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ABSTRACT
The highly dynamic nature of online commenting environments
makes accurate ratings prediction for new comments challenging.
In such a setting, in addition to exploiting comments with high pre-
dicted ratings, it is also critical to explore comments with high un-
certainty in the predictions. In this paper, we propose a novel upper
confidence bound (UCB) algorithm called LOGUCB that balances
exploration with exploitation when the average rating of a com-
ment is modeled using logistic regression on its features. At the
core of our LOGUCB algorithm lies a novel variance approxima-
tion technique for the Bayesian logistic regression model that is
used to compute the UCB value for each comment. In experiments
with a real-life comments dataset from Yahoo! News, we show
that LOGUCB with bag-of-words and topic features outperforms
state-of-the-art explore-exploit algorithms.

Categories and Subject Descriptors
I.2.6 [Computing Methodologies]: Learning

General Terms
Algorithms, Experimentation

Keywords
logistic regression, explore-exploit, comment ratings, upper confi-
dence bound

1. INTRODUCTION
User generated content in the form of comments has witnessed

an explosive growth on the web. Web sites like Yahoo! and YouTube
allow users to comment on diverse content like news articles and
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videos. These “crowd-sourced” comments are highly engaging be-
cause they reflect the views and opinions of real users, and are a
means for users to discuss and debate controversial issues. Further-
more, comments can be informative, and are an effective gauge of
public sentiment on a topic.

However, a key challenge with user generated comments is that
a single news article on a major event can easily trigger thousands
of comments. Clearly, it is unrealistic to expect that users will
sift through the copious comments for an article. A more realis-
tic scenario is that a user will look through the first K comments
that are presented to him/her, and ignore the remaining comments.
Fortunately, most commenting environments allow users to provide
feedback on comments shown to them – users can give a thumbs-up
rating to indicate that they like, or a thumbs-down rating to express
dislike for a comment. Thus, our goal in this paper is to develop
algorithms that leverage past comment ratings to rank an article’s
comments so that the top K comments have the highest chance of
being liked by the user.

Recommender systems have been extensively studied in the re-
search literature – these systems use collaborative filtering, content-
based filtering, or hybrid approaches to recommend items to users.
Traditional collaborative filtering techniques rely on either item-
item/user-user similarity models [26], or matrix factorization mod-
els [22] that multiply user- and item-specific factors for ratings
prediction. A shortcoming of classical collaborative filtering ap-
proaches is that they cannot predict ratings for new users or items
(referred to as the cold-start problem). Content-based filtering meth-
ods alleviate the cold-start problem by building predictive models
based on user and item features like age, gender, and category. But
they do not consider user- or item-specific parameters learnt from
past ratings. Recently proposed hybrid approaches [2, 1, 4] com-
bine collaborative filtering with content-based filtering by simul-
taneously incorporating features and user/item-centric parameters
in models – this allows them to predict ratings more accurately
for both existing user-item pairs as well as new pairs (through fea-
tures). The top K items with the highest predicted ratings are then
recommended to the user.

Commenting environments are highly dynamic with new com-
ments and articles arriving continuously. These new comments
have zero or few user ratings, and constantly changing content that
may have little overlap with previous comments. Furthermore, of
the users who view comments, only a small fraction typically rate
comments causing training data to be extremely sparse. In such
a scenario, even models that exploit features and past ratings in-
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formation may be unable to make accurate predictions, and there
may be a high degree of uncertainty in the predicted ratings of new
comments. Consequently, simply ranking comments based on their
predicted rating scores may lead to poor comments being ranked
high and good comments being ranked low because of inaccuracies
in their rating estimates. Thus, a strategy that only exploits user
comments with high predicted ratings may be suboptimal, and it is
important to also explore comments with low predicted ratings but
high uncertainty since their true ratings may be much higher.

Our comments recommendation problem is an instance of the
well-known exploitation-exploration tradeoff that has been studied
extensively in the context of the multi-armed bandits problem [12,
6]. Given a set of arms with unknown rewards, the objective in ban-
dit problems is to select arms in successive trials (one per trial) so
that the expected total reward over a finite number of trials is max-
imized. In our comments setting, comments correspond to arms
and the ratings they receive are the rewards. Existing bandit algo-
rithms [6, 16, 7] balance exploration and exploitation to achieve
optimal rewards. Exploration gathers information to refine the ex-
pected reward estimates for seemingly suboptimal arms while ex-
ploitation selects arms with high reward estimates based on past
observations.

A popular class of bandit algorithms are the upper confidence
bound (UCB) algorithms [6, 16, 7] – these compute an upper con-
fidence bound for each arm which is essentially a high-probability
upper bound on the expected reward. The UCB for an arm is com-
puted by combining the current reward estimate with the uncer-
tainty in the estimate. In each trial, the arm with the highest UCB
value is then selected. Thus, the selected arms either have a high
reward estimate (and so should be exploited more to increase the
total reward) or high uncertainty (and so should be explored more
since the arm could potentially give a high reward). In recent
work, [16] proposes a UCB-based bandit algorithm LINUCB that
estimates the reward of each arm through a linear regression on
features. Leveraging textual and other informative features help to
overcome data sparsity and improve the accuracy of reward esti-
mates. The authors compute the variance in the reward estimated
by the linear model and use it to determine the UCB for each arm.
Such bandit algorithms that utilize context information (e.g., fea-
tures) are called contextual bandits.

In this paper, we propose a UCB-based contextual bandit algo-
rithm LOGUCB that estimates average ratings for comments using
logistic regression on features. Logistic regression is better suited
for modeling thumbs-up/down style binary ratings data compared
to linear regression. Unlike linear regression, it ensures that av-
erage ratings lie in the fixed range [0, 1], and so estimates have
bounded variance (between 0 and 1). Moreover, logistic regression
models are more robust to outliers [8]. We adopt a Bayesian ap-
proach to estimate average ratings for comments and the variance
in the estimates. Since logistic regression models are more com-
plex, the mean rating estimates and variance are not available in
closed form, and need to be approximated. Similar to UCB-type
algorithms, we combine the rating estimate (exploitation) with the
variance in the estimate (exploration) to compute a UCB for each
comment, and select the top-K comments with the highest UCBs.

Our main contributions can be summarized as follows:

1) We propose a novel UCB-based algorithm called LOGUCB that
balances exploration with exploitation when the average rating of a
comment is a logistic sigmoid function of its features. Our LOGUCB
algorithm for recommending comments consists of the following
core modules: (1) A global logistic regression model that uses
past comments to compute a global prior on feature weights, (2)

A per-article Bayesian logistic regression model that incorporates
the global prior and additional slack variables per comment – in
the beginning when ratings data is sparse, the model relies on past
comments and comment features for rating prediction; but once a
comment has sufficient ratings, the model makes a smooth transi-
tion and uses empirical rating estimates, and (3) An explore-exploit
module that combines the predicted rating with uncertainty in the
prediction to determine the comments recommended to the user.

2) To compute the UCB for each comment, we assume a Bayesian
setting and employ a host of approximation techniques to efficiently
estimate the mean rating and associated variance. Our variance ap-
proximation technique for the Bayesian logistic regression model
is novel and lies at the core of our LOGUCB algorithm – this is a
key technical contribution of our work.

3) In addition to the words in each comment, we also include a
comment’s Latent Dirichlet Allocation (LDA) topics [10] as fea-
tures to further improve rating prediction accuracy.

4) We conduct an extensive experimental study on a real-life dataset
containing comments for Yahoo! News articles. Our experimental
results indicate that our per-article logistic regression models in-
corporating global priors and leveraging bag-of-words and topic
features predict ratings with higher accuracy compared to simple
baselines. Furthermore, our LOGUCB explore-exploit algorithm
outperforms state-of-the-art techniques like LINUCB.

2. SYSTEM MODEL AND PROBLEM DEF-
INITION

Each online article has an associated set of user generated com-
ments. Every time an article is viewed by a user, our system selects
K comments for the article to display to the user. The user then
assigns one of two ratings to a (random) subset of the K com-
ments shown to him/her: (1) A thumbs-up rating if the user likes
the comment, or (2) A thumbs-down rating to express dislike for
the comment. The user can also post additional comments for the
article. Thus, the comments for an article and the ratings for each
comment are highly dynamic.

Consider an article a at time t. We denote the set of comments
posted by users for article a at time t by C(t) and the number of
comments in C(t) at time t by N(t). Thus, N(t) = |C(t)|. Each
comment i ∈ C(t) has an associated M -dimensional feature vec-
tor xi. The M feature values for a comment are computed based
on its content and include word occurrence frequency, comment
length, presence of numeric values or special symbols like excla-
mation marks, etc.

We will use binary 0/1 values for ratings with a 1 corresponding
to a thumbs-up, and a 0 to a thumbs-down. We will denote by ni(t)
the total number of 0/1 ratings provided by users for comment i at
time t – of these, the number of 0 and 1 ratings are denoted by
n−
i (t) and n+

i (t), respectively. Furthermore, we will represent the
vector of observed ratings for comment i by yi(t) and the jth rat-
ing for comment i by yij . Finally, we will use X(t) = {xi} and
Y(t) = {yi(t)} to denote the feature and rating vectors, respec-
tively, for all the comments of article a in C(t).

Let μi be the expected rating of comment i, that is, μi = E[yij ].
Note that μi for comment i is unknown. At time t, our comments
recommendation system only has access to the comments C(t) and
rating information Y(t) for the comments – based on these, it tries
to identify the K best comments with the highest expected ratings,
and recommends them to users. These comments with high likeli-
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Figure 1: LOGUCB Components.

hoods of getting a thumbs-up are precisely the ones that the average
user will like, and thus will lead to increased user satisfaction.

Comments Recommendation Problem: Let article a be viewed
at times t1, t2, t3 . . .. At each time tl, the problem is to select K
comments from C(tl) to recommend such that the total expected
number of thumbs-up ratings received until time tl is maximum,
that is,

∑
i∈C(tl)

∑ni(tl)
j=1 E[yij ] is maximum. �

As mentioned earlier, our comments recommendation problem
above has a natural mapping to the multi-armed bandit problem
with comments as arms, and ratings as the corresponding rewards.

3. LOGUCB ALGORITHM COMPONENTS
LOGUCB is a novel UCB-style contextual bandit algorithm that

employs logistic regression on comment features to model the ex-
pected rating for a comment. For each article a, LOGUCB trains a
separate logistic regression model. We consider a Bayesian setting
in our work because the priors on model parameters help to regular-
ize them while the posteriors provide a natural method to compute
the variance of estimated ratings.

Below, we give a brief description of the different modules of
our LOGUCB algorithm shown in Figure 1.

Global Rating Model: A newly posted article has very few com-
ment ratings initially. Consequently, the per-article model that we
train can lead to overfitting due to data sparseness issues. To ad-
dress this, we learn a global logistic regression model by pooling
comments and user ratings data across past articles. The global
model is used to initialize the parameters of the per-article model.
When training data is insufficient, the per-article model parameters
shrink to the global parameters. Hence, the global model provides
a good backoff estimate that helps to improve predictive accuracy
for new articles. The global model is updated periodically (every
few days).

Per-Article Rating Model: For an article a, a per-article logis-
tic regression model is learnt at regular time intervals; at time t,
our training procedure uses the features X(t) and ratings Y(t) for
comments in C(t) as training data. The rationale for having a local
per-article model is that once an article has a sufficient number of
comments with ratings, the local model can provide better rating
estimates than the global model for both existing as well as unseen
comments. This is because it can capture article-specific feature-
rating correlations, and deviations of the article from the average
behavior captured by the global model – these deviations could be
due to new article content never seen before, dynamically changing
user sentiment, etc.

As mentioned earlier, when an article is new and has very lit-
tle training data (cold-start scenario), our per-article model falls
back to the global model and prediction accuracy is not adversely
impacted. Furthermore, as the article collects more training data,

the per-article model parameters start deviating to incorporate the
article-specific comments and ratings. Finally, as each comment
acquires more ratings, predictions become comment-specific based
on the actual ratings the comment receives as opposed to its fea-
tures. This is enabled by including a per-comment slack variable
which helps to fill in the residuals not captured by the features.
Thus, as the training data for a comment grows, our per-article
model makes a smooth transition from feature-based predictions
to comment-specific ones.

We should point out here that we don’t include user features in
our model because only a small fraction of users rate comments –
as a result, (user, comment) ratings data is extremely sparse. Fur-
thermore, in many cases, it is difficult to accurately identify users
because they may not be logged in, or user cookie information is
unreliable. Finally, even if we could identify users, certain infor-
mation they may have provided in their profiles (e.g., age, salary,
etc.) may be inaccurate, or they may have not been very active in
terms of browsing or searching. In case reliable user features are
available, these can be easily incorporated into our model to enable
greater personalization.

Explore-Exploit: The explore-exploit module is responsible for
selecting the K best comments to be displayed when a user views
an article. Specifically, it uses the posterior estimates for the per-
article model to obtain mean rating and variance estimates for each
comment. These are subsequently combined to compute UCBs for
each comment and the top-K comments with the highest UCB val-
ues are finally recommended to the user. Thus, LOGUCB exploits
comments with high predicted ratings and explores the ones with
high uncertainty in the predictions. The user rating feedback is in-
corporated into the training data for the article and used to further
improve the per-article model.

Note that it is possible that the top-K comments with the highest
UCBs may contain very similar or redundant comments – explor-
ing/exploiting such comments can be wasteful. Recently, there has
been some work [21, 25] on extending multi-armed bandit prob-
lems to select multiple arms per trial. However, the modeling as-
sumption is that the K selected arms correspond to the K ranked
results for a search query and at most one arm (corresponding to
the first relevant result) gives a reward. Our comments scenario
is somewhat different since ratings are determined by logistic re-
gression and a user can give ratings to multiple comments in a sin-
gle view. In this paper, we do not address the problem of diverse
recommendations although LOGUCB can be used in conjunction
with techniques such as Maximal Marginal Relevance (MMR) [11]
(with UCB values substituted for relevance scores) to ensure com-
ments diversity. Extending our comments recommendation frame-
work to address diversity is left as future work.

The goal of bandit algorithms is to minimize the regret, that is,
the difference between the expected reward of the algorithm and
the optimal expected reward. In [16], LINUCB is shown to have
an Õ(

√
T ) regret over T trials for a fixed set of arms – this as-

sumption, however, does not hold in our dynamic comments en-
vironment. Since logistic regression models are much more com-
plex, formally proving regret bounds for LOGUCB is difficult and
we do not focus on this in our work. However, logistic models are
a natural choice (compared to linear models) for modeling binary
ratings data, and in our experiments, we empirically show that our
LOGUCB algorithm outperforms LINUCB.

In the following sections, we will provide a detailed description
on each of the above three modules. For notational convenience,
we will drop the argument t indicating time from C(t),Y(t), etc.
when it is clear from context.
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4. GLOBAL MODEL
We start by describing our global probabilistic model and train-

ing procedure. We denote the comments (belonging to older ar-
ticles) used for training the global model by Cg , and the corre-
sponding features and ratings for the comments by Xg and Yg ,
respectively.

4.1 Model Specification
Since our ratings yij are binary, we assume that they come from a

Bernoulli distribution with probability equal to the mean rating μi.
Further, we model μi as a logistic function of the linear projection
of the comment feature vector xi. Hence,

yij ∼ Bernoulli(μi) (1)

μi = σ(w�xi) =
1

1 + exp(−w�xi)
(2)

where w is an M -dimensional weight parameter that captures the
preferences of an average user for the different content features,
and σ(·) is the logistic sigmoid function.

Data Likelihood: Given our ratings generation model, the likeli-
hood of observations yi for comments i is given by:

P (Yg|w) =
∏
i∈Cg

P (yi|w) =
∏
i∈Cg

μ
n+
i

i (1− μi)
n
−
i (3)

Prior over w: We also assume a standard prior Gaussian distribu-
tion with zero mean and κ2 variance over the weight vector w:

P (w) = N(w|0, κ2) =
1√
2πκ

exp(−w�w
2κ2

) (4)

Posterior Distribution of w: Using Bayes rule, the posterior dis-
tribution of w can be written as the product of the likelihood (in
Equation (3)) and prior (in Equation (4)):

P (w|Yg) ∝ P (Yg|w)P (w)

4.2 Model Training
The goal of our model training procedure is to find the mode,

also known as the maximum-a-posteriori (MAP) estimate, of the
posterior distribution of w. To find the mode wg

map, we minimize
the negative log of the posterior, that is,

wg
map=argmin

w
−
∑
i∈Cg

(n+
i log(μi) + n−

i log(1− μi)) +
1

2κ2
w�w

We use the standard iterative conjugate gradient descent [18] al-
gorithm to obtain wg

map.

5. PER-ARTICLE MODEL
As discussed earlier in Section 3, we learn a per-article model

specifically for article a with the comments C of the article as train-
ing data. The set C contains N comments with features and ratings
X and Y, respectively.

5.1 Model Specification
As in the global model, we assume that the rating yij for a com-

ment i comes from a Bernoulli distribution and the mean rating
μi is a logistic function. However, it is possible that the comment
feature space and/or the logistic model are incapable of predict-
ing the rating correctly even if sufficient observations are available.

Hence, the mean rating estimate μ̂i has a bias which is indepen-
dent of the training data size. Thus, in addition to w�xi, we add a
per-comment slack variable zi to our model for μi.

μi = σ(w�xi + zi) =
1

1 + exp(−(w�xi + zi))
(5)

We will use z to denote the vector of slack variables, that is,
z = [z1, z2, . . . , zN ]�.

Prior over (w, z): We assume a Gaussian prior over the weight
vector w with mean equal to the MAP estimate, wg

map, of our
global model and variance κ2

w. Thus, P (w) = N(w|wg
map, κ

2
w).

Observe that this prior provides backoff estimates from the global
model when an article is new and has very few comments.

We also place a zero-mean Gaussian prior on each zi. Thus,
P (z) = N(z|0, κ2

z). Note that if a comment i has no ratings
in the training data, then zi is zero because of the prior and μi is
predicted using the projection w�xi only. On the other hand, if
the comment has many ratings, then data likelihood dominates the
prior and we precisely estimate the bias zi. Thus, our prediction
reduces to the empirical rating estimate based only on the fraction
of thumbs-ups.

Posterior Distribution of (w, z): Using Bayes rule, the posterior
distribution of (w, z) can be written as

P ((w, z)|Y)∝P (Y|w, z)P (w)P (z)

∝
∏
i∈C

μ
n+
i

i (1− μi)
n−
iN(w|wg

map, κ
2
w)N(z|0, κ2

z) (6)

5.2 Model Training
Observe that the likelihood involves logistic functions and the

priors are Gaussians. Hence, a closed form does not exist for the
posterior distribution. A popular technique is to approximate the
posterior of (w, z) by a Gaussian distribution using the Laplace
approximation [19]. The mean of the Gaussian is approximated
by the mode (wmap, zmap) of the true posterior, while the inverse
of the covariance matrix S is approximated by the Hessian matrix
which comprises the second order derivatives of the negative log
likelihood at the mode. Thus, the posterior P ((w,z)|Y) is ap-
proximated as N((w, z)|(wmap, zmap),S).

The mode (wmap, zmap) can be found by minimizing L = − log
P ((w, z)|Y), the negative log of the posterior. Thus,

(wmap, zmap) = arg min
(w,z)

−
∑
i∈C

(n+
i log(μi) + n−

i log(1− μi))

+
1

2κ2
w

(w −wg
map)

�(w −wg
map) +

1

2κ2
z

z�z

We use the standard iterative conjugate gradient descent algo-
rithm to minimize L where the gradients are given by

∂L

∂w
= −

∑
i∈C

(n+
i (1− μi)− n−

i μi)xi +
1

κ2
w

(w −wg
map)

∂L

∂z
= −

∑
i∈C

(n+
i (1− μi)− n−

i μi) +
1

κ2
z

z

Next, we derive the equations for the covariance matrix S which
is obtained by inverting the M +N -dimensional Hessian matrix.

S−1 =
∂2L

∂(w, z)2
|(wmap,zmap) (7)
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Data: New article a, Global comments set Cg ;
Variance for priors κ, κw, κz ;
Explore-exploit parameter α;

1 begin
2 Train global model to find MAP estimate wg

map;
3 Initialize comment set C for a to ∅;
4 Initialize per-article model for a using priors for (w, z);
5 for each user viewing article a do
6 for each comment i ∈ C do
7 Estimate the expected rating μ̂i and its variance σ2

i

using the per-article model;
8 Set UCBi←− μ̂i + ασi;

9 end
10 Select top-K comments with the highest UCBs to show

to user;
11 Add new comments to C and update (features, ratings)

information (X, Y) based on user feedback;
12 Retrain per-article model if sufficient number of new

ratings are added to Y;
13 end
14 end

Algorithm 1: The LOGUCB Algorithm.

where,

∂2L

∂(w, z)2
=

(
∂2L
∂w2

∂2L
∂w∂z

∂2L
∂z∂w

∂2L
∂z2

)

=

(
1

κ2
w
IM×M +XPXT XP

PXT 1
κ2
z
IN×N +P

)

Above, P is a N ×N diagonal matrix, where P[i, i] = niμi(1−
μi). The overall time complexity of computing the covariance ma-
trix S is O(M2N + (M +N)3). Here, O((M +N)3) is the time
complexity of inverting the M + N−dimensional Hessian. If the
number of dimensions M+N is large, then we simply use the diag-
onal approximation of the Hessian. The complexity of finding the
inverse then reduces to O(M +N) and the overall time complex-
ity for computing the covariance becomes O(MN). Thus, model
training can be achieved in a matter of a few seconds for thousands
of dimensions and comments (see Section 7.5).

6. EXPLORE-EXPLOIT
Our LOGUCB algorithm (see Algorithm 1) adopts a UCB-based

approach to handle the exploitation-exploration trade-off for our
logistic regression rating prediction model. For each comment i, it
uses Bayesian estimation methods to compute the mean rating es-
timate μ̂i and its variance σ2

i . Specifically, μ̂i and σ2
i are chosen as

the predictive mean and variance, respectively, of the mean rating
μi over the posterior of the per-article model. Now, by Cheby-
shev’s inequality, it follows that for an appropriate choice of α,
|μi − μ̂i| ≤ ασi holds with high probability (≥ 1 − 1

α2 ). Thus,
μ̂i + ασi is a UCB on μi, and our algorithm selects the comments
with the top-K UCB values to show to users. We collect the user
feedback (thumbs-up/down ratings) on the displayed comments as
well as any new comments posted by the user. Clearly, since only
a small fraction of users typically rate comments, the estimated
model parameters will not change (by much) often. Consequently,
we keep collecting new observations until we have a sufficient num-
ber of new ratings – we then perform a periodic batch update of the
per-article model parameters (as in [16]). Below, we present ap-

proximation techniques for computing the mean rating estimate μ̂i

and its variance σ2
i . The method for estimating μ̂i is from [19]

while the approximation scheme for σ2
i is novel.

Mean Rating Prediction: Following the Bayesian approach, we
predict the mean rating μi by its posterior predictive mean, that is,
the expectation of μi with respect to the posterior of model param-
eters (w, z) conditional on observed data. Thus,

μ̂i=

∫
μiP ((w, z)|Y)dwdz

≈
∫

σ(w�xi + zi)N((w, z)|(wmap, zmap),S)dwdz

Substituting t = w�xi + zi in the above equation, we get

μ̂i ≈
∫

σ(t)N(t|μt, ϑ
2
t )dt

where μt =

[
wmap

zmap

]� [
xi

ui

]
and ϑ2

t =

[
xi

ui

]�
S

[
xi

ui

]
for ui = [0i−1 1 0N−i]

�.
Note that the above integral over t represents the convolution

of a Gaussian with a logistic function, and cannot be solved an-
alytically. However, as pointed out in [19], the logistic function
σ(t) can be approximated well by the scaled probit function φ(λt),

where φ(t) =
t∫

−∞
N(θ|0, 1)dθ. The parameter λ is found by mak-

ing the slopes of the two functions same at the origin, which gives
λ2 = π

8
. Now, the convolution of a probit with a Gaussian can be

expressed in terms of another probit function. Specifically,

μ̂i ≈
∫

φ(λt)N(t|μt, ϑ
2
t )dt

= φ(
μt√

λ−2 + ϑ2
t

)

≈ σ(
μt√

1 +
πϑ2

t
8

) (8)

The computational complexity to predict the mean rating isO((M+
N)2) which is the number of steps needed to compute ϑ2

t . How-
ever, if S is approximated by a diagonal matrix, then the time com-
plexity reduces to O(M +N). Note that the inverse computation
needed to compute S is done only once (when the per-article model
is trained) for all the comments.

Variance of Mean Rating Estimate: The variance σ2
i is given by

the predictive variance of the mean rating μi which is

σ2
i = E(w,z)[μ

2
i |Y]− E(w,z)[μi|Y]2

=

∫
σ2(w�xi + zi)N((w, z)|(wmap, zmap),S)dwdz− μ̂2

i

=

∫
σ2(t)N(t|μt, ϑ

2
t )dt− μ̂2

i

Above, the final equation is obtained by substituting t = w�xi +
zi, and μt and ϑt are as defined earlier.

Again, the convolution of a Gaussian with a squared logistic
function cannot be solved analytically. However, we observe em-
pirically that a squared logistic function σ2(t) can be approximated
well by a scaled and translated probit φ(λ(t + γ)) (as opposed
to only a scaled probit for the logistic function). We minimize
the squared error between the two functions to empirically find
the values of parameters λ and γ, which gives λ = 0.703 and
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Figure 2: Probit approximation of σ2.

γ = −0.937. The similarity between the squared logistic and pro-
bit functions for this choice of parameters is shown in Figure 2.
The root mean square error is 0.0053 with a maximum error of
0.02. Again, since the convolution of a probit with a Gaussian can
be expressed in terms of another probit function, we have,

σ2
i ≈

∫
φ(λ(t+ γ))N(t|μt, ϑ

2
t )dt− μ̂2

i

= φ(
μt + γ√
(λ−2 + ϑ2

t )
)− μ̂2

i

≈ σ2(
μt + γ√
1 + ϑ2

tλ
2
− γ)− μ̂2

i (9)

Note that the variance σ2
i above is the difference between the

squares of two sigmoids and is thus upper bounded by 1. However,
such a bound does not hold for the variance of linear regression
models. Thus, the UCB values for LOGUCB are more accurate
compared to LINUCB [16].

We should also point out here that [23] presents an alternate vari-
ance estimation method for logistic regression which computes the
variance of the Taylor approximation of μi (that ignores higher-
order terms in the Taylor expansion of μi). However, since the
probit approximates the squared logistic function so closely (see
Figure 2), we expect our variance estimate to be more accurate.

7. EXPERIMENTAL RESULTS
In this section, we perform multiple experiments that demon-

strate the effectiveness of our proposed methods on a real-life com-
ments dataset from Yahoo! News. Our first experiment shows that
our per-article logistic regression models incorporating global pri-
ors and leveraging bag-of-words and topic features have higher pre-
dictive accuracy compared to other models such as linear regres-
sion. In our second experiment, we show that our LOGUCB al-
gorithm outperforms state-of-the-art explore-exploit methods. Fi-
nally, we report the running times of our per-article model training
and rating prediction procedures.

7.1 Dataset
We obtain the comments rating data between March and June,

2011 from Yahoo! News. The ratings for different comments are
available in terms of the number of thumbs-ups and thumbs-downs
given by different users. Note that no ground truth per-comment
mean rating μi is available. Hence, in order to reliably evaluate the
performance of our algorithms, we only consider the comments that
receive at least 10 ratings and assume that the ground truth mean

rating μi is the same as the empirical mean given by the fraction
of thumbs-ups. In our experiments, we consider 780 articles with
408, 643 comments and a total of 16.8 million ratings.

We randomly select 70% of the articles and consider their com-
ments as the global comments set Cg used to train the global model.
Another 5% of the articles are used as a validation set to learn pa-
rameters of the different models. The remaining 198 articles are
used to train per-article models for the model accuracy and explore-
exploit experiments.

7.2 Features
We consider two different types of features.

Bag of words: The text of each comment is cleaned using stan-
dard techniques like lower-casing, removal of stop-words, etc. For
the articles used to train the global model, we prune all words with
very low (present in less than 10 comments) and high (present in
greater than 50% of the comments) frequencies. The final vocabu-
lary consists of approximately 9,000 words. On the other hand, for
articles on which we train a per-article model, the low frequency
threshold for pruning words is set to a lower value of 3 – this is
because there are a lot fewer comments per article. We consider
both L2 normalized tf and tf-idf as feature values for words in each
comment. The tf feature values give slightly better performance –
so all the results are shown using them.

Topics: Latent Dirichlet Allocation (LDA) [10, 13] is a topic
model that represents each document as a mixture of (latent) top-
ics, where each topic is a probability distribution over words. LDA
clusters co-occurring words into topics, and is able to overcome
data sparsity issues by learning coarse-grained topic-rating correla-
tions. We compute topic assignments to words in a comment using
Gibbs sampling as described in [13], and use the topic distribution
for a comment as feature values. The topic-word distributions are
first learnt on the global comments set, and subsequently used to
assign topics to the comments of each article. In our experiments,
we set the default number of topics to 50.

We also considered a number of other per-comment features like
(1) the fraction of positive and negative sentiment words where the
sentiment of a word is obtained using Senti-WordNet1, (2) num-
ber of special characters like question marks (?) or exclamations
(!), and (3) total number of words, fraction of non-stop words, and
fraction of upper-case words. However, none of these features had
an effect on model performance.

7.3 Model Accuracy Experiments
In this experiment, we compare the mean rating prediction accu-

racy of different models.

7.3.1 Experimental Setup
Models Compared: We compare the following variants of our per-
article model as well as other state-of-the-art models.

• Global: This is our global logistic regression model described in
Section 4 trained on the comments set Cg . The features comprise
the (unpruned) words in Cg and LDA topics.

• PA1: This is our per-article logistic regression model described
in Section 5 with slack variables zi set to zero and no global prior.
It is trained on the article’s comments, and features consist of the
words in the article’s comments and LDA topics.

• PA2: This is the same as PA1 but uses the global prior and so has
additional features corresponding to the words in Cg . We consider

1http://sentiwordnet.isti.cnr.it/.
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Baselines Training Size (%)
5% 10% 25% 50% 75%

Global 0.68 0.68 0.68 0.68 0.68
PA1 0.64 0.66 0.68 0.72 0.73
PA2 0.68 0.69 0.72 0.74 0.76
LinReg 0.64 0.66 0.68 0.72 0.73

Table 1: AUC scores for different models in Section 8.3.1

this model to measure the impact of the global prior on prediction
accuracy.

• LinReg: This is a linear model, μi = w�xi, to predict the mean
rating scores. As in [16], we use ridge regression to solve for the
coefficients w. We choose a simple linear model since this is the
underlying model for the state-of-the-art feature-based LINUCB
explore-exploit algorithm [16]. The model is trained on an article’s
comments with the comment words and LDA topics as features.

Note that we do not consider models with slack variables since
they mainly impact the rating estimates of training comments and
not test comments. However, as shown later, slack variables do lead
to performance improvements in an explore-exploit setting where
there is no separate notion of test data. The variance parameters κ
for the global model, and κw and κz for the per-article models are
tuned using the validation set.

Evaluation Methodology: For model comparisons, the (non-global)
comments in each of the 198 articles are further split into training
comments (75%) and test comments (25%). The training com-
ments for each article are used to train the per-article models PA1,
PA2, and LinReg, and the test comments are used to measure the
accuracy of all 4 models.

Evaluation Metric: Since we are looking to recommend com-
ments with high mean rating scores to users, we are primarily con-
cerned about the rating prediction accuracy for comments with ex-
treme mean rating values. Furthermore, we want the predicted rat-
ings for comments at the two extremes to be well separated. We
use the Area Under the Receiver Operating Characteristic (ROC)
Curve (AUC) metric to evaluate the predictive performance of the
various models.

AUC is a popular measure of classifier accuracy on data with bi-
nary labels. We only choose test comments i with extreme mean
ratings μi < 0.25 and μi > 0.75. Further, we assign positive la-
bels to test comments with μi > 0.75 and negative labels to com-
ments with μi < 0.25. The AUC is then computed based on the
correctly and incorrectly classified comments for different classi-
fication thresholds on the predicted mean rating. We finally report
the average AUC over all the articles. Note that a higher AUC value
implies better predictive performance. Also, a random or constant
rating prediction yields an AUC of 0.5 irrespective of the number
of positive and negative examples in the test set.

7.3.2 Experimental Results
Our results show that both the global prior and per-article model

are critical for achieving high prediction accuracy. Table 1 shows
the AUC scores for the models discussed in Section 7.3.1 for dif-
ferent training set sizes. First, note that the global model (Global)
has an AUC score greater than 0.5 and so significantly outperforms
a model that makes random predictions. This clearly shows that
a global model learned by pooling the articles together is useful.
Furthermore, the two per-article models (PA1, PA2) provide better
rating estimates than Global when sufficient training data is avail-
able. This is because per-article models are able to effectively cap-

Training Size (%) # Topics
0 25 50 100

5% 0.66 0.67 0.68 0.68
10% 0.68 0.68 0.69 0.69
25% 0.71 0.70 0.72 0.72

Table 2: AUC scores for PA2 for different number of topics.

ture article-specific feature-rating correlations involving new article
content. However, since PA1 does not use the global prior, it over-
fits and performs worse than Global when the article is new and
hence training data is sparse. Introducing the global prior in the
per-article model PA2 ensures better predictive performance than
both Global and PA1 at all the training set sizes. Note that the AUC
scores of the linear LinReg model are similar to those of PA1 but
lower than PA2 because of the global prior. However, as we show
later, PA1 (and PA2) outperforms LinReg in an explore-exploit set-
ting due to better variance estimates.

Table 2 shows the AUC scores of the PA2 model for different
number of LDA topics and training set sizes. In general, the bag-
of-words feature (corresponding to 0 topics) turns out to be the
most important for our models. Topic features help to improve the
performance of our models when training sets are small. This is
because topics are essentially clusters of words that frequently co-
occur, and using them as features allows us to overcome data spar-
sity issues by generalizing correlations between a few topic words
and ratings to the other words within the topic. For large train-
ing set sizes and number of topics beyond 50, however, we didn’t
see an improvement in AUC scores on adding topic features. We
should point out here that all the observations made above (Tables 1
and 2) are statistically significant using the one-sided paired t-test
with significance level 0.01.

7.4 Explore-Exploit Experiments
In this experiment, we compare the total expected number of

thumbs-up ratings for different explore-exploit algorithms.

7.4.1 Experimental Setup
Explore-Exploit Schemes Compared: We consider the following
context-free (without features) as well as contextual (with features)
bandit schemes for evaluation.

• Random: This policy chooses the top-K comments randomly.

• UCB1: This is a context-free UCB-based policy from [6]. In
round t, the mean rating μi for a comment i is estimated as the
current fraction of thumbs-ups the comment has received so far.

The confidence interval for the estimate is given by
√

2 log t
ni(t)

, where

ni(t) is the total number of ratings received by the comment until
round t.

• ε-greedy1: This context-free policy chooses a random comment
to show with probability ε, and with probability 1 − ε, chooses
the comment with the highest current fraction of thumbs-ups. To
obtain the top-K comments, we repeat the process K times (each
time excluding the comments that have already been selected).

• ε-greedy2: This is the contextual version of ε-greedy discussed
above. With probability 1 − ε, it chooses the comment with the
highest predicted mean rating given by the per-article logistic re-
gression model with global prior and slack variables (see Equation
(8)).

• LinUCB: This algorithm represents the state-of-the-art and uses
the LinReg model to obtain the mean rating estimate μ̂i. Similar to
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Figure 3: Performance of different explore-exploit algorithms.

our formulation, in [16], a closed form confidence bound is com-
puted based on the predictive variance of the mean rating.

• LogUCB1: This is our LOGUCB algorithm (Algorithm 1) with
per-article model PA1 (without global prior) used for rating predic-
tion.

• LogUCB2: This is our LOGUCB algorithm with per-article
model PA2 (with slack variables set to 0) used for rating predic-
tion.

• LogUCB3: This is our full LOGUCB algorithm (Algorithm 1)
with non-zero slack variables.

The parameters ε for ε-greedy1 and ε-greedy2, and α for LinUCB
and LogUCB variants are tuned using the validation set. Also, since
PA2 has a large number of features, we use the diagonal approxi-
mation of the Hessian in LogUCB2 and LogUCB3 for computing
the covariance (see Section 5.2).

Evaluation Methodology: For evaluating the different explore-
exploit schemes, the train-test split is not needed and we use all the
comments of the 198 articles. Further, we evaluate performance
using an offline simulation over 7000 rounds with new comment
arrivals for an article following a poisson distribution. For
a given explore-exploit algorithm, in each round t, the simulator
takes the top-K comments chosen by the algorithm. For each of
the K comments, it generates a binary thumbs-up/down rating from
a Bernoulli distribution with probability given by the ground truth
mean rating of the comment. These ratings are then provided to the
algorithm as feedback, and the underlying models and mean rating
estimates are appropriately updated at the end of the round.

Evaluation Metrics: We define the Thumbs-up rate at round t
(TR@t) as the fraction of thumbs-up ratings received until round t.
We use TR@t to evaluate the different explore-exploit algorithms
since it is a good proxy for the total expected number of thumbs-up
ratings that the algorithms are trying to maximize.

7.4.2 Experimental Results
Figure 3 plots TR@t values for the different explore-exploit al-

gorithms discussed in Section 7.4.1 as a function of the number of
rounds t.

Figure 3(a) compares the different context-free schemes with our
logistic regression-based schemes for K = 1. Note that K = 1
corresponds to the standard single-slot multi-armed bandit prob-
lem. We do not present the curve for Random since it performs
significantly worse than the other schemes with TR@t values be-
low 0.65. Observe that ε-greedy2 performs significantly better than
ε-greedy1 and UCB1 when the number of rounds is small. This
clearly shows that using the predictions of our feature-based logis-

# Comments 25 50 100 250 500 1000
Time (seconds) 0.87 0.92 1.0 1.13 1.28 1.63

Table 3: Training time for per-arcticle model PA2.

tic model in the exploit phase is more useful than empirical esti-
mates of ratings in either ε-greedy1 or UCB1. When the number
of rounds become large and empirical estimates of ratings become
reliable, the performance of ε-greedy1 and ε-greedy2 are compara-
ble. Also, note that LogUCB3 consistently outperforms ε-greedy2.
Thus, the UCB value which includes model variance in LogUCB3
is a better exploration strategy than the random one in ε-greedy2.

Figures 3(b) and 3(c) compare the different variants of our LOG

UCB algorithm and LINUCB for K = 1 and K = 10, respec-
tively. Observe that LogUCB3 has a higher thumbs-up rate than
both LogUCB1 and LogUCB2 – this can be attributed to more accu-
rate rating estimates due to the use of slack variables in LogUCB3.
Initially, when there are very few user ratings, LogUCB2 does bet-
ter than LogUCB1 due to the global prior. However, the diago-
nal approximation for computing covariance causes its thumbs-up
rate to fall below that of LogUCB1 as the rounds progress. Fi-
nally, LogUCB3 and the other LogUCB variants outperform Lin-
UCB since as mentioned earlier, logistic regression has bounded
mean rating and variance estimates (between 0 and 1), and is thus
better suited for modeling binary ratings data. Again, it is worth
mentioning here that the difference in performance of the various
schemes in Figure 3 was found to be statistically significant with
significance level 0.01.

7.5 Running Time Experiments
Table 3 depicts the total time (in seconds) taken by the LogUCB3

algorithm to train the per-article model and compute UCB values
as the number of comments is increased from 25 to 1000. The
running times are measured on a machine with 2 × 2.5 GHz Xeon
processors and 16 GB of RAM.

In our experiments, we found that more than 90% of the time is
spent on computing the MAP estimates wmap and zmap (see Sec-
tion 5.2). Observe that model training and UCB computation are
extremely fast and take only 1.63 seconds for 1000 comments. This
is because we use the previous MAP estimates as the starting point
in our conjugate gradient descent algorithm and the number of new
ratings between two successive model updates is generally small –
this causes the algorithm to converge within a few iterations. More-
over, gradient computations are also quick because comment fea-
ture vectors are sparse (comments are short with very few words).
This is also the reason why computing the covariance (see Sec-
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tion 5.2) and the UCB values (mean ratings in Equation (8) and
variance in Equation (9)) takes only 26 and 148 msec, respectively,
for all 1000 comments. Thus, our per-article models can be trained
at frequent time intervals to give accurate rating estimates. We
should also point out here that compared to 1.63 seconds taken by
LogUCB3, LinUCB takes 0.95 sec to train models and compute
UCB values for 1000 comments.

8. RELATED WORK
Recommender Systems: Recommender systems have been stud-
ied extensively in the literature. Popular methods predict user-item
ratings based on neighborhoods defined using similarities between
users/items [26], latent factors found using user-item matrix factor-
ization [22], and generalizations of matrix factorization that model
latent factors using regression on user/item features [1, 4] or item
LDA topics [2]. However, these methods focus only on estimating
ratings, and not on balancing the exploitation-exploration tradeoff
which is so critical in our setting due to the dynamic nature of com-
ments. Furthermore, due to fewer comment ratings per article, the
feature weight and slack variable parameters in our per-article mod-
els both contribute to variance in the mean rating estimate – so we
place Gaussian priors on both parameters (instead of only slack
variables as is done in [1, 2]). Note that although our modeling
framework currently models an average user, it can be easily ex-
tended to make personalized recommendations if user features are
available.

Explore-Exploit: There exists a large body of work on the multi-
armed bandit problem [12, 6, 15, 5, 16, 7]. Context-free bandit
algorithms [6, 15, 5] such as ε-greedy and UCB assume that no
side information is available and that arms are independent of each
other. Such algorithms have been shown to achieve the lower bound
of O(lnT ) on the regret [15] (here, T is the number of trials). [3]
develops a Bayesian solution and extends several existing bandit
schemes to a dynamic set of items with short lifetimes, delayed
feedback, and non-stationary reward distributions. However, the
above methods assume that arms are independent, and hence do
not model the correlation between the comments of a given article.

Contextual bandit algorithms [16, 7] assume that side informa-
tion (e.g., features) is also available. LINREL [7] and LINUCB [16]
are UCB-based algorithms that assume the reward of an arm is lin-
early dependent on its features. The algorithms have been shown
to have an Õ(

√
T ) regret for a fixed set of arms; however, in our

problem setting, arms are dynamic. Furthermore, linear regression
is not suitable for modeling binary ratings data, and cannot ensure
that the average rating lies in the range [0, 1].

Pandey et. al [20] assume that dependencies among arms can
be described by a generative model on clusters of arms. However,
these clusters are assumed to be known beforehand and each arm
belongs to exactly one cluster. In contrast, our framework does
not assume any clustering of comments. Instead, the dependencies
among comments are effectively captured by our logistic regression
model with comment features.

User Generated Content: Recently, analysis of user generated
content has been an active area of research [24, 17, 28, 27, 11, 4,
14]. [11] uses different user, textual, and network features to an-
alyze the credibility of tweets on twitter. [27] extends LDA [10]
to model the generation of blog posts, authorship, as well as com-
ments on the posts. [28] proposes a variant of supervised LDA [9]
called the Topic-Poisson model to identify which blog posts will
receive a high volume of comments. However, these methods do
not focus on recommending comments to users. [14] uses an SVM
regressor on different features such as unigrams, review length etc.

to determine how helpful a review is. The helpfulness is defined as
the fraction of users who found the review to be helpful. [24] an-
alyzes the dependencies between comments, their ratings, and dif-
ferent topic categories. An SVM classifier is used to estimate the
ratings of new or unrated comments. However, none of these meth-
ods employ an explore-exploit strategy, and are thus inadequate for
ranking dynamic comments.

9. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed a novel UCB-based explore-exploit

algorithm called LOGUCB for recommending comments to users.
LOGUCB uses a logistic regression model on word and topic fea-
tures to predict the average rating for a comment. At its core,
LOGUCB relies on a novel variance approximation technique un-
der a Bayesian setting to derive the upper confidence bounds used
to select comments. In experiments with a real-life comments dataset
from Yahoo! News, LOGUCB outperforms other state-of-the-art
context-free and feature-based explore-exploit methods like LIN-
UCB. Directions for future work include extending our LOGUCB
algorithm to ensure diversity of the K recommended comments,
and proving formal regret bounds for our LogUCB algorithm.
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