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1 General Problem Definition

In the paper, we addressed the problem of entity discov-
ery in videos through tracklet clustering. For this pur-
pose we proposed a Bayesian nonparametric approach,
with a model (TC-CRP). However, our approach is not
tied to tracklet clustering or person discovery, and is a
solution to a more general in Data Mining, as follows:

We consider sequential data, where each datapoint
has a predecessor and a successor datapoint. There are
an unknown number of entities, and each datapoint is
associated with one of these entities. We use the term
coherent to indicate the property that each datapoint
is likely to be associated with the same entity as its
predecessor or successor. Additionally each datapoint
has a set of conflicting datapoints with which it cannot
share the associated entity. Both datapoints and en-
tities can be represented as vectors (or matrices), and
datapoint vectors may have missing values. The task
is to discover the repeated entities, which are associated
with many datapoints, and simultaneously reject outlier
entities, which are significantly different from the rest.
It is of interest to solve the problem online (i.e. with a
single pass over the data).

2 Experiments

2.1 Comparison with HMRF : Regarding base-
lines we compared against an alternative Bayesian Non-
parametric Model (sHDP-HMM), a recent face clus-
tering approach based on subspace clustering (WB-
SLRR) and a constrained clustering approach. The
state-of-the-art for face clustering and tracklet link-
ing is HMRF [11]. Unfortunately, we find that this
method [11] (authors’ implementation) runs into severe
numerical issues on these large videos, due to the matrix
computations involved. In fact it fails to yield valid re-
sults when the number of clusters to be formed is more
than 10. However for the sake of completeness we pro-
vide a comparson of TC-CRP and HMRF on the two
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videos (Frontal and BBTs1e1) on which tracklet clus-
tering results have been reported in [11].

In [11] the clustering is evaluated by clustering ac-
curacy. This requires a ground-truth clustering, against
which the inferred clustering needs to be compared.
Most of the videos on which we evaluated our method
are large, and frame-level or tracklet-level ground truth
labels are difficult to annotate. So in the main paper
we judged the clusters themselves by means of purity,
entity coverage and tracklet coverage. For the task of
comparison with HMRF, we annotated the ground truth
manually on both the videos. The comparisons are given
in Table 1. It can be seen that HMRF performs slightly
better on the shorter Frontal video, while TC-CRP is
slightly better on the longer BBTs1e1 video.

2.2 Experiments on Videos with Missing Pixels
User-generated videos are often noisy and grainy, as
they are often shot directly from the television. The
quality of the camera can also be an issue. Such
videos may have random pixels grossly corrupted, i.e.
effectively missing. We find that if more than 20%
of the pixels are missing at random, the face detector
itself often fails, and hence the person and tracklet
discovery will not work. So we test the performance
of our method with 20% pixels missing at random. As
already discussed in Section 3.5, TC-CRP can recover
missing entries in the tracklet vectors. As benchmark,
we consider the tracklet matrix (formed by juxtaposing
the tracklet vectors), and note that because of similarity
of tracklets belonging to the same entity, the tracklet
matrix must be approximately low-rank. In presence of
the missing pixels, estimating this low-rank matrix is
the well-know problem of low-rank matrix completion,
for which we consider existing methods like SBMR [4]
and OPTSPACE [1]. However, on our long videos
SBMR is found to run out of memory, and OPTSPACE
produces matrices with very low rank (5 or 6), which
is clearly unrealistic as the number of entities are much
larger. But TC-CRP’s performance remains similar to
those already reported in Tables 2,3,4.



Dataset Face-level Track-level

HMRF TCCRP HMRF TCCRP

Frontal 0.907 0.843 0.905 0.859
BBTs1e1 0.665 0.693 0.668 0.698

Table 1: Clustering Accuracy at Face-level and
Tracklet-level

3 Connection to Low-rank Matrix Completion

In this section, we explore the scope of the proposed
model beyond tracklet association.

3.1 Low-rank Matrices with sets of identical
Columns Low-rank matrices are quite commonly used
in computer vision. They have been used for both still
images [12] and for videos [2]. In case of still images,
each column generally corresponds to the face of a per-
son. In case of videos, it corresponds to a frame (for
background subtraction), a subwindow in a frame (for
denoising) or detector outputs from a frame (in this
work). In all cases, the low-rank matrix approxima-
tion is considered because several columns of the data
matrix are near-identical. For example, in case of back-
ground subtraction all columns of the low-rank matrix
should be identical, as they correspond to the static
background. In TV series or movie videos, due to the
property of Temporal Coherence, successive frames gen-
erally contain the same entities (for example, persons),
and changes occur only at shot boundaries. Hence, if
we represent a video with a matrix where each column
corresponds to an entity detection (arranged in order of
track/frame indices), we can expect to find a low-rank
approximation where succcessive columns to be identical
except at the shot/track boundaries. We investigate if
the low-rank matrices recovered by various methods for
matrix recovery (completion and extraction) actually do
have successive columns identical. The existing meth-
ods mostly proceed by regularizing the nuclear norm,
i.e. shrinking smaller singular values to 0. This reduces
the rank and entry-wise error, but does not necessarily
capture the structural property on the columns.

Synthetic Matrices We generate 50 basis vectors
{φk}50

k=1 by sampling from the standard multivariate
spherical Gaussian. Next, each column is generated by
drawing from a basis vector from a multinomial distri-
bution. In one version, all columns are drawn IID from
this distribution (no temporal coherence). In an-
other version each column is drawn from a multinomial
that emphasizes on the previous draw. In particular, if
the column Xi corresponds to basis vector φk, then for
columnXi+1 we sample φk with probability 0.9, and any
of the basis vectors uniformly with probability 0.002,
and thus temporal coherence exists. These columns
constitute the original matrix Xoriginal. We study ma-
trices of dimensions (200×1000), as in most applications

the number of datapoints is far larger than the dimen-
sion. We study the sensitivity of the methods to the
fraction of missing values. We try various levels of in-
completeness, and vary the fractions of missing entries
from 0.1 to 0.7. The matrices are corrupted by additive
zero-mean noise with variance 0.1 independently on the
observed entries.

Video Face Matrix Next, we consider a small ma-
trix Y of face detections (reshaped to 900-dimensional
vectors), taken from a user-uploaded Youtube video. Y
has 1000 columns. Due to temporal coherence of videos,
successive frames contain the same character, except at
the shot change points. However, between the change
points the face vectors are near-identical. A set of de-
tections from this video are shown in Figure 1. The ma-
trix Y has rank 900, because of small movements and
variations in noise levels across the frames. However,
noting that there are only 3 characters and 12 change-
points, between which the vectors are almost identical,
it is expected that a low-rank approximation X of Y
should clearly have rank at most 12. Also, between
these change-points, the columns of X should be iden-
tical.

Rank-column Plot: We consider the quantity
X̃i = rank(X1:i)- the rank of the submatrix formed
by the first i columns of X. If X has identical columns
between the change-points, this quantity should remain
fixed between these changepoints, and may increase by
1 only at the changepoints. Hence the plot of X̃i versus i
should be a step-function, as shown in Figure 1. We call
this plot as the Rank-column plot of X. We study the
rank-column plot(Figure 2,3) of the estimated low-rank
matrix X returned by three recent methods for low-
rank matrix approximation: Robust PCA [2], Bayesian
Robust PCA [3] and Sparse Bayesian Robust PCA [4].
Surprisingly for all three methods, we observe: 1) The
rank-column plot for none of the methods comes close
to the expected step function. All three show similar
plots: the rank rises monotonically and then flattens
out. 2) For all three methods, the estimated “low-
rank” matrix has rank much higher than the number of
characters, and even the number of shot-changepoints.
Moreover, if the estimated matrix had rank r, then the
submatrix formed by any set of m columns had rank
equal to min(r,m). Such behavior of the rank-column
plot clearly shows that the existing low-rank matrix
recovery methods are completely incapable of capturing
the temporal coherence of videos.

TC-CRP for Matrix Recovery A better idea
is to use a discrete distribution on the columns, where
each column vector is chosen from a set of vectors.
This is very similar to the TC-CRP model proposed
in this paper. It models temporal coherence through
the change variable that ensures successive columns to



Figure 1: Face detections from the test video and the expected rank-column plot of its low-rank matrix representation: a step function which
may increase at shot change-points. In case of the low-rank matrices learnt by RPCA, BRPCA and SBMR, this behavior is not observed.

be identical, but if not desired, this property can be
abolished by setting the Bernoulli parameter κ to 1
(i.e. Ci = 1∀i). Note that at any column i the rank
X̃i increases from X̃i−1 if a new vector (different from
X1, . . . , Xi−1) is sampled. The value α in the PPF
(Equation 3.6) regulates the probability of sampling of
a new vector from the base distribution, so a smaller
value of α ensures a lower rank.

Evaluation: We evaluate TC-CRP’s performance
against the existing methods, for both the syn-
thetic matrices (with and without TC) and the video
face matrix. We measure the Frobenius norm er-
ror(FE)

||Xrecovered−Xoriginal||F
||Xoriginal||F , the rank error(RE)

|rank(Xrecovered−Xoriginal)|
|rank(Xoriginal)| . Also, as the original matrices

have sets of identical columns, and the ones recovered
by TC-CRP also have the same property, we compute
the RAND index to evaluate the matching. As none of
the existing low-rank recovery methods provide a ma-
trix with identical columns, we compare TC-CRP’s clus-
tering against Spectral Clustering [7], which requires a
similarity matrix between pairs of datapoints. We de-
fine pairwise similarity S(i, j) = exp(−||Xi−Xj ||Ωi∩Ωj

)
(Ωi: set of observed entries of Xi), and try out different
values of K. The results for synthetic data are shown
Tables VII and VIII. The rank-column plots are pro-
vided in Figure 2 for synthetic data and Figure 3 for
faces. We see that on the synthetic data, not only does
TC-CRP provide the perfect rank-column plots (which
coincide with the true plots), but even in terms of Frobe-
nius norm error, Rank error and RAND index, its per-
formance is way ahead of the existing methods. For the
face data also, its rank-column plot is roughly accurate,
and increments around the shot changepoints.

3.2 Subspace Clustering A problem related to low-
rank matrix completion is Subspace Clustering, where
each column vector of the data matrix Y is considered
to lie in an Union of Subspaces. The data matrix is ex-
pressed as Y = Y C +B, where C is the coefficient ma-
trix where the column-vector Ci indicates the subspace
membership of column Yi (the i-th datapoint). This rep-
resentation has also been used in Computer Vision, most

missing TCCRP SVT OPTSPACE SBMR

fraction FE RE FE RE FE RE FE RE

0.1 0.002 0 0.031 0.055 0.138 0.98 0.038 0.24
0.3 0.008 0 0.040 0.03 0.138 0.98 0.049 0.66
0.5 0.040 0.02 0.048 0.09 0.137 0.98 0.068 0.71
0.7 0.059 0.02 0.116 0.40 0.136 0.98 0.103 0.70

Table 2: Comparison of Low-rank Matrix Completion techniques
with varying fractions of missing entries, in absence of TC. FE:
Frobenius Norm Error, RE: Rank Error, RAND: Rand index for
clustering

missing TCCRP SVT OPTSPACE SBMR

fraction FE RE FE RE FE RE FE RE

0.1 0.008 0 0.03 0.14 0.169 0.97 0.007 0.15
0.3 0.013 0.01 0.03 0.14 0.169 0.98 0.037 0.60
0.5 0.035 0.04 0.038 0.09 0.178 0.98 0.056 0.71
0.7 0.048 0.05 0.105 0.41 0.178 0.98 0.095 0.83

Table 3: Comparison of Low-rank Matrix Completion techniques
with varying fractions of missing entries, in presence of TC. FE:
Frobenius Norm Error, RE: Rank Error, RAND: Rand index for
clustering

missing without TC with TC

fraction TCCRP NCUT TCCRP NCUT

0.1 1.0000 0.998 1.0000 0.998
0.3 1.0000 0.988 1.0000 0.994
0.5 0.9994 0.985 0.9999 0.987
0.7 0.9990 0.980 0.9996 0.976

Table 4: RAND index for clustering columns for varying fractions
of missing entries, in presence and absence of TC

Figure 2: Rank-column plots for various methods. Left figure is for
a matrix with 10% missing entries, and right figure for 50% missing
entries. The Blue Line (True Plot) and the Black Line (proposed
method) coincide

Figure 3: Left: Rank-column plots for SBMR(blue), RPCA(red)
and BRPCA(green) for the test video. The estimated matrices all
have rank much more than the number of shot segments (12), and do
not exhibit the expected step function-like behavior. Right: Rank-
column plot for TC-CRP(blue), and the shot number(red) which
increments at the shot changepoints, and the matrix rank is 13



notably for motion segmentation. Once again, as sev-
eral datapoints are almost identical, their corresponding
coefficient vectors are also expected to be similar, and
hence the coefficient matrix C should again have sets
of identical columns. No wonder, C has been modelled
as low-rank in the LRR formulation [6]. Also, in case
of sequential data like videos, the successive datapoints
are very similar and likely to have same subspace coeffi-
cients, which is handled in [8] by an additional penalty
term. However, these methods also model the rank of
C using the nuclear norm, and as we have seen already,
this cannot recover a coefficient matrix with sets of iden-
tical columns, as needed for clustering. Hence, they
perform the clustering as a separate step, using spectral
clustering with an affinity matrix constructed from C.
However, spectral clustering is very slow.

A better option can be to use TC-CRP on the
recovered C to obtain its approximation having sets of
identical columns. Sequential data can easily be taken
care of, because TC-CRP models temporal coherence.
In case of non-sequential data also, TC-CRP (with
κ = 1) can produce sets of identical columns because
it generates the columns from a discrete distribution.
Note that this does not obviate the need to estimate
the coefficient matrix C. This is because, TC-CRP in its
current form models each datapoint Zi as a draw from
a single Gaussian, and not as the linear combination of
several such draws, which is required for this purpose.
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