheral Models are obtained from the Mean Vectors and SF

Covariance Matrices of the rectangular SFs centered at (x+δxdx/2, y+δydy/2) with dimensions

(dx, dy), where δx, δy ∈ {1, 0,−1}.

3.5.2 Comparison of Region Models

During tracking, given any new frame, we need to compare the SFs at the candidate locations

against the target model(s), and report the location where the matching is the best. This

requires a measure to compare the STF model(s) to the candidate SF model(s). In case of our

EP-based method, a STF model consists of STF Mean Vector and STF Covariance Matrix . We

use the KL-Divergence as the measure of dissimilarity. In case of Covariance Tracker, [61], the

measure is the Geodesic Distance (GD) between Covariance Matrices. The ICTL method

[90] also uses GD between Covariances. For ICTL, we have used both GD and KL-Divergance

(ICTL2) in our experiments.For Pham’s Algorithm of Joint Diagonalization [60], the measure in

Equation 3.2 is used. In this case, the STFs are represented by the V matrix outputted by the

algorithm. Since we have 9 STF models R1, R2, . . . , R9 as mentioned above, at each candidate

location (x, y) we get 9 candidate SF models C1, C2, . . . , C9. We compare the candidate models

to the corresponding STF models to get a final score f(x, y) =
∑9

i=1 KL(Ri, Ci). In cases where

GD or Equation 3.2 is used, the function f is modified suitably.

3.5.3 Tracking Algorithm

We have chosen a simple random walk model. Suppose at any instant i, the location of the

entity is given by Z = (x, y). The target is localized using a rectangular box centered at Z.

Then the candidate locations for the next frame are sampled from the distribution

p(Zi+1|Zi) = N(Zi+1;Zi,Σ) (3.12)

The algorithm is described in details in the adjacent box.
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Algorithm 1 Tracking Algorithm

Initialize the locations X1, X2, X3, X4, X5 of the target and its size (δ1, δ2) in the first 5 frames.

Crop out 9 rectangular SFs aroundXi and calculate their mean and SF Matrices for 1 ≤ i ≤ 5.

Estimate the 9 STF models and save them.
for i = FirstFrame : LastFrame
choose N candidate locations
for i = 1 : N
Crop out 9 rectangular SFs corresponding to central and peripheral models around candidate
location Xi

Build the candidate SF models C1, C2, . . . , C9 from these.
Calculate f(Xi) with the respective STF models R1, R2, . . . , R9

end for
Set the location to (X∗) where f(X∗) is minimum among all candidate locations
Re-estimate the 9 STF models by replacing the oldest frame in the TF with the current one
end for

Figure 3.1: schematic diagram of the tracking. We use SF models from a TF of 5 successive
frames to be build STF model, and compare candidate SFs from the next frame with it.
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3.6 Experimental Evaluation

3.6.1 Datasets and Features

We have carried out experiments on 9 datasets. Of these 2 are standard and 7 captured by

us. We have used one sequence (SEQ1) from PETS2000. SEQ2 is the publicly available Toni

dataset 1 which involves tracking the face of a person in an obscure room. The person also

turns his head and there is a sudden illumination change. SEQ3 and SEQ4 are indoor videos

of a person walking on a long corridor with a single light. In SEQ3 the person walks into an

obscure area with sharp illumination gradient and in SEQ4 initially the light is off, then it

comes on and finally goes off again. The background also changes considerably. SEQ5-SEQ9

are all outdoor videos captured at night. In all the cases there is minimal lighting, and it is

difficult to distinguish the target from the background clearly. In SEQ6, in the beginning the

person moves before an unevenly lit background. Moreover, there is a sudden illumination

change of the target due to the lights of a passing vehicle. The videos are of varying length

with as short as 39 frames (SEQ1) to as long as 600 (SEQ2). We used 12-dimensional Gabor

Features (3scales, 4orientations) for the sequences. In the eigenprofile-based method, only the

leading 3 eigenvectors are used for low-rank approximation of the STF Covariance Matrix.

3.6.2 Benchmark Methods and Results

Since the proposed approach is region-based, and uses Covariance Matrices to model regions, we

compare with related approaches like Covariance Tracker and ICTL. We also compare against a

variant of ICTL (which we call ICTL2) that uses KL-Divergance rather than Geodesic Distance

as the dissimilarity measure. Again, as EP is obtained by Joint Diagonalization, we compare

with an alternative JD algorithm ( [60]). All these experiments were performed under

the same basic framework of features and Tracking Algorithm, with only the STF

model differing across the methods. Moreover, we also quote results on IVT as in [68]

which is not covariance-based, but well-known.

In the Ground Truth, the target’s locations are specified by a tight rectangle around it.

During tracking also, the method marks the inferred region with a rectangle. The number of

frames in which the overlap of these two rectangles is 0 is provided in Table 3.1. Finally the

drift in terms of number of pixels obtained by the methods on the 9 datasets is provided in

Figure 3.2.

It can be seen that our method EP-ML achieve the best performance in all the 9 sequences.

1http://www.svcl.ucsd.edu/projects/tracking/results.html
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SEQ EP-ML IVT COV ICTL ICTL2 Pham
1 0 0 0.37 0.02 0 0.63
2 0.07 0.68 0.70 0.70 0.16 0.38
3 0 0.50 0.50 0 0 0.50
4 0 0.72 0.70 0 0 0.70
5 0 0.65 0 0 0 0.08
6 0 0.42 0.93 0.93 0.93 0.93
7 0 0 0.67 0.72 0 0
8 0 0.24 0.41 0.49 0.36 0.33
9 0 0.72 0.86 0.50 0.50 0.78

Table 3.1: Fraction of frames in the videos where the output’s overlap with Ground Truth is 0
pixels.

SEQ EP-ML IVT COV ICTL ICTL2 Pham
1 0.94 2.18 138 1.6 5.0 375
2 4.8 56.1 38.85 41.15 3.09 7.35
3 0.03 1.46 6.09 0.1 0.1 1.5
4 0.35 22.17 31.96 1.8 0.39 30.86
5 0.43 44.25 0.33 0.1 0.25 1.50
6 0.94 4.96 191 193 148.5 149
7 0.44 X 12.36 14.96 0.43 0.95
8 0.29 2.75 3.11 3.07 1.37 0.3
9 0.41 25.5 32.69 3.42 4.03 23.94

Table 3.2: Average deviation of target location inferred by tracking from the ground truth,
normalized by target size. If target size is (X, Y ) and deviation at the n-th frame is δ(xn), δ(yn),

the measure is
∑

n(( δ(xn)
X

2
) + ( δ(yn)

Y

2
))

The success of our methods over ICTL2 indicates that our representation as a whole, rather

than the measure is the main cause of success of our methods. On the other hand, ICTL2 does

perform better than the Geodesic-distance based methods (COV and ICTL1), which shows

that K-L Divergence is a better measure. Of course, on SEQ5 the other covariance-based

methods also succeed, while in SEQ7 IVT and ACM(K-L Divergance) also succeed. On SEQ4

and SEQ6 most methods fail at a position of background change, and in SEQ3 they fail at

the point the person moves into the dark portion of the corridor. In SEQ6 only EP-ML

succeeds, while the rest fail at the unevenly lit background. SEQ8 is the toughest sequence

as the person is hardly distinguishabe from the background, and the benchmarks lose track

at some point or other, unlike the proposed methods. The code and data are available in

http : //clweb.csa.iisc.ernet.in/adway/tracking/.
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Figure 3.2: SEQ1: EP-ML,ICTL and Cov. Tracker from top to bottom. There is a sudden
background change, EP-ML, ICTL succeed unlike Covtrack

Figure 3.3: SEQ3: The results shown are for EP-ML,ICTL and Covariance Tracker from top
to bottom. COV losse track at the illumination gradient in the middle

Figure 3.4: SEQ4: EP-ML,ICTL and Cov. Tracker from top to bottom. There is a sudden
illumination change, EP-ML, ICTL succeed unlike Covtrack
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Figure 3.5: SEQ6: EP-ML,ICTL and Cov. Tracker from top to bottom. The video is dark and
blurred, EP-ML succeeds unlike the rest

Figure 3.6: SEQ7: EP-ML,ICTL and Cov. Tracker from top to bottom, for frames 6, 31, 55
and 70 of total 112 frames. EP-ML succeeds unlike the rest
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3.7 Implementation Details

Data Collection Tracking is a well-studied problem, and there are several well-known datasets

that have been frequently used. Different datasets are useful for various tracking scenarios.

For example, PETS and CAVIAR datasets are suitable for surveillance scenarios, while the

“Dudek” and “Toni” are more suitable for close-range face tracking. In this work, we tested

our method, and the alternatives against all these, though the proposed method is not tailor-

made for any particular scenario like surveillance or face-tracking. The most prominent aspect

of the proposed method is that it is invariant to illumination, and is also capable of working

in relative darkness. So, in the absence of any dataset that is suitable for this task, we shot

appropriate videos ourselves. They were shot at various locations within the Indian Institute

of Science campus, and one of the participants of this project was the target of tracking. In all

cases, the camera was mounted on a stationery tripod stand, while the target moved around. In

some videos like SEQ3, the target moved across a corridor from a well-lit portion to a relatively

dark portion. In SEQ4, the target moved along a corridor while the light was turned on and off

repeatedly. The aim was to test if the tracking algorithm was hampered by these illumination

changes. SEQ5, SEQ6, SEQ7 and SEQ8 were shot in relatively dark areas in the evening.

Features We used the same set of features (Gabor features with 3 scales and 4 orientations)

for EP-ML, ICTL1, ICTL2, Pham and Covariance Tracker. The covariance matrices obtained

were thus 12 × 12. The number of scales and orientations were fixed by tuning over two test

sequences. It was seen that using too few scales and orientations reduced accuracy, while using

too many slowed down the computation without a proportionate improvement in performance.

In case of IVT, the publicly available code was used. This is not a covariance-based methods,

and uses the pixel values rather than Gabor features. In scenarios which do not involve illumi-

nation issues (like CAVIAR or DUDEK) we also tried using image gradients and pixel values

(greyscale and RGB) instead of Gabor features, and continued to get decent results. However,

the results reported in the tables were all obtained using Gabor features.

Implementation The system was implemented in MATLAB. We used publicly available

code for computing Gabor features, and wrote our own code for target model computation,

candidate region evaluation as well as model updation. It was found that computation of

Gabor features is time-consuming, and it slowed down the performance of the tracker to about

1 frame per second, though the eigenprofile computation and matching took just about 0.1

seconds per frame. In comparison IVT was quicker, at about 4-5 frames per second, but its

performance was much lower, especially on the sequences involving illumination change which

require Gabor features. It is hoped that implementation of the system in OpenCV will enable
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close to real-time performance. Modern cameras have frame rates of more than 25 frames per

second, making it increasingly difficult to process all frames in real time. However, the temporal

coherence feature of videos comes to our aid. Due to this property, in successive frames the

target is likely to be in very close locations, especially if the frames are taken at very short

time-difference (which happens in case of high frame rate). Thus it is not really necessary to

process each and every frame, we can process frames at regular intervals and interpolate the

target’s locations in the intermediate frames.

3.8 Applications, Limitations and Extensions

The proposed system can have many applications- most prominently in surveillance settings.

It is particularly important in outdoor surveillance of streets in evenings and nights. However,

as already established, it can work well in any tracking environment. The main computational

bottleneck of the system is the Gabor feature extraction. But if we use simpler features like pixel

values and image gradients the system has very little computation and memory requirements,

and can be run on simple computation devices like cameras and mobile phones.

One issue with the current system is initialization. Like several research papers on track-

ing this work assumes that the location of the target is known in the first 5 frames. In our

implementation this is done manually- whenever the code is run with a test video, the first 5

frames are displayed successively, and the user is prompted to mark the target’s locations using

the imcrop tool of Matlab. Obviously, this cannot be done if the system is to be deployed for

surveillance. The various initialization schemes are as follows:

1. Maintain a background model, with which each new frame can be compared. If there

is a target to be tracked, its location can be found automatically by frame differencing.

But this either assumes that the background will remain unchanged all the time (which

is infeasible in most applications, most notably due to varying illumination conditions

across day and night), or we need multiple background models.

2. Much work has been done on foreground-background separation which define foreground

as entities that move and background as those that remain stationery. Movement within

the field of view of the camera can be detected using optical flow, and the target can thus

be localized.

3. In some tracking works [49], visual saliency is used for automatic tracker initialization.

This is another alternative.
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Extensions: The most recent papers on tracking mostly address multi-target tracking,

where there are multiple targets per frame, to be tracked simultaneously. In the experiments

presented here, we have always considered a single target, but multi-target tracking can also be

handled using the proposed technique, in a straightforward way- we simply need to maintain

appearance models (eigenprofiles and STF covariance matrices) for each target.
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Chapter 4

Bayesian Modeling of Temporal

Coherence in Videos for Entity

Discovery and Summarization

4.1 About this Chapter

In this chapter, we discuss our work related to Bayesian nonparametric models for modeling

semantic-level temporal coherence in videos. The main application we have considered is entity

discovery from TV series/movie videos downloaded from Youtube, that have no additional

information such as dialogue scripts. We have also discussed entity-driven summarization

of the videos. These are both novel applications, with particular relevance to concise, user-

friendly representation of videos in video-sharing websites. On the theoretical side, we have

proposed two generative models: Temporally-Coherent Chinese Restaurant Process (TC-CRP)

and Temporally-Coherent Chinese Restaurant Franchise (TC-CRF).

Publications: The proposed TC-CRP model, and much of the experimental results pre-

sented here have been published in SIAM Data Mining Conference (SDM), 2015 held in Vancou-

ver, Canada. The TC-CRF model, and the rest of the experimental results have been included

in its journal version which has been accepted in IEEE Transactions on Pattern Analysis and

Machine Intelligence.

1. Adway Mitra, Soma Biswas, Chiranjib Bhattacharyya. Temporally Coherent CRP: A

Bayesian Non-Parametric Approach for Clustering Tracklets with applications to Person

Discovery in Videos, SDM 2015

2. Adway Mitra, Soma Biswas, Chiranjib Bhattacharyya. Bayesian Modeling of Temporal
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Coherence in Videos for Entity Discovery and Summarization, IEEE Transactions on

Pattern Analysis and Machine Intelligence (2016)

4.2 Introduction

Most videos uploaded on the internet are centered around a few entities of a particular type,

which appear repeatedly. For example, a movie or TV-series episode is centered around a few

persons, each of whom is an entity. Similarly, a video about a Formula-one race is centered

around a few cars, each of which is an entity. Entity Discovery is the task of describing each

entity by some appropriate representation, and finding all the locations in the video where it

appears. The input to this problem is the set of detections of the entities in all the frames of

the video, using a suitable detector.

One specialization of this problem which has recently received a lot of attention is automated

discovery of persons from videos of movies or TV-series episodes. Each person is represented

by his/her face, so here the input is the set of all face detections in the video. Various relax-

ations have been made to simplify the task. Automatic Cast Listing [4] aims at providing a

representative subset of the detections, that is expected to include all the persons. However it

does not provide the list of all occurrences of the persons. Another line of work [98][75] makes

use of textual movie scripts which provides close to frame-by-frame details of the dialogues,

including the character names. These works aim to align the scripts with the frames, and the

detections with character names. The problem with this approach is that, such scripts or any

similar meta-data are not available for most videos uploaded by users on sites like Youtube.

The task of Face/Track Clustering [89] in videos can avoid this issue, but even then we need to

know in advance the number of clusters to be formed, which is generally not possible. Moreover,

none of these methods are capable of performing the task online, which is required in case of

streaming videos.

In this chapter, we pose the entity discovery problem as tracklet clustering, as done in [88].

Our goal is to design algorithms for tracklet clustering which can work on long videos. Tracklets[36]

are formed by detections of an entity (say a person) from a short contiguous sequence of 10-20

video frames. They have complex spatio-temporal properties. We should be able to handle any

type of entity, not just person. Given a video in the wild it is unlikely that the number of enti-

ties will be known, so the method should automatically adapt to unknown number of entities.

To this end we advocate a Bayesian non-parametric clustering approach to Tracklet clustering

and study its effectiveness in automated discovery of entities with all their occurrences in long

videos. The main challenges are in modeling the spatio-temporal properties. To the best of

our knowledge this problem has not been studied either in Machine Learning or in Computer
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Figure 4.1: Top: a window consisting of frames 20000,20001,20002, Bottom: another window- with
frames 21000,21001,21002. The detections are linked on spatio-temporal basis to form tracklets. One
person (marked with red) occurs in both windows, the other character (marked with blue) occurs
only in the second. The two red tracklets should be associated though they are from non-contiguous
windows

Vision community.

4.3 Problem Definition

To explain the spatio-temporal properties we introduce some definitions. A track is formed by

detecting entities (like people’s faces) in each video frame, and associating detections across a

contiguous sequence of frames (typically a few hundreds in a TV series) based on appearance

and spatio-temporal locality. Each track corresponds to a particular entity, like a person in a TV

series. Forming long tracks is often difficult, especially if there are multiple detections per frame.

This can be solved hierarchically, by associating the detections in a short window of frames

(typically 10-20) to form tracklets [36] and then linking the tracklets from successive windows

to form tracks. The short-range association of tracklets to form tracks is known as tracking.

But in a TV series video, the same person may appear in different (non-contiguous) parts of

the video, and so we need to associate tracklets on a long-range basis also (see Figure 4.1).

Moreover the task is complicated by lots of false detections which act as spoilers. Finally,

the task becomes more difficult on streaming videos, where only one pass is possible over the

sequence.

A major cue for this task comes from a very fundamental property of videos: Temporal

Coherence(TC). This property manifests itself at detection-level as well as tracklet-level; at

feature-level as well as at semantic-level. At detection-level this property implies that the

visual features of the detections (eg. appearance of an entity) are almost unchanged across

a tracklet (See Fig. 2). At tracklet-level it implies that spatio-temporally close (but non-

overlapping) tracklets are likely to belong to the same entity (Fig. 4.3). Additionally, overlapping

tracklets (that span the same frames), cannot belong to the same entity. A tracklet can be easily

51



Figure 4.2: TC at Detection level: Detections in successive frames (linked to form a tracklet) are
almost identical in appearance, i.e. have nearly identical visual features

Figure 4.3: TC at Tracklet level: Blue tracklets 1,2 are spatio-temporally close (connected by broken
lines), and belong to the same person. Similarly red tracklets 3 and 4.

represented as all the associated detections are very similar (due to detection-level TC). Such

representation is not easy for a long track where the appearances of the detections may gradually

change.

4.3.1 Notation

In this work, given a video, we fix beforehand the type of entity (eg. person/face, cars, planes,

trees) we are interested in, and choose an appropriate detector like [80] [27], which is run on

every frame of the input video. The detections in successive frames are then linked based on

spatial locality, to obtain tracklets. At most R detections from R contiguous frames are linked

like this. The tracklets of length less than R are discarded, hence all tracklets consist of R

detections. We restrict the length of tracklets so that the appearance of the detections remain

almost unchanged (due to detection-level TC), which facilitates tracklet representation. At

R = 1 we work with the individual detections.

We represent a detection by a vector of dimension d. This can be done by downscaling a

rectangular detection to d× d square and then reshaping it to a d2-dimensional vector of pixel

intensity values (or some other features if deemed appropriate). Each tracklet i is a collection

of R detections {I i1, . . . , I iR}. Let the tracklet i be represented by Yi =
∑R
j=1 I

i
j

R
. So finally we

have N vectors (N : number of tracklets).

The tracklets can be sorted topologically based on their starting and ending frame indices.

Each tracklet i has a predecessor tracklet prev(i) and a successor tracklet next(i). Also each

tracklet i has a conflicting set of tracklets CF (i) which span frame(s) that overlap with the

frames spanned by i. Each detection (and tracklet) is associated with an entity, which are

unknown in number, but presumably much less than the number of detections (and tracklets).
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These entities also are represented by vectors, say φ1, φ2, . . . , φK . Each tracklet i is associated

with an entity indexed by Zi, i.e. Zi ∈ {1, 2, . . . , K}.

4.3.2 Entity Discovery

Let each video be represented as a sequence of d-dimensional vectors {Y1, . . . , YN} along with the

set {prev(i), next(i), CF (i)}Ni=1. We aim to learn the vectors {φ1, φ2, . . . , } and the assignment

variables {Zi}Ni=1. In addition, we have constraints arising out of temporal coherence and other

properties of videos. Each tracklet i is likely to be associated with the entity that its predecessor

or successor is associated with, except at shot/scene changepoints. Moreover, a tracklet i cannot

share an entity with its conflicting tracklets CF (i), as the same entity cannot occur twice in

the same frame. This notion is considered in relevant literature [92] [89]. Mathematically, the

constraints are:

Zprev(i) = Zi = Znext(i)∀i ∈ {1, . . . , N} w.h.p.

Zi /∈ {Zj : j ∈ CF (i)}∀i ∈ {1, . . . , N} (4.1)

Learning a φk-vector is equivalent to discovering an entity, and its associated tracklets are

discovered by learning the set {i : Z(i) = k}. These constraints give the task a flavor of

non-parametric constrained clustering with must-link and don’t-link constraints.

Finally, the video frames can be grouped into short segments, based on the starting frame

numbers F (1), F (2), . . . , F (N) of the N tracklets. Consider two successive tracklets i and

(i+ 1), with starting frames F (i) and F (i+ 1). If the gap between frames F (i) and F (i+ 1) is

larger than some threshold, then we consider a new temporal segment of the video starting from

F (i+1), and add i+1 to a list of changepoints (CP). The beginning of a new temporal segment

does not necessarily mean a scene change, the large gap between frames F (i) and F (i+ 1) may

be caused by failure of detection or tracklet creation. The segment index of each tracklet i is

denoted by S(i).

4.4 Generative Process for Tracklets

We now explain our Bayesian Nonparametric model TC-CRP to handle the spatio-temporal

constraints (Eq 4.1) for tracklet clustering, and describe a generative process for videos based

on tracklets.
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4.4.1 Bayesian Nonparametric modeling

In Section 4.3, we discussed the vectors φ1, φ2, . . . each of which represent an entity. In this

chapter we consider a Bayesian approach with Gaussian Mixture components N(φk,Σ1) to

account for the variations in visual features of the detections, say face detections of a person. As

already mentioned, number of components K is not known beforehand, and must be discovered

from the data. That is why we consider nonparametric Bayesian modeling. Also, as we shall see,

this route allows us to elegantly model the temporal coherence constraints. In this approach,

we shall represent entities as mixture components and tracklets as draws from such mixture

components.

Dirichlet Process [28] has become an important clustering tool in recent years. Its greatest

strength is that unlike K-means, it is able to discover the correct number of clusters. Dirichlet

Process is a distribution over distributions over a measurable space. A discrete distribution

P is said to be distributed as DP (α,H) over space A if for every finite partition of A as

{A1, A2, . . . , AK}, the quantity {P (A1), . . . , P (AK)} is distributed asDirichlet(αH(A1), . . . , αH(AK)),

where α is a scalar called concentration parameter, and H is a distribution over A called Base

Distribution. A distribution P ∼ DP (α,H) is a discrete distribution, with infinite support set

{φk}, which are draws from H, called atoms.

4.4.2 Modeling Tracklets by Dirichlet Process

We consider H to be a d−dimensional multivariate Gaussian with parameters µ and Σ0. Each

atom corresponds to an entity (eg. a person). The generative process for the set {Yi}Ni=1 is then

as follows:

P ∼ DP (α,H);Xi ∼ P, Yi ∼ N(Xi,Σ1)∀i ∈ [1, N ] (4.2)

Here Xi is an atom. Yi is a tracklet representation corresponding to the entity, and its slight

variation from Xi (due to effects like lighting and pose variation) is modeled using N(Xi,Σ1).

Using the constructive definition of Dirichlet Process, called the Stick-Breaking Process [70],

the above process can also be written equivalently as

π̂k ∼ Beta(1, α), πk = π̂k

k−1∏
i=1

(1− π̂i−1), φk ∼ H ∀k ∈ [1,∞)

Zi ∼ π, Yi ∼ N(φZi ,Σ1)∀i ∈ [1, N ] (4.3)

Here π is a distribution over integers, and Zi is an integer that indexes the component cor-

responding to the tracklet i. Our aim is to discover the values φk, which will give us the

entities, and also to find the values {Zi}, which define a clustering of the tracklets. For this
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purpose we use collapsed Gibbs Sampling, where we integrate out the P in Equation 4.2 or

G in Equation 4.3. The Gibbs Sampling Equations p(Zi|Z−i, {φk}, Y ) and p(φk|φ−k, Z, Y ) are

given in [32]. For Zi,

p(Zi = k|Z−i, φk, Yi) ∝ p(Zi = k|Z−i)p(Yi|Zi = k, φ) (4.4)

Here, p(Yi|Zi = k, φ) = N(Yi|φk,Σ1) is the data likelihood term. We focus on the part

p(Zi = k|Z−i) to model TC.

4.4.3 Temporally Coherent Chinese Restaurant Process

In the generative process (Equation 4.3) all the Zi are drawn IID conditioned on π. Such models

are called Completely Exchangeable. This is, however, often not a good idea for sequential data

such as videos. In Markovian Models like sticky HDP-HMM, Zi is drawn conditioned on π and

Zi−1. In case of DP, the independence among Zi-s is lost on integrating out π. After integration

the generative process of Eq 4.3 can be redefined as

φk ∼ H∀k;Zi|Z1, . . . , Zi−1 ∼ CRP (α);Yi ∼ N(φZi ,Σ1) (4.5)

The predictive distribution for Zi|Z1, . . . , Zi−1 for Dirichlet Process is known as Chinese

Restaurant Process (CRP). It is defined as p(Zi = k|Z1:i−1) =
N i
k

N−1+α if k ∈ {Z1, . . . , Zi−1}; =
α

N−1+α otherwise where N i
k is the number of times the value k is taken in the set {Z1, . . . , Zi−1}.

We now modify CRP to handle the Spatio-temporal cues (Eq 4.1) mentioned in the previous

section. In the generative process, we define p(Zi|Z1, . . . , Zi−1) with respect to prev(i), similar

to the Block Exchangeable Mixture Model as defined in [53]. Here, with each Zi we associate a

binary change variable Ci. If Ci = 0 then Zi = Zprev(i), i.e the tracklet identity is maintained.

But if Ci = 1, a new value of Zi is sampled. Note that every tracklet i has a temporal predecessor

prev(i). However, if this predecessor is spatio-temporally close, then it is more likely to have

the same label. So, the probability distribution of change variable Ci should depend on this

closeness. In TC-CRP, we use two values (κ1 and κ2) for the Bernoulli parameter for the

change variables. We put a threshold on the spatio-temporal distance between i and prev(i),

and choose a Bernoulli parameter for Ci based on whether this threshold is exceeded or not.

Note that maintaining tracklet identity by setting Ci = 0 is equivalent to tracking.

Several datapoints (tracklets) arise due to false detections. We need a way to model these.

Since these are very different from the Base mean µ, we consider a separate component Z = 0

with mean µ and a very large covariance Σ2, which can account for such variations. The

Predictive Probability function(PPF) for TC-CRP is defined as follows:
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T (Zi = k|Z1:i−1, C1:i−1, Ci = 1) = 0 if k ∈ {ZCF (i)} − {0}

∝ β if k = 0

∝ nZCk1 if k ∈ {Z1, . . . , Zi−1}, k /∈ {ZCF (i)}

∝ α otherwise (4.6)

where ZCF (i) is the set of values of Z for the set of tracklets CF (i) that overlap with i, and

nZCk1 is the number of points j (j < i) where Zj = k and Cj = 1. The first rule ensures that two

overlapping tracklets cannot have same value of Z. The second rule accounts for false tracklets.

The third and fourth rules define a CRP restricted to the changepoints where Cj = 1. The final

tracklet generative process is as follows: where T is the PPF for TC-CRP, defined in Eq 4.6.

Algorithm 2 TC-CRP Tracklet Generative Process
1: φk ∼ N(µ,Σ0) ∀k ∈ [1,∞)
2: for i = 1 : N do
3: if dist(i, prev(i)) ≤ thres then
4: Ci ∼ Ber(κ1)
5: else
6: Ci ∼ Ber(κ2)
7: end if
8: if Ci = 1 then
9: draw Zi ∼ T (Zi|Z1, . . . , Zi−1, C1, . . . , Ci−1, α)

10: else
11: Zi = Zprev(i)

12: end if
13: if Zi = 0 then
14: Yi ∼ N(µ,Σ2)
15: else
16: Yi ∼ N(φZi

,Σ1)
17: end if
18: end for

4.4.4 Inference

Inference in TC-CRP can be performed easily through Gibbs Sampling. We need to infer

Ci, Zi and φk. As Ci and Zi are coupled, we sample them in a block for each i ∈ [1, N ] as

done in [53]. If Ci+1 = 0 and Zi+1 6= Zi−1, then we must have Ci = 1 and Zi = Zi+1. If

Ci+1 = 0 and Zi+1 = Zi, then Zi = Zi+1, and Ci is sampled from Bernoulli(κ). In case

Ci+1 = 1 and Zi+1 6= Zi−1, then (Ci = a, Zi = k) with probability proportional to p(Ci =

a)p(Zi|Z−i, Ci = a))p(Yi|Zi = k, φk). If a = 0 then p(Zi = k|Z−i, Ci = 1) = 1 if Zi−1 = k, and 0

otherwise. If a = 1 then p(Zi|Z−i, Ci = a)) is governed by TC-CRP. For sampling φk, we make
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use of the Conjugate Prior formula of Gaussians, to obtain the Gaussian posterior with mean

(nkΣ
−1
1 + Σ−1)

−1
(Σ−1

1 Yk + Σ−1µ) where nk = |{i : Zi = k}|, and Yk =
∑

i:Zi=k
Yi. Finally, we

update the hyperparameters µ and Σ after every iteration, based on the learned values of {φk},
using Maximum Likelihood estimate. κ1,κ2 can also be updated, but in our implementation

we set them to 0.001 and 0.1 respectively, based on empirical evaluation on one held-out video.

The threshold thres was also similarly fixed.

4.5 Generative Process for Video Segments

In the previous section, we considered the entire video as a single block, as the TCCRP PPF

for any tracklet i involves (Z,C)-values from all the previously seen tracklets throughout the

video. However, this need not be very accurate, as in a particular part of the video some

mixture components (entities) may be more common than anywhere else, and for any i, Zi

may depend more heavily on the Z-values in temporally close tracklets than the ones far away.

This is because, a TV-series video consists of temporal segments like scenes and shots, each

characterized by a subset of persons (encoded by binary vector BS). The tracklets attached

to a segment s cannot be associated with persons not listed by Bs. To capture this notion we

propose a new model: Temporally Coherent Chinese Restaurant Franchise (TC-CRF) to model

a video temporally segmented by S (see Section 4.3).

4.5.1 Temporally Coherent Chinese Restaurant Franchise

Chinese Restaurant Process is the PPF associated with Dirichlet Process. Hierarchical Dirichlet

Process (HDP) [76] aimed at modeling grouped data sharing same mixture components. It

assumes a group-specific distribution πs for every group s. The generative process is:

p̂k ∼ Beta(1, α), pk = p̂k

k−1∏
i=1

(1− p̂i−1), φk ∼ H ∀k ∈ [1,∞)

πs ∼ p∀s ∈ [1,M ];Zi ∼ πS(i), Yi ∼ N(φZi ,Σ1)∀i ∈ [1, N ] (4.7)

where datapoint i belongs to the group S(i). The PPF corresponding to this process is obtained

by marginalizing the distributions p and {π}, and is called the Chinese Restaurant Franchise

process, elaborated in [76]. In our case, we can modify this PPF once again to incorporate TC,

analogously to TC-CRP, to have Temporally Coherent Chinese Restaurant Franchise (TC-CRF)

Process. In our case, a group corresponds to a temporal segment, and as already mentioned, we

want a binary vector Bs, which indicates the components that are active in segment s. But HDP

assumes that all the components are shared by all the groups, i.e. any particular component

can be sampled in any of the groups. We can instead try sparse modeling by incorporating {Bs}
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into the model, as done in [85] for Focused Topic Models. For this purpose we put an IBP [33]

prior on the {Bs} variables, where p(Bsk = 1|B1, . . . , Bs−1) ∝ nk where nk is the number of

times component k has been sampled in all scenes before s, and p(Bsknew |B1, . . . , Bs−1) ∝ γ.

The TC-CRF PPF is then as follows:

TF (Zi = k|Bs, Z1:i−1, C1:i−1, Ci = 1) = 0 if k ∈ {ZCF (i)} − {0}

= 0 if Bsk = 0

∝ β if k = 0

∝ nSZCsk1 if Bsk = 1, k ∈ {Z}s, k /∈ {ZCF (i)}

∝ α if Bsk = 1, k /∈ {Z}s, k /∈ {ZCF (i)}

(4.8)

where s = S(i), the index of the temporal segment to which the datapoint i belongs. Based

on TC-CRF, the generative process of a video, in terms of temporal segments and tracklets,

is given below: where TF is the PPF for TC-CRF, and S(i) is the temporal segment index

Algorithm 3 TC-CRF Tracklet Generative Process
1: φk ∼ N(µ,Σ0)
2: for s = 1 : M do
3: Bs ∼ IBP (γ,B1, . . . , Bs−1)
4: end for
5: for i = 1 : N do
6: if Si = Sprev(i) then
7: if dist(i, prev(i)) ≤ thres then
8: Ci ∼ Ber(κ1)
9: else

10: Ci ∼ Ber(κ2)
11: end if
12: else
13: Ci = 1
14: end if
15: if Ci = 1 then
16: draw Zi ∼ TF (Zi|BS(i), Z1, . . . , Zi−1, C1, . . . , Ci−1, α)
17: else
18: Zi = Zprev(i)

19: end if
20: if Zi = 0 then
21: Yi ∼ N(µ,Σ2)
22: else
23: Yi ∼ N(φZi

,Σ1)
24: end if
25: end for

associated with tracklet i.
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4.5.2 Inference

Inference in TC-CRF can also be performed through Gibbs Sampling. We need to infer the

variables {B}, {C}, {Z} and the components {φ}. In segment s, for a datapoint i where

Ci = 1, a component φk may be sampled with p(Bsk = 1, Zi = k|B−sk, Z−i) ∝ nSZCsk1 , which is

the number of times φk has been sampled within the same segment. If φk has never been sampled

within the segment but has been sampled in other segments, p(Bsk = 1, Zi = k|B−sk, Z−i) ∝
αnk, where nk is the number of segments where φk has been sampled (Corresponding to p(Bsk) =

1 according to IBP), and α is the CRP parameter for sampling a new component. Finally, a

completely new component may be sampled with probability proportional to α. Note that

p(Bsk = 0, Zi = k) = 0∀k.

4.6 Relationship with existing models

TC-CRP draws inspirations from several recently proposed Bayesian nonparametric models, but

is different from each of them. It has three main characteristics: 1) Changepoint-variables {C}
2) Temporal Coherence and Spatio-temporal cues 3) Separate component for non-face track-

lets. The concept of changepoint variable was used in Block-exchangeable Mixture Model [53],

which showed that this significantly speeds up the inference. But in BEMM, the Bernoulli

parameter of changepoint variable Ci depends on Zprev(i) while in TC-CRP it depends on

dist(i, prev(i)). Regarding spatio-temporal cues, the concept of providing additional weightage

to self-transition was introduced in sticky HDP-HMM [29], but this model does not consider

change-point variables. Moreover, it uses a transition distribution Pk for each mixture compo-

nent k, which increases the model complexity. Like BEMM [53] we avoid this step, and hence

our PPF (Eq 4.6) does not involve Zprev(i). DDCRP [8] defines distances between every pair of

datapoints, and associates a new datapoint i with one of the previous ones (1, . . . , i− 1) based

on this distance. Here we consider distances between a point i and its predecessor prev(i) only.

On the other hand, DDCRP is unrelated to the original DP-based CRP, as its PPF does not

consider nZk : the number of previous datapoints assigned to component k. Hence our method

is significantly different from DDCRP. Finally, the first two rules of TC-CRP PPF are novel.

TC-CRF is inspired by HDP [76]. However, once again the three differences mentioned

above hold good. In addition, the PPF of TC-CRF itself is different from Chinese Restaurant

Franchise as described in [76]. The original CRF is defined in terms of two concepts: tables

and dishes, where tables are local to individual restaurants (data groups) while dishes (mixture

components) are global, shared across restaurants (groups). Also individual datapoints are

assigned mixture components indirectly, through an intermediate assignment of tables. The
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concept of table, which comes due to marginalization of group-specific mixture distributions,

results in complex book-keeping, and the PPF for datapoints is difficult to define. Here we avoid

this problem, by skipping tables and directly assigning mixture components to datapoints in

Eq 4.8. Inspiration of TC-CRF is also drawn from IBP-Compound Dirichlet Process [85]. But

the inference process of [85] is complex, since the convolution of the DP-distributed mixture

distribution and the sparse binary vector is difficult to marginalize by integration. We avoid

this step by directly defining the PPF (Eq 4.8) instead of taking the DP route. This approach

of directly defining the PPF was taken for DD-CRP [8] also.

4.7 Experiments on Person Discovery

One particular entity discovery task that has recently received a lot of attention is person

discovery from movies/ TV series. We carried out extensive experiments for person discovery

on TV series videos of various lengths. We collected three episodes of The Big Bang Theory

(Season 1). Each episode is 20-22 minutes long, and has 7-8 characters (occurring in at least

100 frames). We also collected 6 episodes of the famous Indian TV series “The Mahabharata”

from Youtube. Each episode of this series is 40-45 minutes long, and have 15-25 prominent

characters. So here, each character is an entity. These videos are much longer than those

studied in similar works like [88], and have more characters. Also, these videos are challenging

because of the somewhat low quality and motion blur. Transcripts or labeled training sets are

unavailable for all these videos. As usual in the literature [89][88], we represent the persons

with their faces. We obtained face detections by running the OpenCV Face Detector on each

frame separately. As described in Section 4.3 the face detections were all converted to greyscale,

scaled down to 30×30, and reshaped to form 900-dimensional vectors. We considered tracklets

of size R = 10 and discarded smaller ones. The dataset details are given in Table 1.

To emphasize the fact that our methods are not restricted to faces or persons, we used

two short videos-one of cars and another of aeroplanes. The cars video consisted of 5 cars of

different colors, while the aeroplanes video had 6 planes of different colors/shapes. These were

created by concatenating shots of different cars/planes in the Youtube Objects datasets 1. The

objects were detected using the Object-specific detectors [27]. Since here the color is the chief

distinguishing factor, we scaled the detections down to 30 × 30 and reshaped them separately

in the 3 color channels to get 2700-dimensional vectors. Here R = 1 was used, as these videos

are much shorter, and using long tracklets would have made the number of data-points too low.

1http://people.ee.ethz.ch/ presta/youtube-objects/website/youtube-objects.html
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Dataset #Frames #Detections #Tracklets #Entities Entity Type
BBTs1e1 32248 25523 2408 7 Person(Face)
BBTs1e3 31067 21555 1985 9 Person(Face)
BBTs1e4 28929 20819 1921 8 Person(Face)
Maha22 66338 37445 3114 14 Person(Face)
Maha64 72657 65079 5623 16 Person(Face)
Maha65 68943 53468 4647 22 Person(Face)
Maha66 87202 76908 6893 17 Person(Face)
Maha81 78555 62755 5436 22 Person(Face)
Maha82 86153 52310 4262 24 Person(Face)

Table 4.1: Details of datasets

Figure 4.4: Face detections (top), and the corresponding atoms (reshaped to square images) found
by TC-CRP (bottom)

4.7.1 Alternative Methods

A recent method for face clustering using track information is WBSLRR [92] based on Subspace

Clustering. Though in [92] it is used for clustering detections rather than tracklets, the change

can be made easily. Apart from that, we can use Constrained Clustering as a baseline, and we

choose a recent method [41]. TC and frame conflicts are encoded as must-link and don’t-link

constraints respectively. A big problem is that the number of clusters to be formed is unknown.

For this purpose, we note that the tracklet matrix formed by juxtaposing the tracklet vectors

should be approximately low-rank because of the similarity of spatio-temporally close tracklet

vectors. Such representation of a video as a low-rank matrix has been attempted earlier [14] [39].

We can find a low-rank representation of the tracklet matrix by any suitable method, and use

the rank as the number of clusters to be formed in spectral clustering. We found that, among

these the best performance is given by Sparse Bayesian Matrix Recovery (SBMR) [5]. Others

are either too slow (BRPCA [23]), or recover matrices with ranks too low (OPTSPACE [42])

or too high (RPCA [14]). Finally, we compare against another well-known sequential BNP

method- the sticky HDP-HMM [29].

Figure 4.5: Different atoms for different poses of same person
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4.7.2 Performance Measures

The task of entity discovery with all their tracks is novel and complex, and has to be judged

by suitable measures. We discard the clusters that have less than 10 assigned tracklets. It

turns out that the remaining clusters cover about 85− 95% of all the tracklets. Further, there

are some clusters which have mostly (70% or more) false (non-entity) tracklets. We discard

these from our evaluation. We call the remaining clusters as significant clusters. We say that

a cluster k is “pure” if at least 70% of the tracklets assigned to it belong to any one person

A(say Sheldon for a BBT video, or Arjuna for a Mahabharata video). We also declare that

the cluster k and its corresponding mixture component φk corresponds to the person A. Also,

then A is considered to be discovered. The threshold of purity was set to 70% because we

found this roughly the minimum purity needed to ensure that a component mean is visually

recognizable as the entity (after reshaping to d × d) (See Fig. 4, 5). We measure the Purity:

fraction of significant clusters that are pure, i.e. correspond to some entity. We also measure

Entity Coverage: the number of persons (entity) with at least 1 cluster (at least 10 tracklets)

corresponding to them. Next, we measure Tracklet Coverage: the fraction of tracklets that are

assigned to pure clusters. Effectively, these tracklets are discovered, and the ones assigned to

impure clusters are lost.

4.7.3 Results

The results on the three measures discussed above are shown in Tables 2,3,4. In terms of the

three measures, TC-CRF is usually the most accurate, followed by TC-CRP, and then sHDP-

HMM. This demonstrates that BNP methods are more suitable to the task. The constrained

spectral clustering-based method is competitive on the purity measure, but fares very poorly

in terms of tracklet coverage. This is because, it forms many small pure clusters, and a few

very large impure clusters which cover a huge fraction of the tracklets. Thus, a large number

of tracklets are lost.

It may be noted that the number of significant clusters formed is a matter of concern,

especially from the user’ perspective. A small number of clusters allow him/her to get a quick

summary of the video. Ideally there should be one cluster per entity, but that is not possible

due to the significant appearance variations (See Figure 4.5). The number of clusters formed

per video by the different methods is indicated in Table 2. It appears that none of the methods

have any clear advantage over the others in this regard. In the above experiments, we used

tracklets with size R = 10. We varied this number and found that, for R = 5 and even R = 1

(dealing with detections individually), the performance of TC-CRF, TC-CRP and sHDP-HMM
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Dataset TCCRF TCCRP sHDPHMM SBMR+ WBSLRR
ConsClus

BBTs1e1 0.88 (48) 0.75 (36) 0.84 (44) 0.67 (48) 0.73 (45)
BBTs1e3 0.88 (50) 0.83 (40) 0.76 (37) 0.80 (15) 0.67 (43)
BBTs1e4 0.93 (40) 0.89 (36) 0.83 (29) 0.77 (31) 0.71 (41)
Maha22 0.91 (67) 0.87 (69) 0.86 (74) 0.94 (44) 0.83 (79)
Maha64 0.95 (113) 0.92 (105) 0.91 (97) 0.85 (88) 0.75 (81)
Maha65 0.97 (95) 0.89 (85) 0.90 (89) 0.86 (76) 0.82 (84)
Maha66 0.91 (76) 0.96 (73) 0.95 (80) 0.87 (84) 0.81 (81)
Maha81 0.89 (91) 0.89 (88) 0.84 (95) 0.87 (84) 0.74 (78)
Maha82 0.92 (52) 0.88 (50) 0.86 (58) 0.78 (63) 0.83 (64)

Table 4.2: Purity results for different methods. The number of significant clusters are written
in brackets

Dataset TCCRF TCCRP sHDPHMM SBMR+ WBSLRR
ConsClus

BBTs1e1 6 6 5 5 4
BBTs1e3 9 7 6 8 7
BBTs1e4 6 8 8 6 8
Maha22 14 14 14 10 14
Maha64 14 13 14 11 13
Maha65 17 19 17 13 17
Maha66 13 15 13 9 11
Maha81 21 21 20 14 20
Maha82 21 19 20 10 16

Table 4.3: Entity Coverage results for different methods

did not change significantly. On the other hand, the matrix returned by SBMR had higher rank

(120-130 for R = 1) as the number of tracklets increased.

4.7.4 Online Inference

We wanted to explore the case of streaming videos, where the frames appear sequentially and

old frames are not stored. This is the online version of the problem, the normal Gibbs Sampling

will not be possible. For each tracklet i, we will have to infer Ci and Zi based on Cprev(i), Zprev(i)

and the {φk}-vectors learnt from {Y1, Y2, . . . , Yi−1}. Once again, (Ci, Zi) is sampled as a block

as above, and the term p(Zi|Z−i, Ci = a)) follows from the TC-CRP PPF (Eq 4.6). The same

thing can be done for TC-CRF also. Instead of drawing one sample per data-point, an option is

Dataset TCCRF TCCRP sHDPHMM SBMR+ WBSLRR
ConsClus

BBTs1e1 0.82 0.67 0.79 0.29 0.73
BBTs1e3 0.86 0.88 0.68 0.09 0.53
BBTs1e4 0.92 0.82 0.78 0.22 0.62
Maha22 0.90 0.90 0.86 0.43 0.69
Maha64 0.93 0.90 0.81 0.39 0.62
Maha65 0.94 0.85 0.91 0.40 0.68
Maha66 0.74 0.80 0.68 0.43 0.65
Maha81 0.80 0.75 0.66 0.46 0.50
Maha82 0.76 0.81 0.64 0.37 0.64

Table 4.4: Tracklet Coverage results for different methods
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Dataset Maha65
Measure TC-CRF TC-CRP sHDPHMM

Purity 0.86 (56) 0.89(79) 0.84 (82)
Entity Coverage 14 15 16

Tracklet Coverage 0.75 0.80 0.77

Dataset Maha81
Measure TC-CRF TC-CRP sHDPHMM

Purity 0.71 (55) 0.84(74) 0.70(57)
Entity Coverage 19 21 17

Tracklet Coverage 0.51 0.62 0.49

Dataset BBTs1e1
Measure TC-CRF TC-CRP sHDPHMM

Purity 0.87 (39) 0.73 (33) 0.50 (14)
Entity Coverage 5 3 3

Tracklet Coverage 0.80 0.65 0.40

Dataset BBTs1e4
Measure TC-CRF TC-CRP sHDPHMM

Purity 0.92 (45) 0.88 (32) 0.75(28)
Entity Coverage 7 6 7

Tracklet Coverage 0.87 0.81 0.67

Table 4.5: Online (single-pass) analysis on 4 videos

to draw several samples and consider the mode. In the absence of actual streaming datasets we

performed the single-pass inference (Sec 4.7.4) on two of the videos from each set- Mahabharata

and Big Bang Theory. We used the same performance measures as above. The existing tracklet

clustering methods discussed in Sec 4.7.1 are incapable in the online setting, and sticky HDP-

HMM is the only alternative. The results are presented in Table 5, which show TC-CRP to

be doing the best on the Mahabharata videos and TC-CRF on the Big Bang Theory ones.

Notably, the figures for TC-CRP and TC-CRF in the online experiment are not significantly

lower than those in the offline experiment (except one or two exceptions), unlike sHDP-HMM.

This indicates that the proposed methods converge quickly, and so are more efficient offline.

4.7.5 Outlier Detection / Discovery of False Tracklets

Face Detectors such as [80] are trained on static images, and applied on the videos on per-

frame basis. This approach itself has its challenges [71], and the complex videos we consider in

our experiments do not help matters. As a result, there is a significant number of false (non-

face) detections, many of which occur in successive frames and hence get linked as tracklets.

Identifying such junk tracklets not only helps us to improve the quality of output provided to

the users, but may also help to adapt the detector to the new domain, by retraining with these

new negative examples, as proposed in [74].

We make use of the fact that false tracklets are relatively less in number (compared to

the true ones), and hence at least some of them can be expected to deviate widely from the

mean of the tracklet vectors. This is taken care of in the TC-CRP tracklet model, through the
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Figure 4.6: Non-face tracklet vectors (reshaped) recovered by TC-CRP. Note that one face tracklet
has been wrongly reported as non-face

Dataset Maha65 Maha81
Method Precision Recall* Precision Recall*
KMeans 0.22 73 0.19 39

Constrained Spectral 0.30 12 0.12 16
TCCRP (c=5) 0.98 79 0.57 36
TCCRP (c=4) 0.98 87 0.64 47
TCCRP (c=3) 0.95 88 0.62 54
TCCRP (c=2) 0.88 106 0.50 57

Table 4.6: Discovery of non-face tracklets

component φ0 that has very high variance, and hence is most likely to generate the unusual

tracklets. We set this variance Σ2 as Σ2 = cΣ1, where c > 1. The tracklets assigned Zi = 0

are reported to be junk by our model. It is expected that high c will result in lower recall but

higher precision (as only the most unusual tracklets will go to this cluster), and low c will have

the opposite effect. We study this effect on two of our videos- Maha65 and Maha81 (randomly

chosen) in Table 6 (See Fig. 7 for illustration). As baseline, we consider K-means or spectral

clustering of the tracklet vectors. We may expect that one of the smaller clusters should contain

mostly the junk tracklets, since faces are roughly similar (even if from different persons) and

should be grouped together. However, for different values of K (2 to 10) we find that the

clusters are roughly of the same size, and the non-face tracklets are spread out quite evenly.

Results are reported for the best K (K = 10 for both). Note that because of the large number

of tracklets (Table I) it is difficult to count the total number of non-face ones. So for measuring

recall, we simply mention the number of non-face tracklets recovered (recall*), instead of the

fraction. It is clear that TC-CRP significantly outperforms clustering on both precision and

recall*.

4.7.6 Evaluation of TC enforcement

The aim of TC-CRP and TC-CRF is to encourage TC at the semantic level, that spatio-

temporally close but non-overlapping tracklets should belong to the same entity. In the Bayesian

models like sHDP-HMM, TC-CRP and TC-CRF, these cues are modeled with probability

distributions, in WBSLRR with convex regularization and in constrained clustering they are

encoded as hard constraints. We now evaluate how well the different methods have been able

to enforce these cues. We create ground-truth tracks by linking the tracklets which are spatio-
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Dataset TCCRF TCCRP sHDPHMM WBSLRR

BBTs1e1 0.65 0.54 0.42 0.93
BBTs1e3 0.74 0.71 0.59 0.22
BBTs1e4 0.72 0.69 0.54 0.34
Maha22 0.83 0.81 0.80 0.61
Maha64 0.80 0.80 0.79 0.55
Maha65 0.86 0.81 0.81 0.63
Maha66 0.86 0.79 0.78 0.52
Maha81 0.86 0.82 0.83 0.61
Maha82 0.89 0.86 0.84 0.64

Table 4.7: Fraction of ground truth tracks that are fully linked

Dataset TCCRP sHDPHMM SBMR+ WBSLRR
ConsClus

Cars 0.94 (35) 0.92 (12) 1.00 (54) 0.24 (21)
Aeroplanes 0.95 (43) 0.87 (15) 0.84 (44) 0.21 (24)

Dataset TCCRP sHDPHMM SBMR+ WBSLRR
ConsClus

Cars 5 5 5 2
Aeroplanes 6 5 6 4

Dataset TCCRP sHDPHMM SBMR+ WBSLRR
ConsClus

Cars 0.73 0.69 1.00 0.04
Aeroplanes 0.93 0.70 0.88 0.09

Table 4.8: Purity, Entity Coverage and Tracklet Coverage results for different methods on Cars
and Aeroplanes videos

temporally close to each other (with respect to the chosen threshold thres in the generative

process), and belong to the same entity. All the tracklets in each ground-truth track should

be assigned to the same cluster. This is the task of tracklet linking. We measure what fraction

of the these ground-truth tracks have been assigned entirely to single clusters by the different

methods. We do not compare SBMR+ConsClus, since it uses hard constraints. The results

are shown in Table 7. We find that TC-CRF is the best once again, followed by TC-CRP and

sHDP-HMM. WBSLRR has significantly poorer performance, though it springs a surprise on

BBTs1e1.

Figure 4.7: Car detections (top), and the corresponding atoms (reshaped to square images) found by
TC-CRP (bottom)
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4.8 Discovery of Non-person Entities

To emphasize the fact that our methods are not restricted to faces or persons, we used two

short videos-one of cars and another of aeroplanes. The cars video consisted of 5 cars of

different colors, while the aeroplanes video had 6 planes of different colors/shapes. These were

created by concatenating shots of different cars/planes in the Youtube Objects datasets 1. The

objects were detected using the Object-specific detectors [27]. Since here the color is the chief

distinguishing factor, we scaled the detections down to 30 × 30 and reshaped them separately

in the 3 color channels to get 2700-dimensional vectors. Here R = 1 was used, as these videos

are much shorter, and using long tracklets would have made the number of data-points too low.

Both videos have 750 frames. The Cars video has 694 detections, and the Aeroplanes video

has 939 detections. The results are shown in Table 8. Once again, TC-CRP does well.

4.9 Semantic Video Summarization

In this section, we discuss how the above results on entity discovery can be used to obtain a

sematic summary of the video. For this purpose we consider two approaches: entity-based and

shot-based.

4.9.1 Entity-based Summarization

The process of entity discovery via tracklet clustering results in formation of clusters.In case

of the Bayesian methods like TC-CRF, TC-CRP and sHDP-HMM, each cluster can be repre-

sented by the mean vector of the corresponding mixture component. In case of non-Bayesian

approaches like SBMR+Consclus and WBSLRR, it is possible to compute the cluster centers

as the mean of the tracklet vectors assigned to each cluster. Each cluster vector φk can be

reshaped to form a visual representation of the cluster. This representation of clusters pro-

vides us a visual list of the entities present in the video, which is what we call entity-based

summarization of the video.

Any summary should have two properties: 1) It should be concise 2) It should be representa-

tive. Along these lines, an entity-based summary should have the property that it should cover

as many entities as possible, with least number of clusters. On the other hand, the selected

clusters should cover a sufficiently large fraction of all the tracklets. In our evaluation of entity

discovery (Section 4.7) we have measured Entity Coverage, Tracklet Coverage and Number of

significant clusters. These same measures are useful in evaluating the summarization. En-

tity Coverage and Tracklet Coverage should be high, and number of significant clusters should

1http://people.ee.ethz.ch/ presta/youtube-objects/website/youtube-objects.html
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Dataset TCCRF TCCRP sHDPHMM SBMR+ WBSLRR
ConsClus

BBTs1e1 0.13 0.17 0.11 0.10 0.09
BBTs1e3 0.18 0.18 0.16 0.53 0.16
BBTs1e4 0.15 0.22 0.28 0.19 0.20
Maha22 0.21 0.20 0.19 0.23 0.18
Maha64 0.12 0.12 0.14 0.11 0.16
Maha65 0.18 0.22 0.19 0.17 0.20
Maha66 0.17 0.21 0.16 0.11 0.14
Maha81 0.23 0.24 0.21 0.17 0.26
Maha82 0.40 0.38 0.34 0.16 0.25

Table 4.9: Conciseness results for different methods for entity-based summarization

Dataset TCCRF TCCRP sHDPHMM SBMR+ WBSLRR
ConsClus

BBTs1e1 1.7 1.86 1.80 0.60 1.60
BBTs1e3 1.72 2.2 1.83 0.60 1.23
BBTs1e4 2.3 2.28 2.69 0.71 1.51
Maha22 1.39 1.30 1.16 0.99 0.87
Maha64 0.82 0.86 0.84 0.44 0.76
Maha65 0.99 1.00 1.02 0.53 0.81
Maha66 0.97 1.10 0.85 0.51 0.80
Maha81 0.88 0.85 0.69 0.55 0.64
Maha82 1.46 1.62 1.10 0.59 1.00

Table 4.10: Representativeness (×100) results for different methods for entity-based summa-
rization

be low (See Figures 8,9). To make the evaluation more comprehensive, we define two more

measures: 1) Conciseness: defined as the ratio of Entity Coverage to the number of significant

clusters, and 2) Representativeness: defined as the ratio of the Tracklet Coverage to the number

of significant clusters.

The results are shown in the Tables 9,10. We find that in terms of Conciseness, TC-CRP

turns out to be the best, while the other methods are all comparable when averaged across the

videos. In terms of Representativeness, TC-CRP is once again the best by a long way, while

TC-CRF and sHDP-HMM are at par. The non-Bayesian methods are way behind.

4.9.2 Shot-based Summarization

Another way of summarization is by a collection of shots. [69] follows this approach, and

selects a subset of the shots based on the total number of characters (entities), number of

prominent characters (entities) etc. A shot 1 is a contiguous sequence of frames that consist of

the same set of entities. It is possible to organize the video into temporal segments based on

the cluster indices assigned to the tracklets. In a frame f , let {Z}f denote the set of cluster

labels assigned to the tracklets that cover frame f . For two successive frames f1 and f2, if

{Z}f1 = {Z}f2 we say that they belong to the same temporal segment, i.e. T (f2) = T (f1).

1http://johmathe.name/shotdetect.html
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Dataset TCCRF TCCRP sHDPHMM SBMR+ WBSLRR
ConsClus

BBTs1e1 0.86 0.80 0.75 0.74 0.80
BBTs1e3 0.84 0.74 0.71 0.82 0.64
BBTs1e4 0.67 0.57 0.55 0.75 0.60
Maha22 0.41 0.39 0.40 0.30 0.53
Maha64 0.32 0.34 0.34 0.26 0.27
Maha65 0.30 0.29 0.30 0.24 0.32
Maha66 0.14 0.14 0.12 0.11 0.21
Maha81 0.37 0.34 0.36 0.24 0.17
Maha82 0.36 0.33 0.38 0.23 0.41

Table 4.11: Conciseness results for different methods for shot-based summarization

But if {Z}f1 6= {Z}f2, then we start a new temporal segment, i.e. T (f2) = T (f1) + 1. By this

process, the frames of the video are partitioned into temporal segments. The cluster labels are

supposed to correspond to entities, so each temporal segment should correspond to a shot. Each

such segment can be easily represented with any one frame, since all the frames in a segment

contain the same entities. This provides us a shot-based summarization of the video.

As in the case with entities, once again a large number of temporal segments are created

by this process, with several adjacent segments corresponding to the same set of entities. This

happens because often several clusters are formed for the same entity. Analogous to Entity

Coverage, we define Shot Coverage as the total number of true shots that have at least one

temporal segment lying within it. We then define significant segments as those which cover a

sufficient number (say 100) of frames. Finally, we define Frame Coverage as the fraction of the

frames which come under the significant segments.

To evaluate such shot-based summarization, once again we need to consider the two basic

properties: conciseness and representativeness. These are measured in exact analogy to the

entity-based summarization discussed above (See Figures 10,11). The Conciseness of the sum-

mary is defined as the ratio of the Shot Coverage to the number of significant segments, while

the Representativeness of the summary is defined as the ratio of the Frame Coverage to the

number of significant segments. The results are shown in Tables 11 and 12. This time we find

that in terms of representativeness TC-CRF leads the way, followed by TC-CRP. In terms of

conciseness the best performance is given by WBSLRR, which however does poorly in terms of

conciseness.

4.10 Implementation Details

Data Collection: The video datasets- the Big Bang Theory episodes and the Mahabharata

episodes were downloaded from Youtube. They had been uploaded to Youtube by users. These

videos did not have any dialogue scripts, subtitles or any other secondary source of information

(except the voices). The episodes to be tested were selected randomly, and not based on any
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Figure 4.8: Entity-based summarization of Mahabharata Episode 22 using TC-CRF. Each image is
a reshaped cluster mean.

Figure 4.9: Entity-based summarization of Mahabharata Episode 22 using WBSLRR. WBSLRR
creates many more clusters than TC-CRF, but both discover the same number of persons (14). Hence
the summary by TC-CRF is more concise.
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Figure 4.10: Shot-based summarization of Mahabharata Episode 22 using TC-CRF. Each image is a
keyframe from a significant segment.

Figure 4.11: Shot-based summarization of Mahabharata Episode 22 using SBMR+ConsClus.
SBMR+ConsClus creates more significant segments to cover roughly the same set of true shots as
TC-CRF, so TC-CRF summary is more concise

71



Dataset TCCRF TCCRP sHDPHMM SBMR+ WBSLRR
ConsClus

BBTs1e1 0.72 0.73 0.75 0.77 0.80
BBTs1e3 0.68 0.63 0.64 0.68 0.74
BBTs1e4 0.88 0.93 0.89 0.75 0.87
Maha22 0.66 0.61 0.63 0.53 0.24
Maha64 0.42 0.41 0.40 0.42 0.23
Maha65 0.47 0.43 0.45 0.18 0.26
Maha66 0.43 0.42 0.42 0.44 0.10
Maha81 0.45 0.46 0.46 0.19 0.29
Maha82 0.59 0.59 0.57 0.38 0.24

Table 4.12: Representativeness (×100) results for different methods for shot-based summariza-
tion

particular criteria. However, it must also be noted that these are longer than videos used

earlier for tracklet clustering in [88, 92] etc, and also have more persons. The videos of cars

and aeroplanes were obtained from a Youtube-based Objects dataset collected earlier for object

detection research.

Features: For the person discovery experiments, we used the face to represent each person.

This is a fairly standard practice in related literature, including [4, 92, 88]. The faces are

detected frame-by-frame using the openCV face detector, that uses Viola-Jones algorithm [80].

The detection performance is reasonable, though there are some false negatives (misses) and

false positives (non-face detections). The number of non-face detections is particularly high

on the Mahabharata videos which have more complex backgrounds, and background structures

are often mistaken as face. As already discussed, the proposed approach can filter out most of

the false detections. It may be possible to reduce the number of missed detections by using a

detector that is re-trained on the input video itself rather than pre-trained detectors.

The detections were reshaped into 30×30 images, converted to greyscale and then reshaped

to 900-dimensional vectors. This practice is also fairly common in literature related to tracklet

clustering [88, 92] and face recognition [59]. Some of the works use RGB colour channels instead

of converting to greyscale, in which case we would have a 2700-dimensional vector. We used this

in case of the car and aeroplane experiments where colour played a distinguishing role between

the entities. However, for faces we observed that this does not give any significant improvement

in performance, but increases the computational complexity. In fact, sometimes larger number

of clusters were formed. So we used greyscale conversion for the person discovery experiments.

In some recent related works like [75], the full body of the person was used instead of just the

face. They even proposed a clothing model for the persons. The advantage of this approach is

that, it can handle even those frames where the person’s face was not fully visible. In our work

too, it should be possible to represent the persons with full bodies, by using a person detector

instead of face detector. We can use the part-based detection technique [27] to detect human
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bodies, and augment it with the clothing model proposed by [75]. However, we did not explore

these because of two reasons: 1) We wanted to keep the approach agnostic to the type of entity,

so we did not want features specific to face or human body 2) In the Mahabharata videos, most

characters had similar costumes, and we felt that the faces would be more discriminative than

the whole body, especially the clothes.

Moreover, instead of using pixel values, it may be possible to use more robust and sophis-

ticated features like Gabor features used in the previous chapter. However, it must be noted

that our generative model considers the entity basis vectors to be drawn from a Gaussian dis-

tribution N(µ,Σ), and the individual tracklets/detections are Gaussian perturbations. The

representation should be such that these assumptions are reasonable, which is the case in case

of pixel values, but less reasonable in case of Gabor features. Other works which have used

low-rank matrix representation for face recognition (like [59]) have also stayed away from such

features and used simple pixel values for similar reasons.

Implementation: Apart from the face detection which was done using OpenCV, the rest

of the system was implemented in Matlab. There were mainly two parts- processing the face

detections and converting them into a sequence of tracklet vectors, and the Bayesian inference

using these tracklet vectors as input. For the first part, the detections from successive frames

with sufficiently close co-ordinates (difference less than 10 pixels in both X and Y directions)

were linked to form the tracklets. The threshold distance of 10 pixels was chosen on the

basis of empirical judgment, and not a single “impure” tracklet was produced (when detections

of different entities are linked). Spatio-temporal distances between successive tracklets were

computed as the distance between the last detection of the preceding tracklet and the first

detection of the following tracklet. The threshold difference thres between successive tracklets

(used in the generative model) was also set by empirical observation. As mentioned, each

tracklet was represented as the mean feature vector of its associated detections. Before the

inference, all the values were scaled by 255 and thus reduced to the [0, 1] range. This is not

necessary in our approach, but some of the baselines (like SBMR) could not work without this

step, so for consistency we also used it.

We estimated the base mean µ and covariance matrix Σ from the tracklet vectors. For

inference by Gibbs Sampling, we first initialized the latent variables Z by running a forward

sampling, using the PPFs of TC-CRP (Eq 4.6) or TC-CRF (Eq 4.8). The mixture components

φ were estimated along the way. After initialization, the blocked Gibbs Sampling was done

using the inference equations already discussed. It was found that after 5-10 iterations the

variable values become stabilized for all the test videos, so we stopped the sampling after

25 iterations and collected the final assignments as our inferred values for the variables. So
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although Gibbs Sampling is considered slow, in this case only a few iterations were enough to

achieve convergence, and the time was not an issue. Among the various competitors, SBMR

quickly estimated the low-rank representation, but the constrained clustering step was much

slower. The subspace clustering methods took considerable time to even estimate the affinity

matrix, following which clustering also took time. WBSLRR also took a lot of time to converge,

and its convergence was very sensitive to the initialization. Moreover, it was computationally

expensive as it used 6 large matrices.

4.11 Applications, Limitations and Extensions

Applications: The most important application of this system is in analyzing videos uploaded

on public video-sharing sites like Youtube and Dailymotion. The videos uploaded by users have

no detailed information about the contents, and any user may need to watch an entire video

to understand if it is relevant to her interest or not. Since there is a humongous amount of

video content available on these sites, it is neither possible for users to select the appropriate

ones by watching, nor possible for administrators to label them with relevant information in

textual/visual form. In such a situation, the only alternative is automatic analysis, as proposed

here.

The aim of automatic video analysis in this case would be to produce short but compre-

hensive summaries of videos, and simplify browsing. Both of these have been addressed in this

work. The discovery of entities along with all their occurrences allow the user to watch only

those parts of the video that contain an entity she is interested in. On the other hand, the

entity-based and shot-based summarizations discussed earlier gives her an idea of the contents

of any video without viewing it. Entity discovery and entity-driven summarization are both

one-time processes, which can be done as soon as a video is uploaded on to a website. Since

it is generally not known beforehand what type of entities are present in a video, the system

should have an ensemble of detectors for various kinds of entities, and entity-discovery should

be carried out separately for all of them.

It may be noted that the proposed method has quite low computational complexity, and

we have seen that videos can be processed online (single-pass) without significant performance

deterioration. So, it can even be run on handheld devices and also on surveillance devices like

cameras. These devices nowadays are often equipped with face detectors, which can be used for

this task. In surveillance scenarios, it is possible to have applications where the recorded videos

would be analyzed on the fly, and the persons who appeared repeatedly would be discovered

along with their footages, which would potentially save many hours of inspection in case the

authorities are interested in observing the movements of a suspicious person. On the other
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hand, if the system is installed on a handheld device such as a mobile phone, it will allow the

user to download any video and generate its summary on the fly, without even needing to store

the full video.

Limitations: One limitation of the work is that, we are unable to determine the exact

number of entities as several clusters are formed per entity. This is inevitable due to the fact

that the same entity may appear in different poses and views. It may be possible to improve

this by using features that are robust to viewpoints, such as SIFT. But once again, for such

features the assumption of Gaussian mixture components may not hold good. To find the

suitable features, or some other way of regularizing the number of clusters remains an open

question.

Extensions: A direction that has not been explored in this work is potential incorporation

of supervision. We may consider weak supervision in which a small number of the tracklets will

be annotated by an expert. Alternatively, an expert can be shown some pairs of tracklets or

clusters and asked if they correspond to the same entity. Such annotation can form a new set

of must-link constraints, and push the system towards finding the correct number of entities.

However, this may be possible to only a limited extent in the application scenarios discussed

above, as suitable experts may not be found. One possibility is to ask the uploader herself to

make a small number of annotations for the upload to be accepted by the website. The question

of which, or which pair of, tracklets or clusters to choose for annotation is a question of active

learning.

Another extension of this work is to consider temporal entities that are not limited to a

single frame but span several frames, such as actions. Mining repeated temporal patterns in a

sequence is already an area of research. The proposed framework will continue to work if we

can find suitable vector/matrix representation of each temporal entity. However, this is likely

to be challenging since we do not know the temporal extent of each entity, and different entities

may well have different temporal extents. Time warping may have to be used to produce a set

of consistent vectors/matrices. A suitable action detector is also needed, and this is a research

problem by itself which is still relatively new.
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Chapter 5

Bayesian Inference for Entity-driven

Scene Discovery in Videos

5.1 About this Chapter

In this chapter, we pick up from the previous one and address a related problem: temporal

segmentation of videos for entity-driven scene discovery. Once again, we use Bayesian nonpara-

metric modeling. We propose EntScene- a generative model for entities and scenes in videos,

along with appropriate inference algorithms. Like the previous chapter, the work done here is

also relevant to concise, user-friendly representation of videos in video-sharing websites. On

the theoretical side, this is an attempt at segmentation of sequential data that has additional

structures.

Publications This work has been published in International Joint Conference on Artificial

Intelligence (IJCAI), 2015 to be held in Buenos Aires, Argentina.

1. Adway Mitra, Chiranjib Bhattacharyya, Soma Biswas. EntScene: Nonparametric Bayesian

Temporal Segmentation of Videos aimed at Entity-driven Scene Detection, International

Joint Conference on Artificial Intelligence (IJCAI), 2015

5.2 Temporal Video Segmentation

Naturally occurring sequential data often have an important property- Temporal Coherence,

i.e. successive datapoints in the sequence are semantically related. It is often important and

interesting to segment sequential data into semantically coherent subsequences. For example,

in a stream of image frames in a video, successive frames in a video show the same objects,

except at a few changepoints. Detecting such changepoints, i.e. temporally segmenting the
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video into coherent subsequences helps in video summarization [62]. Existing approaches to

temporal video segmentation are based on similarities of low-level visual features of the frames.

Consider the video of a movie or a TV series episode with a reasonably small but unknown

number of persons. A TV serial episode is formed of a few scenes or acts- where a small

subset of the persons are present. Such a video can be represented by the sequence formed

by detecting the faces of the persons in all frames. Each person can be considered an entity.

For easier browsing it is interesting to simultaneously discover the persons along with all the

frames where they appear, and also segment the sequence into the scenes, and annotate each

scene with its persons. This is an entity-driven approach to scene discovery of videos.

Temporal segmentation of videos has been studied earlier [62], which segments the video

into shots. Using the entity-driven approach also it is possible to segment the video into shots,

where each shot is associated with an entity. But a video is hierarchically organized [21] and

each scene is a collection of several shots. A scene in a TV series episode involves several

entities (like people), and successive shots within a scene may alternate between the entities

in roughly cyclical patterns. For example during a two-person discourse the camera focuses on

one person when she speaks, then on the second person, then back to the first and so on (See

Fig 5.1). Existing scene detection methods have been surveyed in [21]. The general approach is

to cluster the shots. Much of the existing methods are based on low-level features of frames and

shots, rather than entities. A few more recent methods like [69] do attempt character-driven

scene discovery in movies, but such methods are heavily dependent on additional information,

such as movie scripts. In the absence of such scripts, which is the case for most user-generated

videos available online, entity-driven scene discovery is quite unexplored.

In this chapter, we consider entity-driven temporal segmentation, where each temporal seg-

ment should be associated with one or more entities, like persons, objects or actions. A major

challenge is that these entities, or even their number, are not known apriori, and need to be

learnt from data. In sequential data each datapoint is associated with one entity. Moreover,

the data may have some intricate temporal patterns, like a set of entities may be more frequent

in some subsequences than others. modeling these patterns is a second major challenge.

5.3 Problem Definition

Consider the episode of a TV-series, with several entities (say persons). We can run a face

detector on each frame, and link spatio-temporally close ones to form tracklets [36]. We consider

tracklets spanning r frames. Normally 5 ≤ r ≤ 20, and at r = 1 we have individual detections.

The detections within each tracklet are visually similar due to temporal coherence. It is possible

to represent each detection as a feature vector. We represent each tracklet i by the tuple (Ri, Yi)
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Figure 5.1: Keyframes from a TV-series episode. Shot changes occur after frames 2,3,4,6,8, but scene
change occurs after frame 6 only

where Yi is the mean feature vector of the associated detections, and Ri is the set of indices of

the frames spanned by i. Note that there can be several face detections per frame, and hence

the R-sets of different tracklets can overlap. The tracklets can be ordered sequentially using

the indices of their starting frames (ties resolved at random), and for each tracklet i we can

define predecessor pred(i) and successor succ(i). If the temporal gap between any tracklet i

and pred(i) is too large, we set pred(i) = −1 (similarly for succ(i)). Let {Fj}Mj=1 be the set of

frames with at least one associated tracklet, arranged in ascending order of frame index.

Next, define latent variables Zi as the index of the entity associated with tracklet i and

Sj as the index of the scene associated with frame Fj. Temporal coherence property holds at

tracklet-level (as in Chapter 4) as well as at frame-level. This means, with high probability

Zpred(i) = Zi = Zsucc(i) (5.1)

{Z}j−1 = {Z}j = {Z}j+1 (5.2)

Sj−1 = Sj = Sj+1 (5.3)

Here i is a tracklet with neighbors pred(i) and succ(i). Also, {Z}j = {Zi : F (j) ∈ Ri}, i.e. {Z}j
is the set of Z-variables corresponding to tracklets covering frame F (j). With slight abuse of

notation, {Z}s denotes the set of all Z-variables associated with all frames satisfying Sj = s. We

call the frames where the Condition 5.2 does not hold as Level-1 changepoints and the ones where

the Condition 5.3 does not hold as the Level-2 changepoints. The hierarchical segmentation

problem is to find these changepoints. An interval of frames {F (j1), . . . , F (j2)} is a level-1

segment if {Z}j1 = {Z}j1+1 = · · · = {Z}j2, but {Z}j1 6= {Z}j1−1 and {Z}j2 6= {Z}j2+1. In this

case, j1 and j2+1 are level-1 changepoints. Similarly, an interval of frames {F (j1), . . . , F (j2)} is

a level-2 segment if Sj1 = · · · = Sj2, but Sj1 6= Sj1−1 and Sj2 6= Sj2+1. In this case, j1 and j2+1

are level-2 changepoints. CP1 and CP2 are Candidate Frames like shot changepoints which

may be Level-1 or Level-2 changepoints respectively, which can be found by shot segmentation
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Figure 5.2: Face detections, frames and tracks

methods 1.

The temporal video segmentation setup is illustrated in Figure 5.2. We show 3 successive

frames, each of which have two face detections corresponding to two persons. The detections

are numbered 1-6 (in green), and linked to each other based on spatio-temporal locality, as

shown by the red and blue lines. The frame numbers are indicated in green. Here the tracklets

are individual detections, i.e. R = 1. So here, F = {2000, 2001, 2002}; pred(3) = 1, pred(4) =

2, pred(5) = 3, pred(6) = 4; succ(1) = 3, succ(2) = 4, succ(3) = 5, succ(4) = 6; Z(1) = Z(3) =

Z(5) = 1, Z(2) = Z(4) = Z(6) = 2; S(1) = S(2) = S(3) = 1.

Continuing the line of Bayesian modeling employed in Chapter 4, we model entities as

mixture components, and scenes as sparse distributions over these mixture components.

Challenges: Segmentation of a video into scenes is difficult, especially if the scene involves

multiple entities. This is because all the entities are usually not seen together in any frame,

and appear in turns. The camera often focuses on one entity for some time, then focus onto

another, then back to the first, then a third and so on. So when a new entity appears, it

is not known whether it is within the current scene or the beginning of a new scene. If the

entities appearing hitherto in the current scene appear again after the new entity, then we know

that the same scene is continuing. Hence, a single forward pass over the sequence is usually not

enough for scene segmentation, and iterative approaches are more effective. Moreover, in videos

the same entity often appears in different poses, and so several mixture components may be

formed for the same entity. The pose change of a entity within a scene may be interpreted as the

appearance of a new entity, and perhaps also the start of a new scene. As a result, entity-driven

temporal segmentation of a video into scenes is difficult, and risks oversegmentation.

5.4 Generative Model and Inference

Having described the notation, we now come to a generative process for videos. One part of

this generative process is modeling the observed data (the tracklets). We model the entities as

mixture components {φk}, and the datapoints (tracklets) are drawn from these components.

1http://johmathe.name/shotdetect.html
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We represent the tracklets as vectors {Yi} of pixel intensity values, as in Chapter 4. Tracklet i

is associated with entity Zi, and according to our model, Yi ∼ N(φZi ,Σ).

5.4.1 EntScene

The more complex part of the generative process is the modeling of Temporal Coherence, at

the levels of scene and track.

Temporal Coherence at scene level The variables Sj can be Markovian [29] conditioned

on its predecessor Sfpred(j). Frame j and its associated detections remain in the current scene

(Sfpred(j)) with probability κ, or start a new scene (Sfpred(j) + 1) with probability (1− κ).

Sj ∼ κδSj−1
+ (1− κ)δSj−1+1 (5.4)

Modeling of a Scene Each level-2 segment (scene) s has to be modeled as a distribution

Gs over mixture components (persons). In case of TV series videos,a person can appear in

several scenes. Such sharing of components can be modeled using like Hierarchical Dirichlet

Process [76], usingH as base distribution (Gaussian) and {αs} as segment-specific concentration

parameters.

φk ∼ H∀k; G ∼ GEM(α); Gs ∼ DP (αs, G)∀s (5.5)

A sparse modeling can be considered, where each level-2 segment selects a sparse subset of the

components using a Beta-Bernoulli process [33][38][85]. Then each segment s has an associated

binary vector Bs which indicates which components are active in s.

βk ∼ Beta(1, β)∀k;Bsk ∼ Ber(βk)∀s, k (5.6)

Temporal Coherence at track level For assigning mixture component Zi to datapoint i,

the temporal coherence can be maintained using a Markovian process once again. In this case,

i is assigned either the component of its predecessor pred(i) or a component sampled from Gs,

restricted to the ones active in s.

Zi ∼ ρδZpred(i) + (1− ρ)(Bs ◦Gs) (5.7)

where Bs is the sparse binary vector. As Gs is discrete (Dirichlet Process-distributed), multiple

draws from it may result in sampling a component repeatedly in the same segment s. This is

desirable in TV series videos, since a particular person is likely to appear repeatedly in a scene.
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We can consider an auxiliary variable Ci ∼ Ber(ρ) to sample Zi (similar to TCCRP). Based

on all these, the generative process for videos is given as follows:

Algorithm 4 Generative Process for Videos
1: φk ∼ N(µ,Σ0), βk ∼ Beta(1, β) for k = 1, 2, . . . ,∞
2: G ∼ GEM(α)
3: for j = 1 to M do
4: Sj ∼ κδSj−1 + (1− κ)δSj−1+1

5: if j = 1 or Sj 6= Sj−1 then
6: Bsk ∼ Ber(βk) ∀k (s = Sj)
7: Gs ∼ DP (αs, G)
8: end if
9: end for

10: for i = 1 : N do
11: if pred(i) = −1 set ρ = 0
12: Zi ∼ ρδZpred(i)

+ (1− ρ)(BSj
◦GSj

) (j = F (i))
13: Yi ∼ N(φZi

,Σ)
14: end for

5.4.2 Merge Inference by Blocked Gibbs Sampling

As mentioned earlier, hierarchical segmentation is to discover the frames where Equation 5.2

or Equation 5.3 is violated. For this purpose, we need to infer the Sj and Zi variables. The

complete likelihood function in terms of the random variable discussed above can be written

as

p(Y,Z, S,B,Φ, β,G,G0) ∝
∏
k=1 p(βk)p(φk)× p(G)×

∏M
j=2 p(Sj |Sj−1)×

∏
s p(Gs|G)×

∏
s,k p(Bsk|βk)

×
∏N
i=1 p(Zi|Zpred(i), SF (i), BSF (i)

, {Gs})p(Yi|Zi,Φ) (5.8)

We can collapse some of these variables, like {βk}, {Φ},{Gs} and G, in which case the B

variables can be handled using the Indian Buffet Process, and the Z variables using the Chinese

Restaurant Process. In that case, the likelihood function can be written as:

p(Y,Z, S,B) ∝
∏M
j=2 p(Sj |Sj−1)×

∏
s p(Bs|B1, . . . , Bs−1)

×
∏N
i=1 p(Zi|Z1, . . . , Zpred(i), {B}, {S})p(Yi|Zi, Y1, . . . , Yi−1) (5.9)

For inference we use Blocked Gibbs Sampling as several variables are usually strongly coupled,

and must be sampled together. We form blocks dynamically using the S variables. Clearly the

scene boundaries occur at frames where the S-variable changes, i.e. where Sj 6= Sj−1, and each

value s of S defines a segment. A block BL(s) is formed as {{B}s−1, {B}s+1, {B}s, {Z}s, {S}s}.
As a first step, we infer the segment {S}s using Eq 5.4 and the marginal likelihood of the data

{Y }s. We try to merge each segment s with either segment (s− 1) or segment (s+ 1) (or leave
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it alone), so the state-space of {S}s is only {s− 1, s, s+ 1}. After each iteration, the blocks are

re-defined according to the new assignment of {S} variables. Since the aim is always to merge

each segment with its neighbors, the number of segments should reduce till convergence. We

can use CP1 and CP2 to initialize {Z} and {S} respectively for Gibbs Sampling, thus getting

an initial segmentation. We know that if frames a and b are two successive points in CP2,

then obviously there is no changepoint between them, i.e. a < i < i′ < b ⇒ Sa = Si = Si′ .

This considerably reduces the search space for segments and allows us to keep merging the

segments progressively, without considering splits. Once {S}s is sampled, we sample the B and

Z variables using Eq 5.9. The process is explained in Algorithm 2.

The various parts of Eq 5.9 can be computed using the inference equations of Indian Buffet

Process [33] for {B}s and TC-CRP [54] for {Z}s. The convolution of Gs with the sparse

binary vector Bs poses a major challenge as it cannot be collapsed by integration, as noted

in [85]. We suggest an approximate PPF (modified version of the TC-CRP PPF) for easy

inference. In segment s, for a datapoint i where Ci = 1, a component φk may be sampled

with p(Bsk = 1, Zi = k) ∝ nsk, which is the number of times φk has been sampled from

Bs ◦ Gs within the same segment. If φk has never been sampled within the segment but

has been sampled in other segments, p(Bsk = 1, Zi = k) ∝ αnk, where nk is the number of

segments where φk has been sampled (Corresponding to p(Bsk) = 1 according to IBP). Finally,

a completely new component may be sampled with probability proportional to α0. Note that

p(Bsk = 0, Zi = k) = 0∀k.

Algorithm 5 Merge Inference Algorithm by Blocked Gibbs Sampling (MI-BGS)
1: Initialize segments S using CP2; Initialize B,Z;
2: Estimate components φ̂← E(φ|B,Z, S, Y );
3: while Number of segments not converged do
4: for each segment s do
5: Sample {S}s ∈ {s− 1, s, s+ 1} ∝ p({Y }s|Z,B, S, φ̂)

6: Sample ({B}s, {Z}s) ∝ p({B}s, {Z}s|{B}−s, {Z}−s, Y, S, φ̂)
7: end for
8: Re-number the S-variables, update components φ̂← E(φ|Z,B, S, Y );
9: end while

5.4.3 Split-Merge Inference

The above algorithm has the property that the number of segments keep decreasing and then

converges. This property is desirable as it helps in quick convergence. But two segments

can never split after they are merged once, which may come as a disadvantage in case of a

wrong merge. The Topic Segmentation Model (TSM) [24] allows for split-merge inference by

a Bernoulli random variable Us with each initial segment s from CP2, which indicate whether
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or not a new segment should start from s, i.e. if {Z}s and {Z}s−1 should be modeled with the

same distribution. To change Us from 0 to 1 is to split the segments s and (s − 1), and the

reverse change is to merge them. The algorithm is explained in Algorithm 3.

Algorithm 6 Split-Merge Inference Algorithm by Blocked Gibbs Sampling (SpMI-BGS)
1: Initialize segments S using CP2; Initialize B,Z;
2: Estimate components φ̂← E(φ|B,Z,U, Y );
3: while Number of segments not converged do
4: for each segment s do
5: Sample (Us, {B}s, {Z}s) ∝ p({B}s, {Z}s|{B}−s, {Z}−s, Y, {U}−s, φ̂)
6: end for
7: Update components φ̂← E(φ|B,Z,U, Y );
8: end while

5.4.4 Sweep-Merge Inference

In an alternative inference scheme, we initially consider the sequence to be segmented into the

slices defined by CP2, and carry out inference of {B} and {Z} by Gibbs Sampling. In the

next step, we make a sweep from left to right, attempting to merge the slices. For every slice

s, we propose to merge it into the currently running level-2 segment c, using a common binary

vector Bmerge for all datapoints in the proposed merged segment and component assignments

{Zmerge} to the datapoints in slice s. We may accept or reject the merger proposal based on

how well (Bmerge, {Zmerge}) can model the data Yc∪s in the merged segments (c, s), compared

to modeling them as separate segments. The merger probability is enhanced by temporal

coherence (Eq 5.4). If we accept it, we will merge slice s into level-2 segment c, and set Sj = c

for all frames j occurring within the slice s. If we reject it, we start a new level-2 segment

(c+ 1), and set Sj = c+ 1 for all frames j occurring within the slice s. The process is explained

in Algorithm 3.
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Algorithm 7 Sweep-Merge Inference Algorithm (SMI)
1: Initialize segments S using CP2;

2: for all initial segments s do

3: ({B}s, {Z}s) ∼ p({B}s, {Z}s|{B}−s, {Z}−s, Y )

4: end for

5: Estimate components φ̂← E(φ|Z,B, S, Y );

6: Set current segment c = 1, {S}1 = 1;

7: for each initial segment s do

8: Sample ({Bmerge}c, {Zmerge}s) ∝ p({Bmerge}c, {Zmerge}s|Y, φ̂, {Z}c)
9: Accept/reject the merger based on data likelihood

10: if merger accepted then

11: {Z}s = {Zmerge}s, {S}s = c, {B}c = {Bmerge}c;
12: else

13: {S}s = c+ 1;Set (c+ 1) as current segment;

14: end if

15: end for

5.5 Experiments on Temporal Segmentation

5.5.1 Datasets and Preprocessing

We use the same dataset of TV-series videos as used in Chapter 4. Once again, we link spatio-

temporally close detections to form tracklets, and convert the video to a sequence of tracklets.

The hyperparameters like α and β provide some control over the number of components learnt.

After tuning them on one episode, we found an optimal setting, where we were able to cover

80 − 85% of the detections with 80-90 components. κ, ρ etc are also fixed by tuning on one

episode.

5.5.2 Performance Measures

A gold-standard segmentation is created manually at the level of scenes (level-2), and we eval-

uated the inferred segmentation against this. But gold-standard segmentation is difficult to

annotate in level-1, as the videos are long, and there are too many level-1 segments. So at

this level our evaluation is about the quality of the mixture components learnt- i.e. of entity

discovery.

Evaluation of Entity Discovery We use the same evaluation measures for the entities as

used in 4. We select only those components that have at least 10 assigned tracklets overall, and

reject the rest. This is because we are interested only in persons that have reasonable screen

presence. We attribute a selected mixture component to entity A if 70% of the detections
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Video SMI MI-BGS SpMI sHDP-HMM
CP EC CP EC CP EC CP EC

BBTs1e1 0.84 6 0.78 5 0.80 6 0.84 5
BBTs1e3 0.91 8 0.94 8 0.96 10 0.76 6
BBTs1e4 0.89 6 0.91 8 0.90 8 0.83 8
Maha22 0.96 12 0.89 14 0.94 13 0.86 14
Maha64 0.94 14 0.92 13 0.91 12 0.91 14
Maha65 0.88 16 0.83 15 0.90 18 0.90 17
Maha66 0.91 14 0.81 15 0.89 15 0.95 13
Maha81 0.86 22 0.86 21 0.85 20 0.84 20
Maha82 0.93 19 0.89 19 0.81 20 0.86 20

Table 5.1: Entity Discovery results for SMI, MI-BGS, SpMI and sHDP-HMM

assigned to that component belong to entityA. This is because, we observe that if a component’s

associated tracklets are at least 70% pure then the corresponding mean vector µk resembles the

entity well enough for identification. For large components (200 or more associated tracklets),

we observe that 60% purity is enough for identifiability. We measure as Cluster Purity (CP),

the fraction of the selected components which can be assigned to an entity We also measure

as Entity Coverage (EC), what fraction of the entities with at least 10 tracklets, have been

represented by at least one selected component. We compare these with our baseline: sticky

HDP-HMM [29]. This is the state-of-the-art BNP model suited to unsupervised learning of

mixture components and segmentation.

Evaluation of Scene Discovery We evaluate the number of level-2 segments formed

(NS2), and the sequence segmentation error measure Pk. Pk is the probability that two tokens,

k positions apart, are inferred to be in the same segment when they are actually in different

segments in the gold standard, and vice versa. This is measured as S2, averaged over three

values of k. A third measure is segment purity (SP2), which is the fraction of the discovered

segments which lie entirely within a scene (i.e. a single gold standard segment).

We can look upon segmentation as a retrieval problem, and define the Precision and Recall

of level-2 changepoints (CP-RC2 and CP-PR2). Let i be the starting point of an inferred

segment s, i.e. Si−1 6= Si. Then, if there exists (i0, s0) such that i0 is the starting point of a

gold-standard segment s0 satisfying |i − i0| < k then inferred changepoint (i, s) is aligned to

gold standard changepoint (i0, s0). Precision, recall of a segmentation are defined as

Precision =
#inferred segments aligned to a gold-standard segment

#inferred segments

Recall =
#gold-standard segments aligned to an inferred segment

#gold-standard segments
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Video SMI MI-BGS SpMI
CP-RC2 CP-PR2 CP-RC2 CP-PR2 CP-RC2 CP-PR2

BBTs1e1 0.78 0.26 0.78 0.30 0.33 0.22
BBTs1e3 0.77 0.24 0.85 0.23 0.85 0.30
BBTs1e4 0.75 0.32 0.83 0.26 0.75 0.24
Maha22 0.71 0.21 0.76 0.24 0.53 0.20
Maha64 0.88 0.16 0.82 0.17 0.71 0.23
Maha65 0.78 0.20 0.87 0.27 0.74 0.23
Maha66 0.80 0.13 0.87 0.16 0.47 0.19
Maha81 0.55 0.19 0.80 0.22 0.75 0.16
Maha82 0.32 0.15 0.72 0.38 0.48 0.26

Table 5.2: Recall and Precision of segment boundaries, using alignment threshold to be 20% of the
average scene length

Video SMI MI-BGS SpMI
S2 NS2 SP2 S2 NS2 SP2 S2 NS2 SP2

BBTs1e1 0.14 51 0.77 0.09 44 0.67 0.19 25 0.61
BBTs1e3 0.10 40 0.74 0.08 46 0.88 0.10 30 0.68
BBTs1e4 0.11 26 0.71 0.12 37 0.79 0.13 35 0.81
Maha22 0.16 0.82 0.12 53 0.84 0.15 73 0.74
Maha64 0.19 94 0.91 0.19 81 0.89 0.18 50 0.77
Maha65 0.18 87 0.82 0.16 71 0.71 0.19 72 0.82
Maha66 0.12 87 0.82 0.20 79 0.90 0.19 35 0.78
Maha81 0.23 56 0.88 0.15 68 0.78 0.20 89 0.82
Maha82 0.15 50 0.77 0.07 46 0.71 0.19 69 0.68

Table 5.3: Segmentation error (S2), number of segments formed (NS2) and segment purity (SP2)

5.5.3 Results

The entity discovery results are shown in Table 5.1, and the segmentation results in Tables

5.2,5.3 and 5.4. We see that in terms of entity discovery, none of the methods (including sHDP-

HMM) have any significant advantage. Averaged across all the videos, SMI leads in terms of

Cluster Purity, while sHDP-HMM is the worst. In terms of Entity Coverage, all methods are

almost at par when averaged across the videos. At level-2 (i.e. scenes), we see that MI-BGS

clearly performs better than SMI and SpMI on precision and recall of segment boundaries (CP-

PR2, CP-RC2) and also fares best on the segmentation error (S2). However, SMI is found to

be better in terms of segment purity (SP2), which is understandable since it produces a large

number (NS2) of pure but small segments. On the other hand, SpMI is found to produce a small

number of segments, but they are often inaccurate, resulting in its poor performance in terms

of all the measures. In general the number of segments formed (NS2) is quite high compared

to the actual number of scenes, and this affects the precision values for all the methods. This

is not a fault of the segmentation algorithms, but the result of formation of a large number of

clusters compared to the number of persons. This happens due to significant variations in face

poses of the same person across a video.

Here, we give examples of three temporal segments from Maha65 learnt by SpMI, to illustrate

our evaluation measures for segmentation. Each segment is visually represented by the set of
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Video SMI MI-BGS SpMI
CP-RC2 CP-PR2 CP-RC2 CP-PR2 CP-RC2 CP-PR2

BBTs1e1 0.61 0.21 0.72 0.28 0.22 0.15
BBTs1e3 0.23 0.07 0.77 0.21 0.54 0.19
BBTs1e4 0.58 0.25 0.67 0.21 0.50 0.16
Maha22 0.29 0.09 0.65 0.20 0.24 0.09
Maha64 0.59 0.10 0.76 0.16 0.41 0.13
Maha65 0.35 0.09 0.57 0.18 0.48 0.15
Maha66 0.47 0.08 0.53 0.10 0.27 0.11
Maha81 0.35 0.12 0.55 0.15 0.50 0.11
Maha82 0.24 0.12 0.28 0.15 0.16 0.09

Table 5.4: Recall and Precision of segment boundaries, using alignment threshold to be 200 frames
(about 8 seconds)

Figure 5.3: A learnt temporal segment which is pure as it consists of frames from a single scenes.
Note that it also covers several shots, and the two persons appear alternately

the first frames of all tracklets covered by it.

5.6 Co-modeling of Videos

The generative process can be extended to multiple videos, which share the same persons (with

similar facial appearances). This may be done by allowing the videos to share the mixture

components {φk}, though the weights may differ. In that case, the inference process (SMI,

SpMI or MI-BGS) can proceed on the individual videos by estimating the shared components

first. This can be done by considering all the initial segments induced by CP2 from all the

sequences together, and estimating the shared components while initializing {B} and {Z}
variables accordingly.

We experimentally evaluate such co-modeling on videos which have almost the same set of

persons with similar facial appearances, and hence may be modeled using the same mixture

components. Modeling with same set of mixture components allow us to easily find out common

persons and temporal segments from the videos. In case they are modeled separately, discovery

of common persons and segments require matching the sets of mixture components from the

different videos, which may not be accurate.
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Figure 5.4: A learnt temporal segment which is impure as it consists of frames from several scenes
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Figure 5.5: A learnt temporal segment which is impure as it consists of frames from several scenes,
but it misses the true scene changepoint by a relatively short margin, which may be within tolerable
limits.
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Method BBTep1 BBTep3 BBTep4
Co-Modeling 0.72 0.76 0.67

Individual 0.58 0.77 0.64

Table 5.5: Segment Matching precision for Co-Modeling and separate modeling of video pairs

For this we collect a set of videos corresponding to 3 episodes of the TV series The Big

Bang Theory. For each episode, we have a main video (full episode) and a short video showing

snippets. Every such pair of videos contain the same persons in same facial appearances, and

hence fits our case. We first create initial segmentations of all the videos using their respective

shot boundaries (CP2). Next, for each pair of videos from same episodes we learn the mixture

components together, and use these common components to identify similar segments (that

contain the same persons) across the pairs. The binary vector Bs learnt for every segment s

is used for this purpose. We say that a segment sai from video a and another segment sbj from

video b are similar based on the Hamming distance of the corresponding B-vectors. Every

pair of matched segments can then be classified as good or bad according to a gold-standard

matching of such segments, and the Matching Precision (fraction of matches that are good)

can be measured. As baseline, we repeat this for the case where the two videos in a pair are

modeled individually, and then the two sets of learnt mixture components are matched based

on `2-distance of their mean vectors. The results are shown in Table 5.5, which show that

co-modeling performs clearly better than individual modeling in this case. It is also possible

to evaluate the two approaches (co-modeling and individual modeling) based on the measures

CP,PC, and Pk. However, we find that according to these measures, neither approach is clearly

better than the other.

5.7 Applications, Limitations and Extensions

Applications: Like the previous work on entity discovery, the main application of this work is

in analyzing user-uploaded videos on public video-sharing sites. Once again the main aim is to

simplify browsing, and provide the users with a semantic summary. In this case, the semantic

summary can be in the form of representative frame(s) from each scene, which will be more

concise than the shot-based summarization discussed in the previous chapter (as there are many

more shots than scenes). On the other hand, browsing will be simplified since the user will be

able to watch only those scenes that she wants rather than the full video.

The co-modeling part can also have interesting and novel applications. This can be, in fact,

looked upon as a reverse problem of summarization- given any short summarized video we can

try to find its full version in a video repository. So if an user finds a short video clip but is

not sure of its source, this method can help her compare it with others, and thus identify it by
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finding a match.

Limitations: One important limitation of this work is that the number of temporal seg-

ments produced is typically much larger than the number of scenes. As already discussed, there

are two main reasons for this 1) Several clusters are formed per entity, so that an entity seen

earlier in a scene may be considered a new entity when it re-appears 2) a scene has complex

temporal structure, as different entities may appear alternately, and it is very difficult to deter-

mine when a new scene starts. It will be very useful if such dynamics can be modeled within

the generative framework.

Extensions: This work can be related to the novel tasks of co-summarization and co-

segmentation. When several videos of a particular event, say a social ceremony or a sports

event are shot and uploaded on video-sharing sites, it is of interest to relate and interlink them

so that users can seamlessly switch from one video to another if they want. Since these videos

have nearly the same set of entities, they can be co-modeled as discussed above, and this in

turn can simplify co-summarization and co-segmentation. Besides, the inference algorithms

proposed here are independent of computer vision, and can handle any kind of sequential data,

like speech or text. Discourse analysis is a text mining task in which these algorithms may find

use.
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Chapter 6

Modeling Temporal Coherence in

Low-rank Matrices for Video

Representation

6.1 About this Chapter

In this chapter we discuss a collection of small results related to low-rank matrix representation

of videos. Motivated by video representation using low-rank matrices that has been employed

frequently over the last few years, we explore how temporal coherence can be incorporated

in such representations. We show that the existing low-rank matrix recovery methods cannot

capture temporal coherence. We explore models for matrices having a particular structure:

namely sets of similar columns. For matrices that are used to represent videos, we show that a

Bayesian model along the lines of TC-CRP is able to achieve good results in recovery of such

matrices.

6.2 Introduction

In an earlier chapter we have dealt with entities which appear repeatedly in a video, and used

discrete predictive function like TC-CRP to model the repetitions. In this chapter, we consider

matrices which have similar or near-identical columns, along with temporal coherence. We

consider matrices with sets of identical columns, including cases where adjacent columns are

likely to be equal.

We note that matrices with sets of identical columns are low-rank, and so matrices with

sets of similar columns can be well approximated with low-rank matrices that have sets of

identical columns. This connects us to the vast amount of work done about low-rank matrix
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recovery, in presence of missing entries or sparse entry-wise corruptions. However, we show that

these algorithms perform quite poorly on the matrices we are interested in. The approximating

matrices they recover may have low rank, but they do not contain the additional structure

which we want (e.g. sets of identical columns). Taking a convex optimization approach with

suitable regularizers that encourage such structures also does not greatly help, as they do

not strictly enforce the properties. The better option is generative processes which explicitly

enforce the structures we are interested in. Even computationally these are more suitable, as

the convex optimization approaches require computing Singular Value Decompositions (SVD)

of large potentially matrices, which is very expensive.

6.3 Matrices with sets of Identical Columns

Matrices are quite commonly used in computer vision. They have been used for both still

images [59] and for videos [14]. In case of still images, each column generally corresponds to

the face of a person. In case of videos, it corresponds to a frame (for background subtraction),

a subwindow in a frame (for denoising) or detector outputs from a frame (in this work). In both

cases, the matrix is expected to have sets of nearly identical columns (such as those representing

the face of the same person). In case of videos too, feature-level Temporal Coherence ensures

that successive columns are nearly identical except at the shot/track boundaries. The small

differences which exist between the columns in such sets is due to noise, camera movements or

movements in the scene, and it should be possible to approximate this matrix by one that has

sets of identical columns. Such a matrix will clearly have low rank. This representation can

help in applications like scene segmentation or clustering, or efficient selection of exemplars. To

find this low-rank approximation, we can consider low-rank matrix recovery methods.

6.3.1 Low-rank Matrix Recovery

We investigate if the low-rank matrices recovered by various methods for matrix recovery (com-

pletion and extraction) actually do have successive columns identical. The existing methods

mostly proceed by regularizing the nuclear norm, i.e. shrinking smaller singular values to 0.

This reduces the rank and entry-wise error, but does not necessarily capture the structural

property on the columns.

Synthetic Matrices We generate 50 basis vectors {φk}50
k=1 by sampling from the standard

multivariate spherical Gaussian. Next, each column is generated by drawing from a basis vector

from a multinomial distribution. In one version, all columns are drawn IID from this distribution

(no temporal coherence). In another version each column is drawn from a multinomial that

emphasizes on the previous draw. In particular, if the column Xi corresponds to basis vector φk,
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Figure 6.1: Face detections from the test video and the expected rank-column plot of its low-rank
matrix representation: a step function which may increase at shot change-points. In case of the
low-rank matrices learnt by RPCA, BRPCA and SBMR, this behavior is not observed.

then for column Xi+1 we sample φk with probability 0.9, and any of the basis vectors uniformly

with probability 0.002, and thus temporal coherence exists. These columns constitute the

original matrix Xoriginal. We study matrices of dimensions (200×1000), as in most applications

the number of datapoints is far larger than the dimension. We study the sensitivity of the

methods to the fraction of missing values. We try various levels of incompleteness, and vary

the fractions of missing entries from 0.1 to 0.7. The matrices are corrupted by additive zero-

mean noise with variance 0.1 independently on the observed entries.

Video Face Matrix Next, we consider a small matrix Y of face detections (reshaped to

900-dimensional vectors), taken from a user-uploaded Youtube video. Y has 1000 columns. Due

to temporal coherence of videos, successive frames contain the same character, except at the

shot change points. However, between the change points the face vectors are near-identical. A

set of detections from this video are shown in Figure 6.1. The matrix Y has rank 900, because

of small movements and variations in noise levels across the frames. However, noting that there

are only 3 characters and 12 change-points, between which the vectors are almost identical, it

is expected that a low-rank approximation X of Y should clearly have rank at most 12. Also,

between these change-points, the columns of X should be identical.

Rank-column Plot: We consider the quantity X̃i = rank(X1:i)- the rank of the submatrix

formed by the first i columns of X. If X has identical columns between the change-points, this
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quantity should remain fixed between these changepoints, and may increase by 1 only at the

changepoints. Hence the plot of X̃i versus i should be a step-function, as shown in Figure 6.1.

We call this plot as the Rank-column plot of X. We study the rank-column plot(Figure 6.2,6.3)

of the estimated low-rank matrix X returned by three recent methods for low-rank matrix

approximation: Robust PCA [14], Bayesian Robust PCA [23] and Sparse Bayesian Robust

PCA [5]. Surprisingly for all three methods, we observe: 1) The rank-column plot for none

of the methods comes close to the expected step function. All three show similar plots: the

rank rises monotonically and then flattens out. 2) For all three methods, the estimated “low-

rank” matrix has rank much higher than the number of characters, and even the number of

shot-changepoints. Moreover, if the estimated matrix had rank r, then the submatrix formed

by any set of m columns had rank equal to min(r,m). Such behavior of the rank-column plot

clearly shows that the existing low-rank matrix recovery methods are completely incapable of

capturing the temporal coherence of videos.

6.3.2 Convex Regularizers to encourage Identical Columns

Most of the existing approaches for low-rank matrix recovery use convex optimization. The

general form of the optimization problem for matrix completion is

min
X
||X||∗ + γ||Y −X||2Ω (6.1)

where Ω is the set of observed entries. For matrix extraction, the formulation is

min
X
||X||∗ + γ||Y −X||1 (6.2)

Here Y is the observed, potentially noisy matrix and X is the low-rank one, which we are

trying to recover. Both of them are M × N , where N is the number of datapoints and M is

the dimensionality. The nuclear norm ||||∗ tries to minimize the rank, but as already observed,

it does not encourage the columns to be identical. To this end, we must add new regularizers.

Define Dij = ||Xi −Xj||2- a measure of difference between any two columns (i, j). D is then a

N ×N matrix. D is sparse if and only if a large number of columns of X are identical, and we

know that D can be encouraged to be sparse by minimizing its `1 norm, i.e. the absolute sum

of its entries. So ||D||1 =
∑N,N

i=1,j=1 ||Xi − Xj||2 should be added as a regularizer. The matrix

recovery problem is then

min
X
||X||∗ + γL(Y −X) + α

N,N∑
i=1,j=1

||Xi −Xj||2 (6.3)
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where L is a suitable regularizer depending on the task- completion or extraction. There is no

closed-form solution to this problem, and the gradients also cannot be computed, so we have

to solve it using ADMM, as done in [15].

Note that the above approach tries to encourage pairs of columns to be identical, but encodes

no further information. But in case of temporally coherent data (like videos), successive columns

are more likely to be identical than those far apart. So an alternative to the above regularizer

is Fused Lasso[77] which encourages adjacent columns to be identical, rather than every pair

of columns. Then the matrix recovery problem becomes:

min
X
||X||∗ + γL(Y −X) + α

N∑
i=2

||Xi −Xi−1||2 (6.4)

This can be made further sophisticated, by finding a common ground between the two for-

mulations: every column should be encouraged to be identical to others within a neighborhood,

of size say R. In that case, the formulation is:

min
X
||X||∗ + γL(Y −X) + α

N−R,R∑
i=R+1,r=−R

||Xi −Xi−r||2 (6.5)

Unfortunately it turns out that these formulations do not work particularly well even on

synthetic data. We do get a low-rank X, but usually not a single pair of columns are exactly

identical. The problem increases with increasing dimensionality M . We observed that in case

of many pairs of columns, a large number of elements are identical but a few different ones

exist. This means that we do not automatically get the clustering that we want. This happens

because the regularizers we used are only convex approximations of the actual regularizers (like

`0 norm) which are non-convex. The convex approximations can only encourage sparsity, but

not enforce. This was observed earlier by [56], who noted that these methods promote weak

sparisty where entries are minimized, as opposed to strong sparsity where entries are forced to

be 0.

6.3.3 Bayesian model to enforce Identical Columns

A better idea is to use a discrete distribution on the columns, where each column vector is chosen

from a set of vectors. This is very similar to the TC-CRP model proposed earlier in this thesis.

It models temporal coherence through the change variable that ensures successive columns to be

identical, but if not desired, this property can be abolished by setting the Bernoulli parameter κ

to 1 (i.e. Ci = 1∀i). Note that at any column i the rank X̃i increases from X̃i−1 if a new vector
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(different from X1, . . . , Xi−1) is sampled. The value α in the PPF (Equation 4.6) regulates

the probability of sampling of a new vector from the base distribution, so a smaller value of α

ensures a lower rank.

Matrix Completion: In case the observed column vectors have missing entries, the in-

ference algorithm for TC-CRP can be easily modified so that these entries are inferred. Let

YΩi be the observed part of Yi. In that case, the generative process of this vector will be

YΩi ∼ N(φZiΩi , σ
2
1I), where φZiΩi is the projection of φZi to the dimensions Ωi. Here we use

isotropic Gaussians, Σ = σ2I and Σ1 = σ2
1I, so that we can compute the posterior mean in-

dependently for each dimension. Similarly, during the learning of φk, only the observed parts

{YΩi : Zi = k} are used. Let Ω denote the set of observed entries. Then, for dimension d,

the posterior mean of φkd is given by

Ykd
σ2

1
+ µ

σ2

nkd
σ2

1
+ 1
σ2

, where nkd = |{i : Zi = k, (i, d) ∈ Ω}|, and

Ykd =
∑

i:Zi=k,(i,d)∈Ω Yid.

Evaluation: We evaluate TC-CRP’s performance against the existing methods, for both the

synthetic matrices (with and without TC) and the video face matrix. We measure the Frobenius

norm error(FE)
||Xrecovered−Xoriginal||F

||Xoriginal||F
, the rank error(RE)

|rank(Xrecovered−Xoriginal)|
|rank(Xoriginal)|

. Also, as the

original matrices have sets of identical columns, and the ones recovered by TC-CRP also have

the same property, we compute the RAND index to evaluate the matching. As none of the

existing low-rank recovery methods provide a matrix with identical columns, we compare TC-

CRP’s clustering against Spectral Clustering [72], which requires a similarity matrix between

pairs of datapoints. We define pairwise similarity S(i, j) = exp(−||Xi −Xj||Ωi∩Ωj) (Ωi: set of

observed entries of Xi), and try out different values of K. The results for synthetic data are

shown Tables VII and VIII. The rank-column plots are provided in Figure 6.2 for synthetic data

and Figure 6.3 for faces. We see that on the synthetic data, not only does TC-CRP provide the

perfect rank-column plots (which coincide with the true plots), but even in terms of Frobenius

norm error, Rank error and RAND index, its performance is way ahead of the existing methods.

For the face data also, its rank-column plot is roughly accurate, and increments around the

shot changepoints.

6.4 Applications in Computer Vision

Computer Vision is a domain where this kind of matrices have lots of applications. In the above

experiment, we have already discussed representing face detections from successive video frames

as columns in a matrix. The tasks in this case can be person discovery from videos, as already

explored. In fact, we have compared the proposed method (based on TC-CRP) against some

constrained clustering methods, where the number of clusters was determined using a low-rank
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missing TCCRP NCUT SVT OPTSPACE SBMR
fraction FE RE RAND RAND FE RE FE RE FE RE

0.1 0.002 0 1.0000 0.998 0.031 0.055 0.138 0.98 0.038 0.24
0.3 0.008 0 1.0000 0.988 0.040 0.03 0.138 0.98 0.049 0.66
0.5 0.040 0.02 0.9994 0.985 0.048 0.09 0.137 0.98 0.068 0.71
0.7 0.059 0.02 0.9990 0.980 0.116 0.40 0.136 0.98 0.103 0.70

Table 6.1: Comparison of Low-rank Matrix Completion techniques with varying fractions of
missing entries, in absence of TC. FE: Frobenius Norm Error, RE: Rank Error, RAND: Rand
index for clustering

missing TCCRP NCUT SVT OPTSPACE SBMR
fraction FE RE RAND RAND FE RE FE RE FE RE

0.1 0.008 0 1.0000 0.998 0.03 0.14 0.169 0.97 0.007 0.15
0.3 0.013 0.01 1.0000 0.994 0.03 0.14 0.169 0.98 0.037 0.60
0.5 0.035 0.04 0.9999 0.987 0.038 0.09 0.178 0.98 0.056 0.71
0.7 0.048 0.05 0.9996 0.976 0.105 0.41 0.178 0.98 0.095 0.83

Table 6.2: Comparison of Low-rank Matrix Completion techniques with varying fractions of
missing entries, in presence of TC. FE: Frobenius Norm Error, RE: Rank Error, RAND: Rand
index for clustering

Figure 6.2: Rank-column plots for various methods. Left figure is for a matrix with 10% missing
entries, and right figure for 50% missing entries. The Blue Line (True Plot) and the Black Line
(proposed method) coincide

Figure 6.3: Left: Rank-column plots for SBMR(blue), RPCA(red) and BRPCA(green) for the test
video. The estimated matrices all have rank much more than the number of shot segments (12), and
do not exhibit the expected step function-like behavior. Right: Rank-column plot for TC-CRP(blue),
and the shot number(red) which increments at the shot changepoints. The rank is 13, and the steps
reasonably match with the shot changepoints
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matrix representation. In case we have a low-rank matrix recovery method which can create a

matrix with sets of identical columns, it will have already done the clustering.

An additional advantage we get is the ability to deal with missing pixels by matrix com-

pletion. User-generated videos are often noisy and grainy, as they are often shot directly from

the television. The quality of the camera can also be an issue. Such videos may have random

pixels grossly corrupted, i.e. effectively missing. We find that if more than 20% of the pixels

are missing at random, the face detector itself often fails, and hence the person and tracklet

discovery will not work. So we tested the performance of our method with 20% pixels missing

at random. We carried out experiments on the person discovery problem, using the same videos

as used earlier, to show that the performance is relatively unaffected by the presence of missing

pixels. As benchmark, we consider Low-rank Matrix Completion methods like SBMR [5] and

OPTSPACE [42]. However, SBMR is found to run out of memory, and OPTSPACE produces

matrices with very low rank (5 or 6), which is clearly unrealistic as the number of persons

are much more. In contrast, TC-CRP’s performance remains similar to those already reported

earlier.
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Chapter 7

Bayesian modeling of Temporal

Coherence in Hierarchically Grouped

Sequential Data

7.1 About this Chapter

In this chapter, we focus our attention on modeling temporal coherence in text documents.

We look upon documents as hierarchically grouped sequential data, and consider multi-level

clustering and segmentation of such data by modeling temporal coherence. We explore and

qualitatively compare various existing Bayesian models which have similar goals. We also

propose a nomenclature for classifying such models, and also a Generalized Bayesian model

that can subsume all the existing ones. Next, we consider two novel instantiations of this

model. These are an attempt to model temporal coherence at multiple levels- one model uses

a Markovian approach, and the other uses a Semi-Markovian approach. We have considered a

novel application- simultaneous multi-level segmentation of news transcripts into broad news

categories and individual stories.

Publications: One of the proposed models and its associated experiments have been pub-

lished in European Conference for Machine Learning and Principles and Practice of Knowledge

Discovery in Databases (ECML-PKDD), 2013 held in Prague, Czech Republic. The remaining

part of the work is under review.

1. Adway Mitra, Ranganath B.N., Indrajit Bhattacharya. A Layered Dirichlet Process for

Hierarchical Segmentation of Sequential Grouped Data, ECML-PKDD 2013

2. Adway Mitra. Exploring Bayesian Models for Multi-level Clustering of Hierarchically
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Grouped Sequential Data, CoRR abs/1504.04850 (2015)

7.2 Introduction

In many applications we come across hierarchically grouped data. For example in a text corpus,

data is grouped into documents, paragraphs and sentences. Such data can be clustered at

multiple levels, based on the notion of topics. A large number of hierarchical Bayesian models

have been proposed for such data, many of whom are quite similar to each other in various

aspects. However, to the best of our knowledge, there has not been much research aimed at

placing these models in perspective, and making a comparative study of them, except empirical

comparisons. This is what we attempt in this chapter. The main aspect of these models which

we compare is how they share the mixture components and distributions across the groups at

different levels.

The contributions of this chapter are as follows: 1) We introduce a novel classification

of Hierarchical Bayesian models for grouped data, based on Degree of Sharing of mixture

components and distributions 2) We introduce a generalized Hierarchical Bayesian model and

show many existing ones to be special cases of it, and 3) We show how it can be adapted

for news transcript segmentation, for which we give an inference algorithm and demonstrate

experimental results.

7.3 Notations

Consider N datapoints Y1, Y2, . . . , YN , of any type (eg. integers, real-valued vectors) based

on the application. Each of these are associated with group membership variables (positive

integers), which specify the grouping of the datapoints. If there are L levels of grouping, each

datapoint Yi is associated with observed variables {D1
i , D

2
i , . . . , D

L
i }. For example, a text corpus

consists of a set of documents, each of which consists of word-tokens. We can consider the word-

tokens as data-points {Yi}, which are tagged with their document memberships using {D2},
where {D1} are the token indices, to capture the sequential ordering. This is the standard

setting used in most topic models for text documents. In addition, it is possible to consider

a 3-level grouping with sentences within documents. Then each word-token Yi is associated

with a sentence membership variable D2
i and a document membership variable D3

i . In this

chapter, we will overload Dl (l > 1) to indicate the higher-level group-memberships of lower-

level-groups. For example if g is the index of a level-2 group, then D3(g) is the level-3 group

that covers all the datapoints under group g, i.e. D3(g) = D3
i where D2

i = g. Please see Fig 7.1

for illustration.

Most topic models consider documents or sentences to be bags of words, and do not consider
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Figure 7.1: Data grouped at 3 levels: D1
i = i∀i, D2

1 = 1,D2
3 = 2,D2

5 = 3,D2
6 = 4 etc, D3

i = 1 for
i = 1 . . . 4, D3

i = 2 for i = 5 . . . 8. Also, D3(1) = 1, D3(3) = 2 etc

Figure 7.2: Grouped data clustered at 2 levels (l = 1, 2). Colours indicate the clustering, like Z1
1 = Z1

5 ,
Z2(2) = Z2(4) etc. Different colours used at the two levels. Note that Z1

3 6= Z1
6 , but Z2

3 = Z2
6

the sequential nature of the data. This can be avoided with the current representation, as

sequential relations between the word-tokens can be encoded using the indices {D1} which takes

integer values. Accordingly for each datapoint i we can define sequential neighbors prev(i) and

next(i). Even sequential ordering of the higher-level groups like sentences and documents can be

captured by the variables D2 and D3 respectively. In case sequential ordering is irrelevant at any

level (for example, ordering of documents is usually not relevant unless there are timestamps),

the group membership variables at that level act as simple identifiers.

The groups at the different levels may be clustered in some applications, like multi-level

clustering. For this, we associate a cluster variable with each datapoint: {Z1}, {Z2}, . . . , {ZL}.
Again, we can overload Z l (l > 1) to indicate the higher-level cluster memberships of lower-level

groups. If g is the index of a level-2 group, then Z3(g) is the level-3 cluster that covers all the

datapoints under g, i.e. Z3(g) = Z3
i where D2(i) = g. This causes hierarchical clustering of the

datapoints, specified by the tuple {Z1
i , . . . , Z

L
i }.

A Bayesian modeling involves mixture components and mixture distributions. We will

consider K mixture components (topics) φ1, . . . , φK , where K may not be known. Also, we

need mixture distributions for each level- {θ1}, {θ2}, . . . , {θL}. These are discrete distributions
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over index variables, that are cluster indices of the lower layer. Note that the cluster indices at

level 1 are indices of the mixture components. At each level, the distributions may be specific

to the group clusters, defined by the group cluster variables Z. For example, if the groups at

level l are clustered, the groups in cluster k i.e. {j : Z l(j) = k} will have access to only the

distribution θl−1
k at level l − 1. The basic inference problem is to learn the cluster assignments

{Z l}, and estimate the mixture components φ.

7.4 Review of Existing Models

In this section we make a short review of several well-known models using the above notation.

The models can be classified based on the number of levels of grouping in the data that they

consider.

7.4.1 1-level models

The simplest models are the 1-level mixture models, like Gaussian Mixture Model [7]. Here

L = 1, with D1
i = i and the datapoints are not grouped at all. There are K mixture components

{φ} which are Gaussian distributions, i.e. φk = N(µk,Σk). In general, the mixture components

need not be Gaussian. The mixture distribution θ1 is a K-dimensional multinomial. Each

datapoint is assigned to a mixture component Z1
i , which defines a clustering of the datapoints.

This assignment is IID as Z1
i ∼ θ1 and sequential structure of the datapoints is not considered.

In GMM, the number of mixture components K is fixed and known. A non-parametric

model with L = 1 is the Dirichlet Process Mixture Model (DP-MM), which considers infinitely

many mixture components, though only a few of them are used for a finite number of datapoints.

The mixture distribution θ1 is an infinite-dimensional multinomial, drawn from a stick-breaking

distribution. The parameters of the mixture components are drawn from base distribution H.

A one-level nonparametric model which does consider the sequential structure of the data

is the HDP-HMM [29]. This model considers a set of θ1-distributions from which one may be

chosen conditioned on the previous assignments of Z1. The Z1-assignment to each datapoint i

is done as Z1
i ∼ θ1

j with j = Z1
prev(i), where prev(i) is the predecessor of the current datapoint

in the sequential order encoded by {D1}, i.e. prev(i) = i′ where D1
i = D1

i′ + 1.

7.4.2 2-level models

Next, we move into two-level models, i.e. where L = 2. This is the standard setting for doc-

ument modeling, where the word-tokens are grouped into documents (one level of grouping).

The document membership of the variables are encoded by D2. The most standard model of

this kind is the Latent Dirichlet Allocation (LDA) [9] which considers K mixture components
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(topics) {φ}, where K is fixed and known. Each mixture component φk is a multinomial distri-

bution over the vocabulary of size V . Here the level-2 groups (documents) are not clustered, i.e.

Z2 is distinct for each document. Consequently, θ2 is not used here, and {θ1} are group-specific.

The Z1-variables of the datapoints within any group j are assigned as IID draws from θ1
j . Once

again, no sequential structure is considered. Note that the mixture components φ are shared

by all groups.

φk ∼ Dir(β), k ∈ [1, K]; θ1
j ∼ Dir(α), j ∈ [1,M ]

Z1
i ∼ θ1

D2
i
, Yi ∼ φZ1

i
(7.1)

A non-parametric generalization of LDA is the Hierarchical Dirichlet Process (HDP) [76], which

is also a 2-level extension of the DP-MM discussed above. Here, the number of components

is not fixed or known, so the document-specific {θ1}-distributions are infinite-dimensional, and

drawn from a Dirichlet Process/Stick-Breaking Process instead of finite-dimensional Dirichlet.

Another nonparametric 2-level model is the Nested Dirichlet Process (NDP), where the

level-2 groups (documents) are clustered using Z2, which are drawn according to a discrete

distribution θ2. Each cluster induced by Z2 uses its own θ1. However, unlike the previous

models, here the mixture components themselves are specific to the clusters induced by Z2.

φk ∈ H∀k; θ1
z ∼ GEM(κ1)∀z; θ2 ∼ GEM(κ2)

Z2(j) ∼ θ2, j ∈ [1,M ];Z1
i ∼ θ1

Z2(D2
i ), Yi ∼ φZ2(D2

i ),Z1
i

(7.2)

7.4.3 3-level models

Next, we look into some 3-level models. MLC-HDP [91] is an attempted compromise between

HDP and NDP, where the groups are clustered (unlike HDP) but mixture components are not

cluster-specific (unlike NDP), and moreover the data is grouped into 3 levels by observed group

variables {(D3, D2, D1)}. These groups can be clustered by random variables {Z3}, {Z2}, {Z1},
which are drawn from discrete distributions θ3,{θ2},{θ1} respectively.

A three-level model that considers the sequential nature of the data is the Topic Segmen-

tation Model (TSM) [24]. Here within each document the sentences are clustered using {Z2},
but analogous to HDP-HMM the distributions θ2 are specific to values of Z2. In particular, for

any sentence s, θ2 is a distribution over two values: Z2(prev(s)) and Z2(prev(s))+ 1 (to induce

linear clustering/segmentation). The {θ1} are specific to the sentence-clusters. The documents

themselves are not clustered, so θ3,Z3 are not used.
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Figure 7.3: Above: HDP and NDP, Below: MLC-HDP and STM. The locations of the mixture compo-
nents and distributions in the plate diagrams indicate the type of sharing (full/group-specific/cluster-
specific)
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A somewhat unusual case is Subtle Topic Model (STM) [19] which considers multiple

document-specific distributions over the mixture components, and distributions specific to sen-

tences over this set of distributions. Here neither the documents nor the sentences are clustered.

Effectively, only {θ1}-distributions are present, which are shared across sentences in the same

document, but not across documents. However, the process of assigning Z1-variables requires

other sentence-specific variables in addition to {θ1}.

7.5 DoS-classification of models

In the above discussion, we have focused on 3 major aspects- 1) Number of layers of grouping

2) the way in which the mixture components and mixture distributions are shared 3) Whether

sequential structure is considered or not at different layers. Based on these aspects, we propose

a nomenclature for the models.

7.5.1 DoS Concept

As already discussed, in all the hierarchical Bayesian models, the mixture components {φ} and

the mixture components {θ1}, . . . , {θL} are shared among the different groups. We have seen

three types of sharing

1. Full sharing (F): where components/distributions are shared by all the groups. For ex-

ample, in HDP, MLC-HDP etc the mixture components are shared by all the level-2

groups.

2. Group-specific sharing (G): where components/distributions are specific to groups, and

not accessible outside the groups. For example, in HDP, STM etc the distributions θ1 are

specific to the top-level groups (documents).

3. Cluster-specific sharing (C): where the components/distributions are specific to clusters

of groups, but not accessible outside the clusters. For example, in MLC-HDP each θ1-

distribution is accessible to only one cluster of level-2 groups, and each θ2-distribution is

accessible to only one cluster of level-3 groups. In all the models, the mixture components

are specific to clusters of level-1 groups (as datapoints are clustered by the assignment of

a mixture component through Z1).

Based on these notions we introduce Degree-of-sharing (DoS). For any given model, we first

specify how the mixture components are shared at each of the levels- Full (F), group-specific

(G) or cluster-specific (C), and we call this the DoS of {φ}. The type of sharing at the different

levels are hyphen-separated. Next, regarding the distributions {θl} at each level l, we specify
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how it is shared by the levels (l + 1) upwards, and we call this the DoS of {θl}. Also, to

indicate if sequential structure is considered at the different levels, we add S to the levels

where it is considered. Finally, to indicate how groups are clustered at different levels, we add

N to the levels where there is no clustering of groups, P to the levels where the number of

clusters is fixed, and NP to the levels where the clustering is non-parametric. Note that this

indicates the dimensionality of {θl}- P indicates that it is finite-dimensional, NP indicates it

is infinite-dimensional, and N indicates it is not in use.

By combining the DoS of {φ}, {θ1}, . . . , θL in that order, we have the DoS-classification

of the model. The DoS of the different variables are semicolon-separated. The number of

components in any of these models is (L+ 1), so that the DoS-classification of any model will

have (L + 1) semicolon-separated parts. Also, the first part (corresponding to φ) will consist

of L hyphen-separated letters, and the number of these letters will keep decreasing by one for

each of the following parts (corresponding to θ1, θ2 etc), but followed by the letters specifying

dimensionality and sequence structure.

7.5.2 Classification of Models

Let us illustrate the concept of DoS-classification with a case study of all the models discussed

in Section 7.4.

Level-1 parametric models like GMM have mixture-components {φ} specific to clusters

of datapoints, so that its DoS is C. But the mixture distribution θ1 is fully shared by all

the datapoints, so that its DoS is F . The number of clusters formed at level 1 (i.e. the

dimensionality of θ1) is fixed (i.e. P ) and sequential structure is not considered. Hence the

DoS-classification of GMM is C;F − P . In case of DP-MM, θ1 is infinite- dimensional (NP),

i.e. DoS-classification is C;F −NP .

In case of HDP-HMM, the mixture-components {φ} are again specific to clusters of dat-

apoints, so that its DoS is C. Here, the {θ1} are non-parametric (NP ), and the sequential

structure is also considered. So, the DoS-classification of HDP-HMM is C;F −NP − S. Note

that here {θ1} is a collection of distributions, from which one is chosen for each data-point i,

depending on the assignment to prev(i).

Level-2 models: In HDP or LDA, the mixture-components are shared cluster-specific in

level-1 and fully at level-2, so the DoS for φ is C − F . The {θ1} are specific to level-2 groups,

so the DoS for θ1 is G. Sequential structure is not considered at any level. In case of LDA

the number of clusters of datapoints (level-1) is fixed (P ), and for HDP it is NP . The level-

2 groups are not clustered (N) in either model. So we say the DoS-classification of LDA is

C − F ;G− P ;N , and for HDP it is C − F ;G−NP ;N . In case of NDP, the {φ} are cluster-
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specific at both levels, so its DoS is C − C. θ1 is specific to clusters of level-2 groups (C), and

it is non-parametric (NP ). The θ2 are also non-parametric (NP ). So, the DoS-classification is

C − C;C −NP ;NP .

Level-3 models: In MLC-HDP, the mixture-components {φ} are cluster-specific in level-1,

but fully at both levels 2 and 3, so that its DoS is C−F −F . The {θ1} are specific to clusters of

level-2 groups but fully shared by level-3 groups, and they are nonparametric, so the notation is

C−F−NP . The {θ2} are specific to clusters of level-3 groups and nonparametric, and finally θ3

is nonparametric. So the DoS-classification of MLC-HDP is C−F−F ;C−F−NP ;C−NP ;NP .

For Topic-segmentation model, the topics {φ} are shared by all sentences and documents, i.e.

its DoS is C−F −F . The {θ1} are specific to clusters of sentences inside individual documents,

i.e. the DoS is C −G, and they are of fixed dimension (P ). The {θ2} used to cluster sentences

is document-specific (G). The number of clusters (segments) of sentences to be formed is not

fixed, and sequential structure is also taken into account, so the notation is G − NP − S.

Finally, the documents themselves are not clustered (N), and the DoS-classification of TSM is

C − F − F ;C −G− P ;G−NP − S;N .

Finally we come to Subtle Topic Model (STM), where the topics are shared by all sentences

and documents, i.e. the DoS is C − F − F . The θ1 are shared by all sentences in a document

but are specific to documents, and they are nonparametric, i.e. the notation is F − G − NP .

The sentences and documents are not clustered, so the DoS-classification of STM is C − F −
F ;F −G−NP ;N ;N .

7.6 Generalized Bayesian Model for Grouped Sequential

Data

Having discussed the DoS-classification of various existing models, it is clear that despite over

a decade of research on topic models, there are several DoS-classifications for which there are

no existing models. But instead of trying to point out those classifications individually and

propose models following them, we now propose a generalized Bayesian Model for grouped

sequential data. We will show that by specific settings of this model, it is possible to recover

all the previously discussed models (or their close variants). Other models, not explored so far,

can also be obtained from it.

7.6.1 GBM-GSD

We consider sequential data with L-levels of grouping, where the groups are sequential in every

level (eg. in document modeling, we will consider the sentences within each document, and
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the documents themselves, are sequentially arranged). We consider that clustering happens

at all levels, i.e. {θ1}, . . . , {θL} all exist. To capture the sequential nature, we will assume

that at every level (say l), there is a collection of distributions {θl} from which one can be

chosen for each group, conditioned on the previous assignments (as considered in sHDP-HMM

and TSM). We also consider that all the distributions are infinite-dimensional (i.e. NP ), i.e.

neither the number of mixture components nor the number of clusters formed at each level

is known in advance. We also consider that all the mixture components are accessible to

all the level-2 groups, but introduce a binary random vector Bi specific to each datapoint.

This vector indicates which all mixture components are accessible to each datapoint. We will

show that using this vector, we can make the mixture components group-specific or cluster-

specific, and also capture other more intricate structures that would not be possible without

it. The generative process hierarchically clusters the groups from top to bottom level. At

Algorithm 8 Generalized Bayesian Model for Group Sequential Data (GBM-GSD)
1: φk ∼ H, ∀k
2: for g = 1 : GL do
3: ZL(g) ∼ θL|ZL(1), . . . , ZL(prev(g))
4: end for
5: for l = L− 1 : 2 do
6: for g = 1 : Gl do
7: Zl(g) ∼ θlj |Zl(1), . . . , Zl(prev(g)) where j = Zl+1(Dl+1(g))

8: end for
9: end for

10: for i = 1 : N do
11: Bi = f(B1, . . . , Bi−1, Z

1
1 , . . . , Z

1
i−1, Z

2, . . . , ZL)

12: Z1
i ∼ Bi ◦ θ1

j |Z1
1 , . . . , Z

1
i−1 where j = Z2(D2

i )

13: Yi ∼ φk where k = Z1
i

14: end for

every intermediate level l, it assigns Z l(g) to each group g at level l. But for that it will

have access to only those θl-distributions, that are specific to the cluster Z l+1
g of group g as

a result of the clustering at level (l + 1). If group g is part of group m = Dl+1(g) at level

(l + 1) then the θl-distributions corresponding to Z l+1(m) must be used. Finally, at level 1,

each datapoint i is assigned a binary vector Bi conditioned on the B-vectors corresponding to

all previous datapoints. The distribution θ1 is convoluted with this vector Bi, so that a subset

of the components are available to datapoint i.

7.6.2 Recovery of Existing Models

The level-1 models can be recovered easily. By setting Bi as a vector of all 1-s for all the

datapoints, and by making θ1 conditioned only on Z1
prev(g) and GEM-distributed we get back

HDP-HMM. In case θ1 is also independent of the previous assignments, we can have DP-MM,

and if it is finite-dimensional it will GMM provided the base distribution H is Gaussian.
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When L = 2, to recover HDP we need to define θL such that ZL(g) = g for all the groups

g, so that groups are not clustered. Then we again set Bi to be the vector of all 1-s, and make

{θ1} independent of all previous assignments of Z1. The {θ1} should be drawn from a GEM.

If the {θ1} are finite-dimensional and drawn IID from a Dirichlet, and if all the {φk} are also

drawn from a Dirichlet, then we have LDA.

NDP involves nonparametric clustering of level-2 groups without sequential ordering, so

generation of ZL(g) should be independent of previous assignments, and θL should be drawn

from a GEM. NDP also has the special characteristic that the different level-2 clusters do

not share the same mixture components. This can be managed by setting Bi through an

appropriate function f , which will return a vector with 0 for those mixture components that

have been assigned in other level-2 clusters, i.e. Bik = 0 if ∃j such that Z2
D1
j
6= Z2

D1
i

and Z1
j = k.

When L = 3, MLC-HDP can be recovered by removing the conditioning on previous as-

signments in the assignment of Z3, Z2 and Z1, and by setting Bi to be the vector of all 1-s.

The {θl} should be drawn from GEMs. For TSM, θ3 should ensure that documents are not

clustered, Bi should be the vector of all 1-s, and assignment of Z1 should be independent of all

previous assignments. Regarding Z2, θ2 should ensure that for any sentence (level-2 group) g,

Z2(g) should be either Z2(prev(g)) or Z2(prev(g)) + 1.

7.7 Layered Dirichlet Process

We now discuss a particular instantiation of GBM-GSD. We call this as the Layered Dirichlet

Process (LaDP). We consider versions of it, depending on whether or not it models sequential

structure.

7.7.1 LaDP Generative Process

We define a joint probability distribution over the N sets of cluster variables hierarchical

Bayesian approach. For each layer l, 1 ≤ l ≤ L, we have a countable set of measures {θlj}∞j=1

defined over positive integers. The cluster variables {Z l
i}Ni=1 at layer l serve as indexes for these

measures. Using this countable property, the atoms of all of these measures at layer l, which are

integers, correspond one-to-one with the measures at the next layer l− 1. This gives us a hier-

archy of measures, in the sense that each θlj forms a measure over the measures {θl−1
j′ }∞j′=1 at the

next layer. Finally, at the lowest layer, each φk is a measure over the space Y of the observations

{Yi}. For discrete text data, these are multinomial distributions over the vocabulary.

Next we need to define the measures {θlj}∞j=1 and the sequential properties at each layer l. In

LaDP, we define each of these distributions to be DP-distributed. We begin with the simplest

case, which assumes complete exchangeability at every layer, i.e. does not consider sequential
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structure. The generative process looks as follows:

φk ∼ H, k = 1 . . .∞

βlj ∼ GEM(γl); θlj ∼ DP (αl, βlj), j = 1 . . .∞, l = L . . . 1

Z l(g) ∼ θlZl+1(g′), g = 1 . . . Gl, l = L . . . 1, Yi ∼ φZ1
i
, i = 1 . . . N (7.3)

Here, g′ = Z l+1(Dl+1(g)) In each layer l, a countable set of measures θl is first constructed by

drawing from a DP with a distribution over integers as a base distribution. These measures

as a result also have support over integers, which serve as indexes to the measures at the next

lower layer, which also form a countable set. Once we have this hierarchy of measures, the

cluster variable Z l(g) for each group at each layer l is sampled from the measure indexed by

the group’s cluster Z l+1(g) assigned at the previous (higher) layer. The measures at the lowest

layer (layer 1) are sampled from a suitable base distribution H. H could be Dirichlet when

each φg is a multinomial parameter.It is easy to verify that the above process satisfies Complete

Exchangeability (CE). As such, we call this model the CE-LaDP.

Layered Dirichlet Process with sequential structure Since CE models do not capture

sequential structure of data, they are not useful for segmentation. We next incorporate sequen-

tial structure within LaDP. The key to this is to relax the iid assumption for the group variables,

within a layer as in the HDP-HMM, and additionally across layers, and generate Z l(g) condi-

tioned on some of the previously sampled groups {Z l′(g′) : g′ < g, l′ > l}. The HDP-HMM

makes the Markovian independence assumption that P (Zi|Z<i) = P (Zi|Zi−1). Accordingly, it

defines transition distribution θj over next states for each state j.

In our case, we make the following independence assumption: P (Z l(g)|Z>l, Z l(< g)) =

P (Z l(g)|Z l+1(g), Z l
p(g,l)), where Z>l ≡ {Z l′(g) : l′ > l}, Z l(< g) ≡ {Z l(g′) : g′ < g}, and

p(g, l) ≡ {j : Z l+1(g′) = Z l+1(g), g′ < g, Z l+1(k) 6= Z l+1(g), g′ < k < g} is the previous group

in the l-layer having same cluster as g at layer l + 1. This means that the cluster assignment

to group g at layer l depends on its cluster at the layer l + 1 (like in CE-LaDP), and also

on the group assignment at layer l of its parent group p(g, l). We later overload the notation

p(g, l) for brevity to refer to the group value Z l(p(g, l)) as well. We accordingly define transition

distribution θlj,j′ over next cluster index from each previous cluster j′ at layer l, in each assigned

cluster j in layer (l + 1). The generative process for layer l (L ≥ l ≥ 1) is defined as:

βlj ∼ GEM(γl), θlj,j′ ∼ DP (αl, βlj), j, j
′ = 1 . . .∞,

Z l(g) ∼ θlZl+1(g),p(g,l), g = 1 . . . Gl
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Figure 7.4: Graphical model of LaDP focused on the ith data point in two adjacent layers

Part of the graphical model is shown in Fig. 7.4.

For the first data point in any group in layer (l+1), p(g, l) is undefined, and Z l(g) is sampled

from βl
Zl+1(g)

. It can be shown that this generative process satisfies ME within each group at

layer l. When this process is used at all layers, we call the model ME-LaDP. As in sticky

HDP-HMM, we may add more probability κl for self-transitions: θlj,j′ ∼ DP (αl + κl,
αlβlj+κ

lδj′

αl+κl
),

where κl is a continuity parameter. This is done to encourage the same mixture component

for adjacent data points. This captures the temporally smooth nature of most real-world data,

and also encourages segmentations (based on group index assignments).

Layer-specific Exchangeability: We have defined CE-LaDP as using CE at all layers, and

ME-LaDP as using ME at all layers. However, each of the processes can be defined specific to a

single layer, and it is possible to use layer-specific exchangeability assumptions, as demanded by

particular applications. Indeed, we use such mixed exchangeability models in our experiments.

Incorporation of Domain Knowledge: The {βlj} variables at each layer l in Eqns. 7.3

and 7.4 are group-specific distributions over indexes (and measures) at the next layer l − 1.

These are useful for incorporating domain knowledge such as distribution over topics for specific

documents. For example, we can indicate that the jth document is dominated by cluster-index k

at layer L by setting distribution βLj over category indexes at the appropriate layer to
∑∞

c=1 δk(c).

In some cases, one may also wish to bias the φ-distributions using domain knowledge. One

option is to directly specify these φk. For weaker supervision, we may introduce an additional

layer l = 0:

β0
j ∼ GEM(γ0); θ0

j ∼ DP (α0, β0
j ), j = 1 . . .∞

Z0
i ∼ θ0

Z1
i
; Yi = WZ0

i
, i = 1 . . . n (7.4)

Now, on specifying some of the {β0
j } distributions, the corresponding distributions {θ0

j} will

be similar to these, depending on the concentration parameter α0, and the data-points will be

drawn from these {θ0
j} distributions. Observe that we use complete (group) exchangeability at
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layer l = 0.

Relation with Other Models: Observe the relation between the CE-LaDP (Eqn. 7.3) and

the HDP mixture model (Eqn. 2.5). Recall that the group at the highest layer ZL+1
i is the input

group label DL+1
i . For L = 1, this is exactly the HDP mixture model. However, by separating

the group index in the HDP generative model, and identifying the Zi variable as the random

group variable leading to the next layer, the CE-LaDP naturally extends the HDP generative

process to generate layered grouping. A similar relation holds between the ME-LaDP with

L = 1 and the HDP-HMM. The MLC-HDP [91] extends HDP to 3 layers, with each data

point Yi having input group indices D3
i , D

2
i , D

1
i . When the cluster indices Z3 are observed

(rather than sampled from θ3, as in [91]) and are identified with the indices D3
i for LaDP, and

additionally the input group indices D3
i = i, D2

i = 1 and D1
i = 1 are shared by data points Yi,

we get back the CE-LaDP with L = 2. Thus the LaDP framework can be used to generalize

existing models to any number of layers. Secondly, the LaDP enables incorporation of domain

knowledge in all layers. Among existing models, only the recently-proposed DP-MRM [43] is

equipped to incorporate such domain knowledge, though only for a single layer. Finally, while

all existing methods only use a single exchangeability property (CE or ME), LaDP has the

attractive property that different layers can have different exchangeability properties. In the

next section, we define a new notion of exchangeability, and show how it can be incorporated

in any layer of LaDP.

Layered Chinese Restaurant Process (LaCRP) In hierarchical Bayesian non-parametric

models, the conditional distributions of latent variables, given assignments to earlier ones are

typically associated with restaurant analogies. For the LaDP, we may consider a hypothetical

restaurant that has layers consisting of infinite number of tables, each layer possibly correspond-

ing to one course in the menu. Each customer, unlike in a formal dinner, has to move from one

layer to the next after each course. The restaurant has multiple entrances, corresponding to

each input group, and in the first layer, each customer randomly chooses a table based on table

assignments of previous customers who came in through the same entrance. After completing

the ith course, each customer randomly chooses a table for the next (i + 1)th course based on

tables assigned to previous customers who shared his table in the ith course.

7.7.2 Inference using LaDP

The inference problem in LaDP, given observations {Yi}, is to find posterior distributions over

the group variables {Z l
i} at all layers l for each data point. As for models such as HDP, HDP-

HMM and sHDP-HMM, exactly computing this posterior distribution is not tractable, and we

114



resort to Gibbs Sampling for approximate inference as for the other models. One possibility is

to perform collapsed Gibbs Sampling using only the group variables after integrating out all

the parameter variables such as θlj and βlj. When the βlg variable takes the same value across

groups in any layer l, the distribution of the variables at that layer is identical to the HDP. The

predictive distribution of the Z l
i in that case is given by the CRF equations as for the HDP [76].

However, in cases where some of the βlj distributions are specified through domain knowledge,

we integrate out only the θlj distributions.

Predictive Distributions: For the different LaDP models, we first derive the predictive

distributions for Z l
i , the ith group variable in the lth layer, given the assignments to all group

variables in the layers above (denoted Z>l), and the first i−1 group variables in layer l (denoted

Z l
<i), after integrating out the θlj,j′ distributions from which they are drawn.

If the lth layer uses CE (Eq. 7.3), the predictive distribution is given by

p(Z l
i = a|Z l

<i, Z
l+1) ∝ nl

Zl+1
i ,i,a

+ αlβl
Zl+1
i

(a) (7.5)

where nlj,i,a = |{t : Z l
t = a, Z l+1

t = j, t ∈ [1, i − 1]}|. This is the number of data points before

datapoint i in group j of layer l + 1 were assigned to group a in layer l.

If the lth layer uses ME (Eq. 7.4), the predictive distribution becomes

p(Z l
i = a|Z l

<i, Z
l+1) ∝ nl

Zl+1
i ,i,p(i,l),a

+ κδ(p(i, l), a) + αlβl
Zl+1
i

(a) (7.6)

where nlj,i,b,a = |{t : Z l
t = a, p(t, l) = b, Z l+1

t = j, t ∈ [1, i−1]}| is the number of times successive

data points before datapoint i in group j of layer l + 1 assigned to groups b and a respectively

in layer l.

Inference using Gibbs Sampling: We sample each of the Z l
i variables conditioned on all

the others sequentially in each iteration until convergence. In each iteration we traverse all group

variables for one data point before moving to the next data point, and for a specific data point

we traverse layers top down. The conditional distribution is given by p(Z l
i |Z l
−i, Z

l−1, Z l+1) ∝
p(Z l

i |Z l
−i, Z

l+1)p(Z l−1|Z l). The second term can be computed using the chain rule and the

predictive distributions described above: p(Z l−1|Z l) = p(Z l−1
1 |Z l

1)
∏N

i=2 p(Z
l−1
i |Z l−1

<i , Z
l). At

layer l = 1 this is the likelihood of the data, conditioned on the table assignments of layer 1.

The form of the first term depends on the exchangeability assumption.

If layer l uses CE the ith variable can be swapped with the last to get

p(Z l
i = a|Z l

−i, Z
l+1) ∝ nl−i,Zl+1

i ,a
+ αlβl

Zl+1
i

(a) (7.7)
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where nl−i,j,a = |{t 6= i : Z l
t = a, Z l+1

t = j}|. Swapping is possible by CE property.

If layer l uses ME with sticky transitions, we make use of the conditional distribution for

the sHDP-HMM [30] to get:

p(Z l
i = a|Z l

−i, Z
l+1) = (αlβlj(a) + s(p(i, l), a) + κδ(p(i, l), a))×

αlβlj(c(i, l)) + s(a, c(i, l)) + κδ(c(i, l), a) + δ(c(i, l), a)δ(p(i, l), a)

αl + s(a, .) + κ+ δ(p(i, l), a)
(7.8)

where j = dl+1
i , s(a, b) = |{t : Z l

t = a, c(t, l) = b}|. p(i, l) is as defined before Eqn. 7.4, and

c(i, l) is defined analogously with i+ 1 ≤ j ≤ n instead of 1 ≤ j ≤ i− 1.

7.8 News Transcript Segmentation

We want to extend the generative framework for grouped sequential data (Algorithm 1) for

modeling news transcripts. This data is hierarchical since there are broad news categories like

politics, sports etc, under which there are individual stories or topics. In the Bayesian approach,

we consider mixture components {φ} that correspond to these stories, and the broad categories

are represented with distributions {θ1} over these stories. As usual, each θ1-distribution is

specific to a level-2 cluster (segment), and such clustering is induced by {θ2}, specific to the

level-3 groups (the transcripts). The transcripts are not clustered. The observed datapoints

Yi are word-tokens, each represented as an integer (index of the word in the vocabulary). We

define prev(i) = i− 1 if (i, i− 1) are in the same sentence, otherwise prev(i) = −1. Similarly,

next(i) is defined within sentences. Also, prev and next are defined for sentences. Z1
i indicates

the news story (level-1) and Z2
i indicates the news category (level-2) that token i is associated

with. Each sentence is a level-2 group.

News transcripts can modelled by Layered Dirichlet Process (LaDP). To capture temporal

coherence, we must use ME-LaDP at both level-1 and level-2, i.e. the assignment of Z1
i and

Z2
i are conditioned on Z1

prev(i) and Z2
prev(i) respectively. The DoS-classification of this version of

LaDP is C − F − F ;C − F −NP − S;F −NP − S;N .

7.9 Bayesian Modeling of News Transcripts

News transcripts have characteristic temporal features regarding assignments of Z2 and Z1.

LaDP is insufficient for news transcripts, because it does not capture all of them. To model

these, GBP-GSD needs to be modified appropriately. These features are discussed below.
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7.9.1 Semi-Markov Modeling at Category-level

In case of news transcripts from a particular source, it can be expected to haveK news categories

in fixed order (say politics, national affairs, international affairs, business and sports, in that

order). So, the number of Level-2 clusters (segments) are fixed and known. Segmentation is

the task of linear clustering of words/sentences, i.e. each word/sentence s can be assigned to

either Z2
prev(s) or to Z2

prev(s) + 1. In LaDP, each datapoint i is assigned a value of Z1
i and Z2

i

based on the assignments of prev(i), and segmentation happens based on these assignments.

But this does not guarantee the formation of K segments. To overcome this issue, let it be

known to model that the observed data sequence has K level-2 segments. Then the sequence

can be partitioned into K parts of sizes N1, N2, . . . , NK . These sizes may be modeled by a

Dirichlet distribution where the parameters γk signify the relative lengths/importance of the

news categories.

{N1

N
, . . . ,

NK

N
} ∼ Dir(γ1, . . . , γK);Z2

j = s

where
s−1∑
k=1

Nk < j ≤
s∑

k=1

Nk (7.9)

In the GBS-GSD, the θ2 needs to be defined as a deterministic function, conditioned on

{N1, . . . , NK}. It may be noted that this is a Semi-Markovian (explicit-duration) approach,

instead of the Markovian approach of LaDP.

7.9.2 Temporal Structures at Topic-level

Temporal Coherence of topics has been considered in very few text segmentation papers

like [25]. This is the property that within the same level-2 segment, successive datapoints are

likely to be assigned to the same topic (mixture component). This can be easily modelled by

the Markovian approach, i.e.

Z1
i ∼ ρδZ1

prev(i)
+ (1− ρ)(Bi ◦ θ1

s) where s = Z2
D2
i

(7.10)

This means that the i-th datapoint can be assigned the Z1-value of its predecessor pred(i) with

probability ρ, or any value with probability (1− ρ). The other available values are dictated by

Bi, as discussed next.

Level-2 segments do not share topics, because each individual news story (topic) can

come under only one news category. Also, Topics do not repeat inside a Level-2 segment.

Inside a level-2 segment s, successive datapoints are expected to be assigned to the same mixture
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component due to temporal coherence. However, in news transcript, a news story will be told

only once, which means that a particular component may be present only in a single chunk,

and cannot reappear in non-contiguous parts of the segment. For this purpose the generative

process needs to be manipulated through Bi. Initially we set Bi to be all 1s, and whenever a

component φk is sampled for any point, we set Bik = 0 for all following points in the segment,

so that φk cannot be sampled again. The generative process is as follows:

Algorithm 9 Generative Model for News Transcripts
1: Hc ∼ Dir(β) ∀c
2: c ∼ U(K), φk ∼ Hc(k) ∀k
3: θ1

s ∼ GEM(α) where s ∈ [1,K]
4: for g = 1 to G3 do
5: Bgk = 1 ∀k
6: {Ng1

Ng
, . . . ,

NgK

Ng
} ∼ Dir(γ)

7: end for
8: for j = 1 to G2 do
9: Z2

j = s based on (Ng1, . . . , NgK) where g = D3
j

10: end for
11: for i = 1 : N do
12: if Z2

D2(i)
6= Z2

D2(prev(i))
set ρ = 0

13: Z1
i ∼ ρδZ1

prev(i)
+ (1− ρ)(Bg ◦ θ1

s) where s = Z2
D2

i

, g = D3
i

14: if (Z1
i 6= Z1

prev(i)
) set Bgk = 0 where k = Z1

i , g = D3
i

15: Yi ∼ mult(φk) where k = Z1
i

16: end for

Here G3 is the number of transcripts, and G2 the number of sentences across all the tran-

scripts. Clearly this model has 3 levels, and sequential structure is considered at level 2 (sen-

tences) and at level 1 (word-tokens). Any topic k belongs to a broad category c(k) (∈ {1, . . . , K}
uniformly at random), and corresponding to each category we have a base distributionHc, which

in turn are all drawn from a common base distribution Dir(β). This helps to capture the fact

that mixture components are specific to level-2 segments. The documents are not clustered, the

sentences are clustered (segmented) with fixed number of segments, and the number of topics

(word-clusters) is not fixed. The topics are shared across all transcripts, but are specific clus-

ters of sentences, the θ1-distributions are specific to level-2 segments (clusters of sentences) but

shared across transcripts, the θ2-distributions are transcripts-specific (parametrized by {Ng})
and θ3 are not used. So the DoS-classification for the generative model of news transcripts is

C − C − F ;C − F −NP − S;G− P − S;N .
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7.9.3 Inference Algorithm

We now discuss inference for this model. We need an inference algorithm which ensures that

K segments are formed. We start with the joint distribution.

p(Y, Z1, Z2, B,N,Φ, β, {θ}, {H}) ∝
∏G3

g=1 p({Ng})
∏K

s=1 p(θ
1
s)

×
∏

c p(Hc|H)
∏

k p(φk|Hc(k))
∏G2

j=2 p(Z
2
j |Z2

1 , . . . , Z
2
prev(j), {N})

×
∏N

i=1 p(Z
1
i , Bnext(i)|Z1

prev(i), Bi, Z
2
i , {θ1})p(Yi|Z1

i ,Φ)

(7.11)

We can collapse the variables {H},{Φ}, and {θ1}, and perform Gibbs Sampling. The key feature

of this likelihood function is the presence of the {Ng} variables. To handle these, we introduce

auxiliary variables Ig1, . . . , Ig,K−1 which are the level-2 changepoints, i.e. the set of datapoints

{i} at which Z2
i 6= Z2

prev(i). Also note that {Z2}, {I} and {N} are deterministically related. We

introduce the I variables to simplify the sampling. We initialize the Z2 variables by sampling a

level-2 segmentation of the datapoints into K segments. The B and Z1 variables are sampled

accordingly. In each iteration of Gibbs Sampling, we consider the state-space of Igs as Igs ∈
{Ig,s−1, . . . , Ig,s+1}, i.e. the level-2 potential changepoints lying in between Ig,s−1 and Ig,s+1. The

process is described in Algorithm 10. Here, Bgs = {Bset} where set = {i : D3
i = g, Z2

i = s},
i.e. the set of datapoints in transcript g in segment s. (similarly Z2

gs, Z
1
gs, Ygs) The major part

in the Gibbs sampling is to sample the values ({B}s, {Z1}s) for any segment s, conditioned on

the remaining B and Z1 variables. This can be done using the Chinese Restaurant Process

(CRP), where any component k may be sampled for Z1
i (where datapoint i is within segment s)

proportional to the number of times it has been sampled, provided Bprev(i),k = 1. The procedure

is detailed in Algorithm 3, which is called Global Inference as it considers the overall structure

of the transcript (as described in Sec7.9).

7.10 Experiment on News Transcript Segmentation

We crawled archived pages from 5 news websites (Yahoo! News, The Hindu, The Times of

India, Deccan Herald, The Telegraph) for a 30 day period (April 1-30, 2012), where news

articles for each day were arranged in sequence like news transcripts. We selected stories from

5 categories — politics, national affairs, international affairs, business and sports, to create one

transcript for each day for each news source. This produced a dataset of 150(30 × 5) virtual

news transcripts, consisting of 2600 individual news articles, spread over the 5 categories. From

these, 60 transcripts were used for training and the rest for testing. After eliminating stop-
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Algorithm 10 Global Inference Algorithm by Blocked Gibbs Sampling (GI-BGS)
1: for transcript g = 1 to G3 do
2: Initialize Ig with (K − 1) points by sampling from Dir(γ);
3: Set {Z2} according to I;
4: Initialize {B},{Z1} variables;
5: end for
6: Estimate components φ̂← E(φ|Z,B, S, Y );
7: while Not Converged do
8: for transcript g = 1 to G3 do
9: for segment s = 1 : K do

10: Igs ∈ {succ(Ig,s−1), . . . , pred(Ig,s+1)} ∝ p(Ygs|Bgs, Z1
gs, Z

2
gs, φ̂);

11: Update Z2 according to I
12: ({B}gs, {Z1}gs) ∝ p({B}gs, {Z1}gs|{B}−gs, {Z1}−gs, Z2, Y, φ̂);
13: end for
14: end for
15: Update components φ̂← E(φ|B,Z1, Z2, Y );
16: end while

words and rare words, we had a vocabulary of size 7204, with a total of 0.4 million tokens in

the complete dataset.

In this dataset, the datapoints per sequence are too few in number to learn the level-1

mixture components (topics). Moreover, as already explained, each story occurs only once in a

transcript, thus reducing learnability. Hence, we considered 60 randomly chosen transcripts, and

using initial segmentations of each sequence by the level-1 changepoints, 136 topics were learnt

using HDP. These topics form our initial estimate of Φ, using which we performed inference

on individual sequences. The inference provides us with the Z2 and Z1 variables, based on

which we can infer the segmentation at the two levels. We have gold standard segmentation

available at both layers, and so we compute the segmentation errors (S1, S2) at both layers.

Segmentation error is the probability that to word-tokens, placed k positions apart, are in the

same gold-standard segment but in different inferred segments, or vice versa. S1 and S2 are

computed by taking the average segmentation error for three different values of k, namely the

maximum, minimum and average lengths of gold-standard segments (level-1 segments for S1

and level-2 segments for S2).

We can look upon segmentation as a retrieval problem, and define the Precision and Recall

of level-2 segments (PR2 and RC2), and also for level-1 segments (PR1 and RC1). Let i and j

be the starting and ending points of an inferred segment s, i.e. Z2
i = Z2

next(i) = · · · = Z2
j = s,

but Z2
prev(i) 6= s and Z2

next(j) 6= s. Then, if there exists (i0, j0, s0) such that (i0, j0) defines a

gold-standard segment s0 satisfying |i− i0| < k and |j− j0| < k, then inferred segment (i, j, s)

is aligned to gold standard segment (i0, j0, s0). Precision, recall of a segmentation are defined

as

Precision =
#inferred segments aligned to a gold-standard segment

#inferred segments
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Data GI-BGS LaDP sHDP-HMM
PR1 RC1 S1 PR1 RC1 S1 PR1 RC1 S1

Trans1 0.38 0.46 0.06 0.33 0.46 0.07 0.20 0.40 0.08
Trans2 0.33 0.37 0.10 0.27 0.34 0.11 0.18 0.34 0.12
Trans3 0.26 0.41 0.09 0.25 0.41 0.08 0.13 0.32 0.11
Trans91 0.15 0.28 0.16 0.13 0.28 0.13 0.06 0.21 0.16
Trans92 0.14 0.25 0.14 0.10 0.20 0.14 0.08 0.23 0.14
Trans93 0.22 0.22 0.09 0.17 0.08 0.11 0.12 0.03 0.11

Data PR2 RC2 S2 PR2 RC2 S2
Trans1 0.20 0.20 0.08 0.33 0.40 0.11
Trans2 0.80 1.00 0.04 0.71 1.00 0.01
Trans3 1.00 1.00 0.13 1.00 1.00 0.04
Trans91 0.60 0.60 0.06 0.50 0.80 0.07
Trans92 0.60 0.60 0.05 0.20 0.40 0.04
Trans93 0.60 0.75 0.04 0.50 0.75 0.06

Table 7.1: Above: Comparison of news transcript segmentation at level-1 by sticky HDP-HMM,
LaDP and GI-BGS. Below: News transcript segmentation at level-2 by LaDP and GI-BGS. Lower
value of S1, S2 indicate better segmentation.

Recall =
#gold-standard segments aligned to an inferred segment

#gold-standard segments

For level-2, the alignment threshold is set to 500, and at level-1 it is set to 10. As a baseline,

we use sticky HDP-HMM [29] and LaDP at level-1, once again using the 136 HDP topics. For

level-2, LaDP is the only baseline.

From the 60 news transcripts from which we learnt the 136 topics through HDP, we selected

3 (Trans1, Trans2, Trans3) to report the segmentation. Also, we selected another 3 (Trans91,

Trans92, Trans93) from outside the learning set, for which we used the same initial values of Φ.

The results are reported in Table 1. It is clear that in terms of all the measures we considered,

GI-BGS outperformed both competitors at level-1. At level-2 also, GI-BGS is competitive on

the three measures on all the transcripts except Trans1.

7.11 Implementation Details

Data Collection: There are no standard datasets available (to the best of our knowledge)

for this task of news transcript segmentation. So we constructed our own dataset. Actual

transcripts of TV/radio news are prepared by the respective stations for the newsreaders to

read out, or alternatively they can be generated by a listener using voice-to- text converters.

Unfortunately, we had no access to either prepared transcripts or a voice-to-text conversion

device. So, we simulated the transcripts using articles appearing in various news websites,

while preserving the ordering structure observed in TV/radio news broadcasts, and also in

the websites themselves. We chose a 30-day period (1st to 30th April, 2012), and chose news

articles from 5 news websites. For co-segmentation it is necessary that the transcripts should

have plenty of common topics, but news published in different websites may focus on completely

121



different topics. For this reason we chose similar sources- 5 news websites based in India having

similar focus. Also, news broadcast on TV/radio contain only the most important stories, while

the news websites contain many more. So we selected from each source only those stories which

have the highest number of comments-a good indicator of importance. It turned out that for

each selected article, there was at least one more article on the same topic in some other source.

In the first piece of work (LaDP), we did not consider sentences, and looked upon the

documents as a sequence of word tokens. In the later work the sentences became more important

as we wanted to investigate the effects of grouping. In text documents, sentence breaks can

be found easily by full-stops, while in case of speech-to-text conversion it may be possible to

identify them using pauses.

Training and Testing: Of the 150 simulated transcripts we created, we used 60 for

training (all 30 transcripts from 2 sources) and the remaining 90 for testing (from the remaining

3 sources). In case of the simulated transcripts, the segmentations were made known to the

model, at both the category-level and the story-level. For the category-level (l = 2), the

categories were also labelled, so that in these segments, β2
g were set to δ-distributions, spiked

at the labelled values. At the level of stories (l = 1), we did not use any labels (as these are

not known), but during inference all the tokens in the segment were constrained to be assigned

the same mixture component (topic φ). As discussed earlier, we also wanted to specify some of

the topics φk, for which we split all the training documents using the available category-level

segmentation, and ran HDP. The topics learnt this way were used during the inference.

Implementation: The entire system was implemented in Java. In the first part, the

data was processed- stopwords and infrequent words identified and removed, the vocabulary

constructed and each transcript converted to a sequence of integers (each of which indexes

a word in the vocabulary), for both the training and testing transcripts. Then, the training

documents are split up according to the segmentations provided for level 2, to form lots of

smaller documents. Then HDP was run on these smaller documents, using standard Gibbs

Sampling, and the biasing topics obtained, which were to be used in the main inference.

First an initialization was carried out using forward sampling. We started with all the

biasing topics, and sampled new ones if needed. Then the main Gibbs Sampling iterations

were carried out, using the inference equations already discussed (for either LaDP or GI-BGS).

Most latent variables converged to values after a small number of iterations, simplifying the

task. In case of LaDP, the estimated category-to-topic and topic-to-word distributions were

saved, to be used in the testing phase. In the testing phase, in case of LaDP we tried both

individual transcript segmentation as well as co-segmentation with all the testing documents

taken together. It was seen that the second approach gave better results. So all the results
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presented in the tables are for co-segmentation. Finally for LaDP, we computed the perplexity.

7.12 Applications, Limitations and Extensions

The aim of this chapter is multi-level clustering of sequential data, and one immediate ap-

plication of this is multi-level segmentation, which we have already explored in some detail.

Apart from news transcripts, these models can also be used for discourse analysis. Clustering

or segmentation of more complex documents, possibly with timestamps (so that the sequential

structure is present even at the topmost layer) can be considered.

One issue with the experiments we have demonstrated here is that the datasets are relatively

small by contemporary standard. This happenned because we had to construct our own dataset.

It is of interest to create larger datasets for this task, and re-run the experiments.

123





Chapter 8

Bayesian modeling of Confusion

Matrices for User Opinion

Reconciliation

8.1 About this Chapter

In the final chapter of this thesis, we consider confusion matrices, where each column is a

probability distribution, and they are related in various ways. We again propose appropriate

Bayesian models. We show one application- inferring the correct answers to questions using the

opinions (guesses) by users, whose expertise are modeled with confusion matrices. This work

is relevant to the general problem of aggregation of user opinions in various online platforms

for voting, ranking, rating or answering questions.

Publication: The work on Bayesian models for inferring correct answers using users’ opin-

ion has been published in the Conference of Information and Knowledge Management (CIKM),

2013 held in San Francisco, USA.

1. Adway Mitra, Srujana Merugu. Reconciliation of categorical opinions from multiple

sources. CIKM 2013

8.2 Modeling Distribution Matrices

We now discuss a special type of matrix, namely the confusion matrix. Here, every column is

a discrete probability distribution. In case of a D × K matrix, there are K columns, each of

which is a point on the D-dimensional simplex. Every entry in this matrix is non-negative, and

each column must sum to 1. Such a matrix can be low-rank when there are sets of identical
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columns, or when each column can be expressed as a convex combination of other columns

(unconstrained linear combination will not work here). We consider generative models for this

kind of matrices.

We consider Dirichlet base distribution, just as we had done for modeling topics in Chapter

6. We consider the following variants of the Distribution Matrix:

All columns unrelated: Here, all the columns are considered to be generated from Dirich-

let distributions with different parameters.

θi ∼ Dir(αi)∀i ∈ {1, . . . , K} (8.1)

Here, each αi is a K-dimensional vector.

Sets of related columns: Here, each column (say i) is assigned a group gi, and for each

group there is a separate Dirichlet parameter vector.

θi ∼ Dir(αgi)∀i ∈ {1, . . . , K} (8.2)

Each column a convex combination: Finally we consider the case where there are a

certain number of basis distributions u, and each column is a convex combination of these. The

convex combination components are also generated from a Dirichlet distribution. The basis

distributions may have been generated from a single Dirichlet Distribution H.

uk ∼ H∀k

βi ∼ Dir(α)∀i ∈ {1, . . . , K}

θi =
∑
k

βikuk∀i ∈ {1, . . . , K} (8.3)

Observations from such models will usually be normalized count vectors, i.e. relative fre-

quencies. Corresponding to each distribution, we will get a relative frequency vector (which

also lies in the same simplex), and we will have a relative frequency matrix F . By Central

Limit Theorem, each of the column vectors fi follows a multivariate Gaussian distribution with

mean θi.

The second type of matrices considered above are near-low-rank, i.e. they may be approx-

imated with a low-rank matrix with sets of repeated columns. The columns which are sampled

from the same Dirichlet distribution should be equal to the expectation in the approximate

matrix. The third type of matrices will obviously have low rank. The rank will be equal to

the number of basis distributions. We consider the low-rank matrix recovery problem from
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the observed relative frequency matrices, both in presence and absence of missing values. We

can try existing low-rank matrix recovery techniques. The other option is by Gibbs Sampling

inference of the above generative processes.

8.3 Opinion Reconciliation from Multiple Sources

Next, we consider an application of the distribution matrices discussed above. Specifically, we

look into confusion distributions, which involves several discrete values, one of which is correct

and has high probability of being selected, but the others may be selected with lower probabil-

ities. The application is to find the correct answers (categorical-valued) to different questions,

from several categorical-valued opinions provided by users. This application is very relevant to

online Q & A forums (e.g., Quora), prediction markets (e.g., Intrade), online diagnostic sys-

tems(e.g., interactiveMD), wiki-compilations (e.g., Wikipedia, Wikimapia). Harnessing “wis-

dom of the crowd” requires an effective solution for integrating sparse opinions from multiple

unreliable, and possibly malicious sources.

In a collaborative information system, there are multiple sources offering opinions on various

subjects or questions of interest. Unlike a subjective question like “who is the best US president

ever?”, there is a unique correct answer for an objective question like “who won the 2012

US Presidential election?”. In such scenarios, the goal of opinion integration is to determine

this correct answer. We focus on such Opinion Reconciliation (OR), where each question is

associated with a unique correct answer.

Let {U1, · · · , Ui, · · · , UNu} and {S1, · · · , Sj, · · · , SNs} denote the multiple sources and sub-

jects (questions) in the information system respectively. Each question Sj is associated with a

single correct answer Mj and one or more opinions {Oij}i,j from a subset of the sources {Ui}i.
Often, one might also have access to attributes of sources and subjects, denoted by Xi and

Yj respectively. The opinion reconciliation (OR) problem can then be stated as follows: Given

opinions {Oij}i,j, limited (or even none) observations on the correct answers {Mj}j, source at-

tributes {Xi}i, and subject attributes {Yj}j, predict the unknown correct answer Mj, ∀j, [j]Ns1 .

There can be multiple variants of the above problem depending on the nature of the opinions

and the correct answers, which could be real-valued (e.g., US GDP in dollars), ordinal (e.g., US

credit rating), binary (e.g., Is US a monarchy?), categorical from a small known set (e.g., type

of governance in US) , text phrases from a given vocabulary (e.g., US national anthem), set-

valued (e.g., list of US presidents from New York), etc. Among all the variants, a particularly

important formulation is the one where the space of possible answers and opinions for a question

Sj comprises of a large number of categorical values or text phrases Oj, which could vary across

questions. Applications include information systems with heterogeneous questions permitting
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factoid style answers, which is fairly common in prediction markets, specialized Q & A forums,

and diagnostic systems. Table 8.3 shows a toy example of such a scenario with multiple human

sources, heterogeneous questions on various topics and opinions corresponding to text phrases.

Existing approaches to opinion reconciliation can be broadly grouped as :

Axiomatic approaches. These include simple non-data-driven techniques assuming inter-

source and inter-subject independence where the correct answer of a question is obtained in

terms of various characteristics (mode, mean, median) of the distribution over the corresponding

opinions.

Discriminative Meta-learning. These approaches involve learning a functional mapping

(e.g., linear model or decision tree) from the opinions and features of subjects and sources to

the correct answer through supervision. But this form of supervised learning is not effective

when the opinions are very sparse and supervision is highly limited.

Trust Propagation. There is a large body of work on trust propagation over graphs that allow

one to estimate the ”reputation” (e.g., trustworthiness or correctness) of sources (represented

by nodes). Truthfinder algorithm [96] adapts these ideas to OR by considering a bipartite

graph over facts (subject-opinion pairs) and sources, with an edge corresponding to a positive

assertion on a fact by a source (missing edges are negative assertions). The likelihood of a

source making true assertions and the probability of a fact being true are iteratively estimated

in terms of each other, but the algorithm is not guaranteed to converge.

Bayesian Models Galland et al. [31] propose a generative model for binary opinions based on

source-specific probability of error and not-opinionating as well as subject-specific probability of

error and not-opinionating, with the opinion by a source on a subject being determined by the

interaction of these parameters. Unfortunately, the algorithms proposed in the paper are based

on heuristics not related to the generative model and are not guaranteed to converge. Rayakar

et al. [66] and Zhao et al. [100] both propose similar generative models for binary opinions that

take into account source-specific probabilities of Type-1 and Type-2 errors, but use different

inference approaches. Both works have also been extended to real-valued opinions [99]. A

more advanced approach is the Multi-Source Sensing (MSS) model [64], which considers latent

groups of sources and models error probabilities as property of each source group.

However, most of the existing techniques are focused on the scenarios where the correct an-

swer Mj and the opinions Oij are binary variables [100, 96, 31]. To some extent, these techniques

can be adapted to handle other scenarios involving categorical, textual and set-valued answers

by transforming the original subject space to one that permits binary opinions/answers. For ex-

ample, the question “What is the type of US government?” with possible answers {“democracy”,

“monarchy”, “oligarchy”} can be alternately represented as three questions: {“Is US a democ-
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Question User Opinion
Materials used in namesake displays Mr. A lcd
in computer monitors and HDTVs Ms. B liqiud crystal
Answer: (known) liquid crystal Prof. C liquid crystal
Category: chemistry Mr. D cathode ray
Found by solving det(A− λI) = 0 Ms. B prime
Answer:(unknown) eigenvalues Mr. F prime numbers
Category: math Prof. C eigenvalues
Architect of the first theory of communism Ms. B. Karl Marx
Answer:(unknown) Karl Marx Prof. C. Lenin
Category: history Mr. A Marx

Table 8.1: Toy example of categorical opinions

racy?”, “Is US a monarchy?”, “Is US an oligarchy?” }, each of which permits a binary yes/no

answer independently. However, these techniques cannot effectively exploit the implicit mutual

exclusivity in the categorical valued variables.

This work is an attempt to directly address the opinion reconciliation problem for heteroge-

neous questions with a large number of categorical opinions which requires taking into account

various practical issues shown in Table 1:

Variations in source behavior. In Table 1, we observe that Mr. A is more accurate than

other users, indicating that majority vote may not suffice, and source expertise and reliability

needs to be accounted for.

Variations in same source’s expertise across topics. In the example, Prof. C is an expert

in math and chemistry, but ignorant in history pointing to the need for topic-specific modeling

of expertise.

Highly limited supervision. The correct answer is often known only for a small subset of

questions and one needs to use this supervision to calibrate the expertise of sources.

Opinion Sparsity. Each source provides opinions on only a small subset of questions, which

makes it difficult to employ traditional meta-learning techniques.

Textual Variations. Certain opinions are minor variations of the correct answer (eg. typos),

which need to be treated differently from an outright wrong answer.

To address some of the above challenges, we propose a Bayesian framework for opinion

generation that jointly models the source behavior and subject-specific correct answers as latent

variables and make the following contributions:

1) A generic framework for opinion reconciliation via Bayesian modeling that can incorporate

latent and observed attributes of sources and subjects. Existing Bayesian approaches such as

the LTM [100] can be shown to be special cases.

2) To reconcile categorical-valued opinions, we propose three instantiations (CTM, CTM-OSF,

CTM-LSG) of the generic approach to capture the latent source behavior, variations across

subject groups, and inter-source correlations.

3) Empirical evaluation of predictive performances of the proposed models and multiple base-
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Figure 8.1: Graphical model for Generic Bayesian Opinion Reconciliation

lines on real-world datasets, which points to the relative efficacy of the proposed models.

8.4 Solution Approach by Confusion Distributions

In this section, we describe our generic Bayesian framework for opinion reconciliation, and

present three models for categorical opinions. The graphical model encodes two assumptions:

(a) Opinions {Oij}ij are independent of each other given {Mj, Xi, Yj}, (b) Dependencies among

sources and subjects are captured entirely in terms of Xi and Yj.

8.4.1 Generic Bayesian Opinion Reconciliation

The dependencies between the opinions of a source and the correct answer can be succinctly

expressed in terms of other variables of interest, such as the source expertise, which are often

unobserved or partially observed. An effective solution strategy is to simultaneously infer these

latent variables as well as the precise form of the dependencies, in addition to inferring the

primary target variable, the correct answer of a subject Mj. A natural mechanism is to encode

the dependencies between the different variables of interest (Oij,Mj, Xi, Yj) in the form of a

joint probability distribution that can be factored into conditional distributions amenable for

learning. Figure 1 shows a graphical model corresponding to such a factorization. Here X lat
i

and Xobs
i denote the latent and the observed features of source Ui such that Xi = [X lat

i , Xobs
i ].

Similarly, Y lat
j and Y obs

j denote the latent and observed features of source Sj such that Yj =

[Y lat
j , Y obs

j ]. The priors allow one to encode domain knowledge as well as data constraints. The

process is explained through a graphical model in Fig 8.1.

The above framework provides an elegant way to model some of common factors relevant

to opinion generation such as source expertise, source bias, difficulty of a question, inter-source
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correlations. Though Figure 1 depicts a specific directionality for the dependence between latent

and observed source and subject attributes, e.g., between Y lat
j and Y obs

j , the appropriate direc-

tionality depends on which of the conditional probabilities (e.g., p(Y lat
j |Y obs

j ) or p(Y obs
j |Y lat

j )) is

more learnable given the nature of the variables.

8.4.2 Categorical Truth Model & variants

We now consider the specific scenario where Mj, Oij are both categorical values with support

sets M and O respectively. We propose three different models, where the conditional probability

p(Oij|Mj, Xi, Yj) can be viewed as confusion profile parametrized by Xi and Yj. This confusion

profile is essentially a set of |M| distributions on the |O| simplex. In the simple scenario where

the variables Mj and Oij are binary, it reduces to the distribution of Type I and Type II errors

as done in [100], but can capture more intricate dependencies among categorical variables in

general. The three models are described below.

CTM. This model attempts to capture hidden source behavior such as expertise and common

mistake patterns in terms of a source-specific confusion profile θi, which can be viewed as a

latent source-specific feature X lat
i . The priors on the correct answer Mj and each of components

in X lat
i = θi are assumed to be Dirichlet-Multinomial and Dirichlet respectively. The generative

process is as follows:

φ ∼ Dir(β); θim ∼ Dir(αm), [i]Nu1 , [m]
|M|
1 ,

Mj ∼ φ;Oij ∼Mult(θiMj
), [i]Nu1 , [j]Ns1 . (8.4)

CTM with Observed Subject Features (CTM-OSF). This model attempts to capture

the variations in source behavior across observed categories of subjects. In this scenario, each

subject is associated with a categorical observed attribute Y ob
j ∈ {1, · · · , Nsf ] and and each

source is associated with |Nsf | confusion profiles corresponding to each of the subject categories.

The generative process is given by:

φa ∼ Dir(β), [a]
Nsf
1 ,

θiam ∼ Dir(αm), [i]Nu1 , [m]
|M|
1 , [a]

Nsf
1 ,

Mj ∼ φYj ;Oij ∼Mult(θiYjMj
), [i]Nu1 , [j]Ns1 . (8.5)

CTM with Latent Source Groups (CTM-LSG). Rather than model the confusion profiles

at an individual source level, this model assumes that each source Ui belongs to a hidden group

Gi ∈ {1, · · · , Nsg}, and associates each group with a confusion profile. The generative process

131



includes assignment of group indices to the sources.

φ ∼ Dir(β), θkm ∼ Dir(αm), [k]
Nsg
1 , [m]

|M|
1 ,

ψ ∼ Dir(γ), Gi ∼ ψ, [i]Ns1 ,

Mj ∼ φYj ;Oij ∼Mult(θGi,Mj
) [i]Nu1 , [j]Ns1 . (8.6)

It is easy to relate these models with the generative processes described in the previous

section.

8.4.2.1 Inference

The generative process for CTM, as described above results in the following joint distribution:

p(O,M, θ, φ) ∝
|M|∏
k=1

φβk−1
k

Nu∏
i=1

|M|∏
k=1

|M|∏
l=1

θαkl−1
ikl

Ns∏
j=1

K∏
k=1

φ
δ(Mj ,k)
k ,

×
Nu∏
i=1

Ns∏
j=1

|M|∏
k=1

|M|∏
l=1

θ
δ(Mj ,k)δ(Oij ,l)
ikl ,

∝
|M|∏
k=1

φnk+βk−1
k

Nu∏
i=1

|M|∏
k=1

|M|∏
l=1

θmikl+αkl−1
ikl . (8.7)

Here mikl is the number of times source i has provided opinion l to a subject whose correct

answer is k, and nk is the number of subjects which have k as the correct answer. On integrating

out θ and φ, the Gibbs sampling equation is:

p(Mj = k|M−j, O) ∝ (n−jk + βk)
Nu∏
i=1

|M|∏
l=1

(m−jikl + αkl), (8.8)

where n−jk and m−jikl are nk and mikl respectively, without considering subject j. In practice,

while sampling Mj, we restrict ourselves to only those values in M which have been used in

at least one of the opinions available on subject j. The inference steps for CTM-OSF and

CTM-LSG are similarly derived, but are skipped here for brevity.

We choose the hyperparameters α and β based on the data. αkl is set proportional to the

number of times l is provided as opinion on a subject where the most frequent opinion is k. We

set βk to be proportional to the number of times k is provided as opinion. In the presence of

supervision, βk is boosted proportional to the number of times it occurs as the correct answer

for the supervised subjects.
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Figure 8.2: Graphical model for generic Bayesian opinion generation. Observed variables are marked
in green.

8.5 Empirical Evaluation

In this section, we present empirical results comparing the performance of the proposed mod-

els (CTM, CTM-OSF and CTM-LSG) relative to the state-of-the-art methods on real-world

datasets in supervised and unsupervised settings.

8.5.1 Experimental Set-up

Datasets: We consider two datasets comprising of categorical-valued opinions: (a)Quizmaster

Dataset [10], which contains questions on 11 different topics (physics, chemistry, history, liter-

ature, etc.) and the Hubdub Dataset [31] which contains questions pertaining to the outcome

(winner, victory margin) of upcoming sports matches. For both the datasets, each question

has a single correct answer, and the users (sources) attempt a variable number of questions.

In the Quizmaster dataset, opinions also have typos and linguistic issues, which was addressed

via string-matching and normalization as a preprocessing step though in principle, it could be

incorporated into the confusion profile. Table 2 provides the details of the datasets. To evaluate

the techniques in the presence of supervision, we also created a subset of the QuizMaster dataset

(Quizmaster2), where we randomly select 80% of the subjects and their associated opinions.

The remaining 20% is kept aside for supervision.

Algorithms: We consider the following baselines: Voting, TruthFinder (TF) [96], 3-

Estimates [31], and LTM [100]. For LTM, TF and 3-Estimates, all opinions are transformed

into binary-valued facts (question-opinion pairs), and each fact is assigned a score. The opinion

corresponding to the fact with the best score is selected as the predicted correct answer for

a subject. We consider two versions of LTM: (a) LTM-1 which corresponds to the original

LTM and may infer more than one opinion as the correct answer for a question since each

question-opinion pair is considered independently and inferred as true/false, and (b) LTM-2,

which explicitly chooses a single fact per subject.

In the presence of supervision, we also consider an additional baseline algorithm Discrimina-

tive based on discriminative modeling. As with TF [96] and 3-estimate, we construct question-

opinion pairs, which can be associated with a binary label of TRUE (“opinion is correct answer

for question”) or FALSE. We also construct features based on the opinion distribution and

learn a generalized linear model.

We compare the newly proposed methods: CTM, CTM-OSF and CTM-LSG, against the
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Dataset #Subjects #Sources #Opinions #Distinct opinions
per subject

Quizmaster 6076 458 33243 min 1, max 22
Quizmaster2 4876 447 26841 min 1, max 22

Hubdub 357 447 3051 min 1, max 6

Table 8.2: Details of experimental datasets.

above methods. In case of the quizmaster dataset, the topics for each question (11 topics such

as physics, chemistry, history) can be used as subject features (Y ob
j ) in CTM-OSF. Since the

Hubdub dataset does not have such features, we do not evaluate CTM-OSF on this data.

Metrics: All the algorithms except LTM1 output one answer for each subject. As perfor-

mance metrics, we evaluate the number of predicted answers that match the Ground Truth.

We note that, in the Quizmaster dataset, none of the opinions are correct in 395 out of the 6076

questions, and so in these 395 questions the correct answer may never be found, and hence, the

maximum number of correct predictions achievable on this dataset is 5681.

8.5.2 Results and Discussions

Unsupervised Setting: Table 3 presents the prediction results of various algorithms on the

two datasets (Quizmaster and Hubdub) in the absence of supervision. The values for CTM-

LSG correspond to Nsg = 5, but variations of Nsg did not significantly affect the prediction.

In case of QuizMaster, the proposed methods are clearly superior to all the baselines while

in case of Hubdub, these methods are superior to the Bayesian models, but comparable to

Voting and TruthFinder. A possible reason for this is that source-specific confusion profiles can

effectively capture the latent interactions in QuizMaster dataset. In case of Hubdub dataset,

the representation of the opinions and correct answers (e.g., win by 5 points) may not encode

the relevant semantics (Soccer Team A wins over Soccer Team B by 5 points or Hockey Team C

wins over Hockey Team D by 5 points) which are not the same from a source perspective. This

problem would have been alleviated in CTM-OSF in the presence of observed subject-specific

features, which were not available in readily usable form.

Since most of the baselines are primarily meant for binary-valued opinions, we also trans-

formed the categorical opinions to binary facts (subject-opinion pairs) and measured the predic-

tion quality in each case, in terms of Precision and Recall. In case of TruthFinder, we obtained

precision-recall values of (0.87, 0.58) while for 3-estimate, we obtained (0.85,0.94), with thresh-

olds chosen so as to maximize the F-measure. For LTM-2 the values were (0.86,0.86). For

CTM, CTM-OSF and CTM-LSG, these values are (0.91, 0.91). So it appears that most of the

gain is coming from better utilization of the mutual exclusivity between categorical values.

Effects of Supervision: Next, we study the effect of providing limited supervision in the

form of correct answers to a few subjects being known. We choose these subjects randomly
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Method QuizMaster Hubdub
Maximum (5681) (357)

Voting 5317 236
TF 5348 239

3-Est 5340 215
LTM1 3846 171
LTM2 5242 158
CTM 5513 239

CTM-OSF 5523 -
CTM-LSG 5508 240

Table 8.3: Number of correct answers found by different models on Categorical Data.

Method 0% 25% 50% 100%
Voting 4280 4280 4280 4280

TF 3789 4268± 1.92 4287± 8.44 4319
Discrim - 4226 4249 4249
3-Est 4253 4248± 16.63 4237± 31.4 4275
CTM 4429± 3.81 4434± 3.67 4434± 5.08 4437± 6.13

CTM-OSF 4433± 4.25 4438± 4.13 4443± 4.47 4449± 4.45
CTM-LSG 4427± 3.78 4430± 3.5 4429± 4.29 4429± 8.12

Table 8.4: Effects of Supervision on prediction accuracy on Quizmaster2 dataset. Values and standard
deviations computed over 10 runs each.

from 20% of Quizmaster dataset kept aside for supervision, and perform the predictions on the

test partition (Quizmaster2). We consider 4 levels of supervision- 0%, 25%, 50% and 100%

of the training subset. Table 4 shows the results pointing to the superior performance of the

proposed models. However, the performance of the proposed methods is relatively invariant to

the amount of supervision provided, unlike TF which clearly benefits from supervision.
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Chapter 9

Conclusions and Future Work

The first part of this thesis has raised and answered several questions related to modeling

temporal coherence in videos at semantic level. We have contributed to semantic modeling of

videos in terms of entities, exploiting feature-level TC, modeling semantic-level TC, as well as to

various applications of videos. The main conclusions we can draw from the research presented

here are as follows:

• A video can be represented concisely and comprehensively as a sequence of tracklets

corresponding to entities

• Feature-level TC can be exploited to get effective tracklet representation

• The features need to be chosen according to the applications

• Eigenprofile is a better way of modeling tracklet covariance matrix than Geodesic mean

or feature-pooled covariance matrix

• Entity tracking can be carried out in severely challenging illumination conditions by using

Eigenprofiles-based tracklet representation with Gabor features

• Bayesian nonparametric clustering of tracklets can be used to discover the entities

• Temporal coherence at semantic level can be modeled using the Bayesian nonparemtric

approach, with improved tracklet clustering

• Video summaries can be defined semantically in terms of entities, and created by simple

post-processing after entity discovery
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• Video scenes and shots can be defined semantically in terms of entities (in case of entity-

centric videos like movies and TV-series)

• Scenes and shots in videos can be discovered using Bayesian inference (can also be looked

upon as temporal segmentation)

• It is more efficient to simultaneously discover the entities and the scenes, rather than do

so separately

• In most matrix-based video representations, the matrix is expected to have sets of identical

columns, and hence low rank. But existing low-rank matrix recovery methods are unable

to capture such structural information

• Adding regularizers give partly improved results, but Bayesian nonparametric modeling

of columns gives a more elegant and effective solution

The next part of the work deals with Bayesian modeling for hierarchically grouped sequential

data, and how TC can be used in hierarchical clustering/segmentation of such data. The main

conclusions we draw from our research on this matter are:

• Bayesian models for hierarchically grouped data can be systematically compared using

the proposed DoS taxonomy

• Bayesian nonparametrics can be used to build models for such data, including temporal

coherence at various levels

• Documents like news transcripts can be hierarchically defined using individual stories and

broad news categories

• Semi-Markov models for temporal coherence can be more useful than Markov models on

some applications like segmentations

This thesis spawns several questions and challenges, which would be interesting to explore

in future. The important questions and challenges regarding videos and tracklets that remain

unanswered are as follows:

• A dynamic Bayesian model for tracklet covariance matrices, using concepts like Wishart

Processes will be interesting
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• In entity discovery by TC-CRP and TC-CRF, several clusters are formed per entity. But

ideally there should be only one cluster per entity. In the current set-up, attempting to

reduce the number of clusters affects the purity of these clusters. It will be interesting to

find a way that minimizes the number of clusters per entity while retaining the purity.

• The EntScene model produces a larger number of segments than the number of scenes.

This is partly related to the issue of forming multiple clusters per entity, but also due to

the fact that scenes in a video have complex structure. It will be interesting to have a

model which can capture the scene structure better than EntScene, and therefore produce

a more reasonable number of temporal segments.

The part regarding grouped sequential data leaves open the following open directions:

• The DoS-classification scheme reveals several possible models that have been unexplored.

It will be interesting to explore these, and see if and where these can be useful.

• Some statistical analysis of learnability of the models based on the concept of sharing

components may be useful

• A general-purpose Gibbs sampling algorithm for the Generalized Bayesian Model should

be looked into

The work on low-rank matrices, raises the following questions:

• Can we have a generative model for matrix columns based on Dirichlet Process for general

low-rank matrices, where the columns are not necessarily repeated?

• The low-rank matrix recovery approaches based on convex optimization provide recovery

guarantees. It will be interesting to have some guarantees (like PAC-Bayesian bounds)

for the Bayesian approaches also.

• The problem is closely related to subspace clustering, but subspace clustering usually does

not consider missing values in the data vectors. It is interesting to see if the proposed

DP-based approach can be useful for subspace clustering also.
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