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Abstract
In this paper, we study Bayesian techniques for en-
tity discovery and temporal segmentation of videos.
Existing temporal video segmentation techniques
are based on low-level features, and are usually
suitable for discovering short, homogeneous shots
rather than diverse scenes, each of which contains
several such shots. We define scenes in terms of
semantic entities (eg. persons). This is the first
attempt at entity-driven scene discovery in videos,
without using meta-data like scripts. The problem
is hard because we have no explicit prior informa-
tion about the entities and the scenes. However
such sequential data exhibit temporal coherence
in multiple ways, and this provides implicit cues.
To capture these, we propose a Bayesian genera-
tive model- EntScene, that represents entities with
mixture components and scenes with discrete dis-
tributions over these components. The most chal-
lenging part of this approach is the inference, as
it involves complex interactions of latent variables.
To this end, we propose an algorithm based on
Dynamic Blocked Gibbs Sampling, that attempts
to jointly learn the components and the segmen-
tation, by progressively merging an initial set of
short segments. The proposed algorithm compares
favourably against suitably designed baselines on
several TV-series videos. We extend the method to
an unexplored problem: temporal co-segmentation
of videos containing same entities.

1 Introduction
Naturally occurring sequential data often have an important
property- Temporal Coherence (TC), i.e. successive data-
points in the sequence are semantically related. For exam-
ple in a video, successive frames show the same objects, ex-
cept at a few changepoints. Detecting such changepoints,
i.e. temporally segmenting the video into semantically co-
herent subsequences helps in video summarization [Potapov
et al., 2014]. Existing approaches to temporal video segmen-
tation [Potapov et al., 2014; Tierney et al., 2014] are based
on similarities of low-level visual features of the frames. In
this paper, we consider entity-driven temporal segmentation,

where each temporal segment should be associated with one
or more entities, like persons, objects or actions, to help se-
mantic summarization as attempted recently in [Mitra et al.,
2014]. Also such temporal segmentation can help users who
want to watch only specific parts of a video instead of the en-
tire video. A major challenge is that these entities, or even
their number, are unknown and need to be learnt from data.
Another challenge is to model the structures which the tem-
poral segments have.

Consider the video of a TV series episode with a reason-
ably small but unknown number of persons. A TV serial
episode is formed of a few temporal segments called scenes
or acts- where a small subset of the persons are present. Such
a video can be represented by the sequence formed by detect-
ing the faces of the persons in all frames, as done in [Mitra
et al., 2014]. This is a semantic video representation, as it
focusses only on the entities of semantic interest (in this case
persons’ faces). We can define a scene in terms of the per-
sons it contains. Our task is to simultaneously discover the
persons and segment the video into the scenes based on these
persons. Another task is Co-segmentation, or mutually-aided
joint segmentation of multiple videos that are known to have
temporal segments in common.

Using the approach of [Mitra et al., 2014] it is possible to
discover the entities, assign each detection to an entity and
segment the sequence based on these assignments. This is
equivalent to temporal segmentation of the video into shots,
where each shot is associated with an entity. But a video is
hierarchically organized [Del Fabro and Böszörmenyi, 2013]
and each scene is a sequence of several shots. In a TV se-
ries episode successive shots within a scene may alternate be-
tween the entities (persons) in roughly cyclical patterns. For
example during a two-person discourse the camera focusses
on one person when she speaks, then on the second person,
then back to the first and so on. In Fig 1, shot changes occur
after frames 2,3,4,6,8, but scene change occurs after frame
6 only. Temporally segmenting videos into scenes has been
studied [Del Fabro and Böszörmenyi, 2013] but no existing
approach defines scenes in terms of semantic entities.

In this paper we explore Bayesian modeling for the task,
which provides an elegant way to model the various temporal
structures discussed above. As in [Mitra et al., 2014] we rep-
resent the video as a sequence of entity detections (obtained
by a suitable detector) and the entities by mixture compo-
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nents. Since the number of such components is unknown,
we use Bayesian Nonparametrics (BNP) [Teh et al., 2006;
Fox et al., 2008]. Due to the TC property, successive dat-
apoints (entity detections) are likely to be generated by the
same mixture component. For entity-driven scene discovery,
we represent each scene as a sparse distribution over the com-
ponents (entities). Neither the segment end-points nor the
number of segments is known. However, we use an initial
over-segmentation of the video which respects the true seg-
mentation, (the initial set of changepoints contains all the true
changepoints) and try to improve it.

The main contribution of this paper is a Bayesian gen-
erative model- EntScene, for entities and scenes in a video.
To the best of our knowledge, this is the first entity-driven
approach to modelling video scenes, as well as the first
Nonparametric Bayesian approach to scene discovery. We
also propose an inference algorithm (MI-BGS), which jointly
learns the entities and segmentation. Inference is based on
Blocked Gibbs Sampling with dynamic blocking of variables
(explored recently in [Venugopal and Gogate, 2013]), and
proceeds by starting with an initial over-segmentation and
progressively merging segments till convergence. We also
consider suitable baselines for inference, such as a split-
merge inference approach where previously merged seg-
ments may be split again (inspired by Topic Segmentation
Model [Du et al., 2013]), and another algorithm where the
entities are first discovered (like TCCRF [Mitra et al., 2014]),
and then segments are inferred based on them. We evaluate
the approach on several TV-series videos of varying lengths,
using novel evaluation measures. We also explore entity-
driven temporal co-segmentation of similar videos.

2 Related Works
Much of the work on temporal video segmentation studied so
far [Potapov et al., 2014; Tierney et al., 2014; Del Fabro and
Böszörmenyi, 2013] has been about frame similarity based
on observed features rather than unknown entities. Discov-
ery of entities was recently attempted by [Mitra et al., 2014]
which represents the video as a sequence of tracklets [Huang
et al., 2008] created from entity detections, as discussed in
Section3. It proposes a Bayesian nonparametric approach to
cluster these tracklets and discover the entities, but it does not
consider temporal segmentation.

The simplest Bayesian model for sequence segmentation
was the Product Partition Model(PPM) [Barry and Hartigan,
1993], which assume that given a partition of the sequence,
the data within each partition are IID. This was improved
upon by sticky HDP-HMM [Fox et al., 2008], a Markovian
model where the assignment of mixture component to each
datapoint depends on the component assigned to the previ-
ous one. However unlike PPM it does not partition the data
into segments and represent each segment with a distribution
over the components. LaDP [Mitra et al., 2013] assigns a
mixture distribution and a mixture component to each dat-
apoint conditioned on the assignments to the previous dat-
apoint, and thus encourages TC at both levels. But neither
sHDP-HMM nor LaDP model the segments explicitly and
segmentation is achieved as a by-product of the assignments.

In contrast, Topic Segmentation Model [Du et al., 2013] at-
tempts to model segments with mixture distributions. It starts
with an initial set of candidate change-points and tries to iden-
tify the true ones. However, it uses a fixed number of mix-
ture components, and does not model TC in the assignment
of components to the datapoints.

The main challenge for the Bayesian approach lies in the
inference. Exact inference algorithms have been considered
for PPM[Fearnhead, 2006]. However, the complex hierarchi-
cal models require approximate inference. sHDP-HMM [Fox
et al., 2008] and LaDP [Mitra et al., 2013] perform infer-
ence by Gibbs Sampling, where the latent variable assign-
ments to each datapoint are sampled conditioned on the as-
signments to its neighboring datapoints. For Topic Segmen-
tation Model [Du et al., 2013] a split-merge inference algo-
rithm is considered, where each initial changepoint is pro-
vided a binary variable which indicates whether or not it is
a true changepoint. This variable is sampled along with the
mixture component assignments during inference.

A Bayesian model for co-segmentation of sequences is the
Beta Process Hidden Markov Model (BP-HMM) [Willsky et
al., 2009] that considers mixture components to be shared by
sequences. It has been used for modelling human actions in
videos. However, it does not model TC or temporal struc-
tures like scenes. Spatial Co-segmentation of videos through
Bayesian nonparametrics has been studied recently [Chiu and
Fritz, 2013], using Distance-dependent Chinese Restaurant
Process [Blei and Frazier, 2011] to model spatial coherence.

3 Temporal Video Segmentation
Consider the episode of a TV-series, with many persons.
We can run a face detector on each frame, and link spatio-
temporally close ones to form tracklets [Huang et al., 2008].
We consider tracklets spanning r frames. Normally 5 ≤ r ≤
20, and at r = 1 we have individual detections. The detec-
tions within each tracklet are visually similar due to temporal
coherence. It is possible to represent each detection as a fea-
ture vector. We represent each tracklet i by the tuple (Ri, Yi)
where Yi is the mean feature vector of the associated detec-
tions, and Ri is the set of indices of the frames spanned by i.
Note that there can be several face detections per frame, and
hence the R-sets of different tracklets can overlap. The track-
lets are ordered sequentially using the indices of their starting
frames (ties resolved at random), and for each tracklet i we
define predecessor pred(i) and successor succ(i). If the tem-
poral gap between any tracklet i and pred(i) is too large, we
set pred(i) = −1 (similarly for succ(i)). Let {Fj}Mj=1 be the
set of frames with at least one associated tracklet, arranged in
ascending order of frame index.

Next, define latent variables Zi as the index for the mix-
ture component associated with tracklet i and Sj as the index
for the mixture distribution associated with frame Fj . Tem-
poral coherence property suggests that with high probability,
Zpred(i) = Zi = Zsucc(i) hold for all datapoints i for which
pred(i) and succ(i) are defined. Temporal coherence holds
at frame-level also, as follows:

{Z}j−1 = {Z}j = {Z}j+1 (1)
Sj−1 = Sj = Sj+1 (2)
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Figure 1: The set-up for entity(person)-driven scene discovery.
One colour is used per person. So here, pred(2) = 1, pred(3) =
−1, pred(6) = 4, pred(7) = 5, pred(11) = 10, pred(14) = 12
etc; succ(1) = 2, succ(2) = −1, succ(6) = 8, succ(11) = 13
etc. Then Z(1) = Z(2) = Z(4) = Z(6) = Z(8) = 1, Z(3) =
Z(5) = Z(7) = 2, Z(9) = Z(10) = Z(11) = Z(13) =
3, Z(12) = Z(14) = 4; S(1) = . . . = S(6) = 1, S(7) = . . . =
S(10) = 2. Further, the level-1 chagepoints are {1, 3, 4, 5, 7, 9},
while the level-2 changepoints are {1, 7}

Here {Z}j = {Zi : F (j) ∈ Ri}, i.e. {Z}j is the set of
Z-variables corresponding to all tracklets that cover frame
F (j). With slight abuse of notation, {Z}s denotes the set of
all Z-variables associated with all frames satisfying Sj = s.
We call the frames where the Condition 1 does not hold as
Level-1 changepoints and the ones where the Condition 2
does not hold as the Level-2 changepoints. The hierar-
chical segmentation problem is to find these changepoints.
An interval of frames {F (j1), . . . , F (j2)} is a level-1 seg-
ment (shot) if {Z}j1 = {Z}j1+1 = . . . = {Z}j2, but
{Z}j1 6= {Z}j1−1 and {Z}j2 6= {Z}j2+1. In this case,
j1 and j2 + 1 are level-1 changepoints. Similarly, an interval
of frames {F (j3), . . . , F (j4)} is a level-2 segment (scene) if
Sj3 = . . . = Sj4, but Sj3 6= Sj3−1 and Sj4 6= Sj4+1. In this
case, j3 and j4 + 1 are level-2 changepoints. CP1 and CP2
are Candidate Frames like shot changepoints1 which may be
Level-1 or Level-2 changepoints respectively.

Example: Temporal video segmentation is illustrated in
Figure 1. We show 10 frames from 2 scenes, each having 1 or
2 face detections corresponding to 4 persons. The detections
are numbered 1-14, and linked based on spatio-temporal lo-
cality, as shown by the coloured lines. Here the tracklets are
individual detections, i.e. R = 1.

Challenges: Segmentation of a video into scenes is diffi-
cult, especially if the scene involves multiple persons. This
is because all the persons are usually not seen together in any
frame, and appear in turns. When a new person appears, it
is not known whether it is within the current scene or the be-
ginning of a new scene. If the persons appearing hitherto
in the current scene appear again after the new person, then
we know that the same scene is continuing. Hence, a sin-
gle forward pass over the sequence is usually not enough for
scene segmentation, and iterative approaches are more effec-
tive. Moreover, in videos the same person often appears in
different poses, and so several mixture components may be
formed for the same person. The pose change of a person
within a scene may be interpreted as the appearance of a new
person, and perhaps also the start of a new scene. As a result,
person-driven temporal segmentation of a video into scenes
is difficult, and risks oversegmentation.

1http://johmathe.name/shotdetect.html

4 EntScene Model and Inference
We now come to a generative process for videos. We focus on
TV-series videos, and our entities are the persons, whom we
represent with their faces. One part of this generative process
is modeling the observed data (the tracklets resulting from
face detections). We model the semantic entities (i.e. per-
sons) as mixture components {φk}, and the datapoints (track-
lets) are drawn from these components. We represent the face
tracklets as vectors {Yi} of pixel intensity values. Tracklet
i is associated with person Zi, and according to our model,
Yi ∼ N (φZi

,Σ).

4.1 Modeling Temporal Structure
The more complex part of the generative process is the mod-
eling of Temporal Coherence, at the levels of scene and track.

Temporal Coherence at scene level The frame-specific
scene variables Sj can be Markovian [Fox et al., 2008] condi-
tioned on its predecessor Sj−1. Frame F (j) and its associated
tracklets remain in the current scene Sj−1 with probability κ,
or start a new scene Sj−1 + 1 with probability (1− κ).

Sj ∼ κδSj−1 + (1− κ)δSj−1+1 (3)

If F (j) and F (j − 1) have a tracklet in common, then
Sj = Sj−1, as scene change cannot happen in the middle
of a running tracklet.

Modeling of a Scene Each level-2 segment (scene) s has
to be modeled as a distribution Gs over mixture components
(persons). In case of TV series videos,a person can appear in
several scenes. Such sharing of components can be modeled
using like Hierarchical Dirichlet Process [Teh et al., 2006],
usingH as base distribution (Gaussian) and {αs} as segment-
specific concentration parameters.

φk ∼ H∀k; G ∼ GEM(α); Gs ∼ DP (αs, G)∀s (4)

A sparse modeling can be considered, where each level-
2 segment selects a sparse subset of the components using
a Beta-Bernoulli process [Griffiths and Ghahramani, 2005;
Hughes et al., 2012; Williamson et al., 2010]. Then each seg-
ment s has an associated binary vector Bs which indicates
which components are active in s.

βk ∼ Beta(1, β)∀k;Bsk ∼ Ber(βk)∀s, k (5)

Temporal Coherence at tracklet level For assigning mixture
component Zi to tracklet i, the temporal coherence can be
maintained using a Markovian process once again. In this
case, i is assigned either the component of its predecessor
pred(i) or a component sampled from Gs, restricted to the
ones active in s (s is the segment containing frames in Ri).

Zi ∼ ρδZpred(i)
+ (1− ρ)(Bs ◦Gs) (6)

where Bs is the sparse binary vector. As Gs is discrete
(Dirichlet Process-distributed), multiple draws from it may
result in sampling a component several times in the same seg-
ment s. This is desirable in TV series videos, since a partic-
ular person is likely to appear repeatedly in a scene.Based on
all these, the entity-driven generative process for TV-series
videos is given in Algorithm 1.

3723



Algorithm 1 EntScene Generative Model
1: φk ∼ N (µ,Σ0), βk ∼ Beta(1, β) for k = 1, 2, . . . ,∞
2: G ∼ GEM(α)
3: for j = 1 to M do
4: Sj ∼ κδSj−1 + (1− κ)δSj−1+1

5: if j = 1 or Sj 6= Sj−1 then
6: Bsk ∼ Ber(βk) ∀k (s = Sj)
7: Gs ∼ DP (αs, G)
8: end if
9: end for

10: for i = 1 : N do
11: if pred(i) = −1 set ρ = 0
12: Zi ∼ ρδZpred(i)

+ (1− ρ)(BSj ◦GSj ) (j ∈ Ri)
13: Yi ∼ N (φZi ,Σ)
14: end for

4.2 Merge Inference by Blocked Gibbs Sampling
As mentioned earlier, hierarchical segmentation is to dis-
cover the frames where Equation 1 or Equation 2 is violated.
For this purpose, we need to infer the {Sj} and {Zi} vari-
ables. The complete likelihood function in terms of the ran-
dom variable discussed above can be written as

p(Y, Z, S,B,Φ, β, G,G0) ∝
∏

k=1 p(βk)p(φk)× p(G)

×
∏M

j=2 p(Sj |Sj−1)×
∏

s p(Gs|G)×
∏

s,k p(Bsk|βk)

×
∏N

i=1 p(Zi|Zpred(i), SF (i), {Bs}, {Gs})p(Yi|Zi,Φ) (7)

We can collapse some of these variables, like {βk},
{Φ},{Gs} and G, in which case the B variables can be han-
dled using the Indian Buffet Process, and the Z variables us-
ing the Chinese Restaurant Process. In that case, the likeli-
hood function can be written as:

p(Y, Z, S,B) ∝
∏M

j=2 p(Sj |Sj−1)×
∏

s p(Bs|B1, . . . , Bs−1)

×
∏N

i=1 p(Zi|Z1, . . . , Zpred(i), {B}, {S})p(Yi|Zi, Y1, . . . , Yi−1) (8)

For inference we use Blocked Gibbs Sampling as several
variables are usually strongly coupled, and must be sam-
pled together. We form blocks dynamically using the S vari-
ables. Clearly the scene boundaries occur at frames where
the S-variable changes, i.e. where Sj 6= Sj−1, and each
value s of S defines a segment. A block BL(s) is formed
as {Bs−1, Bs+1, Bs, {Z}s, {S}s}. We first infer {S}s using
Eq 3 and the marginal likelihood of the data {Y }s. We try
to merge segment s with either segment (s − 1) or segment
(s + 1) (or leave it alone), so the state-space of {S}s is only
{s − 1, s, s + 1}. After sampling {S}s, we sample {B} and
{Z} variables using Eq 8. After each iteration, the blocks
are re-defined according to the new assignment of {S} vari-
ables. Since the aim is always to merge each segment with
its neighbors, the number of segments should reduce till con-
vergence. We can use CP1 and CP2 to initialize {Z} and
{S} respectively for Gibbs Sampling, thus getting an initial
segmentation. We know that if frames a and b are two suc-
cessive points inCP2, then obviously there is no changepoint
between them, i.e. a < j < j′ < b ⇒ Sa = Sj = Sj′ . This
considerably reduces the search space for segments and al-
lows us to keep merging the segments progressively (till con-
vergence). The process is explained in Algorithm 2.

The various parts of Eq 8 can be computed using the
inference equations of Indian Buffet Process [Griffiths and

Ghahramani, 2005] for {B}s and TC-CRF [Mitra et al.,
2014] for {Z}s. The convolution of Gs with the sparse bi-
nary vector Bs in Eq 6 poses a major challenge as it cannot
be collapsed by integration, as noted in [Williamson et al.,
2010]. We suggest an approximate PPF (like the TC-CRF
PPF) for Eq 6 for easy inference. With every datapoint i we
can consider an auxilliary binary variable Ci which takes the
value 0 with probability ρ, and Ci = 0 ⇒ Zi = Zpred(i). In
segment s, for a datapoint i where Ci = 1, a component φk
may be sampled with p(Bsk = 1, Zi = k) ∝ nsk, which is the
number of times φk has been sampled at other points i′ satis-
fying Ci′ = 1 within the same segment. If φk has never been
sampled within the segment but has been sampled in other
segments, p(Bsk = 1, Zi = k) ∝ αnk, where nk is the num-
ber of segments where φk has been sampled (Corresponding
to p(Bsk) = 1 according to IBP). Finally, a completely new
component may be sampled with probability proportional to
α0. Note that p(Bsk = 0, Zi = k) = 0∀k.

Algorithm 2 Merge Inference Algorithm by Blocked Gibbs
Sampling (MI-BGS)

1: Initialize segments S using CP2; Initialize B,Z;
2: Estimate components φ̂← E(φ|B,Z, S, Y );
3: while Number of segments not converged do
4: for each segment s do
5: Sample {S}s ∈ {s− 1, s, s+ 1} ∝ p({Y }s|Z,B, S, φ̂)
6: Sample (Bs, {Z}s) ∝

p(Bs, {Z}s|B−s, {Z}−s, S, Y, φ̂)
7: end for
8: Re-number the S-variables, update components φ̂ ←

E(φ|Z,B, S, Y );
9: end while

4.3 Alternative Inference Algorithms
Having described our main inference algorithm, we discuss
two alternatives, which can serve as baselines.

Split-Merge Inference (SpMI) By the MI-BGS algorithm
the number of segments keeps decreasing and then converges.
This property is desireable as it helps in quick convergence.
But two segments can never split after they are merged once,
which may come as a disadvantage in case of a wrong merge.
The Topic Segmentation Model (TSM) [Du et al., 2013] al-
lows split-merge inference by a bernoulli random variable
Us with each initial segment s from CP2, which indicate
whether or not a new segment should start from s, i.e. if
{Z}s and {Z}s−1 should be modelled with the same distri-
bution. To change Us from 0 to 1 is to split segments s and
(s−1), and the reverse change is to merge them. The process
is explained in Algorithm 3. Note that {Us}-variables are a
reparametrization of {S}, so that the new joint distributions
can be found easily from Equation 8.

Sweep-Merge Inference (SMI) Both MI-BGS and SpMI
aim to jointly discover the entities and segment the sequence.
A simpler alternative (baseline) can be to perform the entity
discovery first, disregarding the S-variables, as done in [Mi-
tra et al., 2014], and then separately infer the segmentation
{S}, conditioned on the already-assigned {B} and {Z}. To
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Algorithm 3 Split-Merge Inference Algorithm by Blocked
Gibbs Sampling (SpMI-BGS)

1: Initialize segments S using CP2; Initialize B,Z;
2: Estimate components φ̂← E(φ|B,Z,U, Y );
3: while Number of segments not converged do
4: for each segment s do
5: Sample (Us, Bs, {Z}s) ∝

p(Us, Bs, {Z}s|U−s, B−s, {Z}−s, Y, φ̂)
6: end for
7: Update components φ̂← E(φ|B,Z,U, Y );
8: end while

infer {S}, we make a single sweep from left to right, attempt-
ing to merge the initial segments defined by CP2. For every
initial segment s, we propose to merge it into the currently
running level-2 segment c, using a common binary vector
Bmerge for all datapoints in the proposed merged segment
and component assignments {Zmerge} to the datapoints in
s. We may accept or reject the merger proposal based on
how well (Bmerge, {Zmerge}) can model the data Yc∪s in
the merged segments (c, s), compared to modeling them as
separate segments. The merger probability is enhanced by
temporal coherence (Eq 3). If we accept it, we will merge
slice s into level-2 segment c, and set Sj = c for all frames
j occurring within s. If we reject it, we start a new level-2
segment (c+ 1), and set Sj = c+ 1 for all frames j within s.
The process is explained in Algorithm 4.

Algorithm 4 Sweep-Merge Inference Algorithm (SMI)
1: Initialize segments S using CP2;
2: for all initial segments s do
3: (Bs, {Z}s) ∼ p(Bs, {Z}s|B−s, {Z}−s, Y )
4: end for
5: Estimate components φ̂← E(φ|Z,B, S, Y );
6: Set current segment c = 1, {S}1 = 1;
7: for each initial segment s do
8: Sample (Bmerge

c , {Zmerge}s) ∝
p(Bmerge

c , {Zmerge}s|Y, φ̂, {Z}c)
9: Accept/reject the merger based on data likelihood

10: if merger accepted then
11: {Z}s = {Zmerge}s, {S}s = c,Bc = Bmerge

c ;
12: else
13: {S}s = c+ 1;Set (c+ 1) as current segment;
14: end if
15: end for

5 Experiments on Temporal Segmentation
5.1 Datasets and Preprocessing
We carried out extensive experiments on TV series episode
videos of various lengths. We collected three episodes of The
Big Bang Theory (Season 1). Each episode is 20-22 minutes
long, and has 7-8 persons (occurring in at least 100 frames).
We also consider 6 episodes, each 40-45 minutes long, of
the famous Indian TV series- the Mahabharata. On each
video, face detection is performed by a standard face detec-
tor [Viola and Jones, 2001] and these detections are linked
based on spatio-temporal locality to form tracklets of size

r = 10. Each tracklet corresponds to a datapoint i, which
is represented as a 900-dimensional vector Yi of pixel values,
which is the mean vector of the associated detections. Their
frame indices Ri are used to order them and define pred(i)
and succ(i). Frames where a new tracklet starts but are not
spanned by any previously running tracklets, comprise our
CP1. Also, the video can be segmented into shots based on
frame differences 2, and the frames on these shot boundaries
provide CP2. The task is to segment the video into scenes.
As already discussed, each person is represented by a mixture
component, and each scene by a mixture distribution. How-
ever, there is a lot of variation in pose and appearance of the
detected faces, throughout the video, and hence often several
mixture components are formed per person. The hyperpa-
rameters like α and β provide some control over the num-
ber of components learnt. After tuning them on one episode,
we found an optimal setting, where we were able to cover
80 − 85% of the tracklets with 80-90 components. κ, ρ etc
are also fixed by tuning on one episode.

5.2 Performance Measures
A gold-standard segmentation is created manually at the level
of scenes (level-2), and we evaluated the inferred segmenta-
tion against this. But gold-standard segmentation is difficult
to annotate in level-1, as the videos are long, and there are
too many level-1 segments. So at this level our evaluation is
about the quality of the mixture components learnt.

Evaluation of mixture components Among the learnt
components, we select only those components that have at
least 10 assigned tracklets overall and at least 2 detections in
any of the learnt level-2 segments, and reject the rest. This
is because we are interested only in persons that have reason-
able screen presence. We attribute a selected mixture com-
ponent to person A if 70% of the tracklets assigned to that
component belong to person A. This is because, we ob-
serve that if a component’s associated tracklets are at least
70% pure then the corresponding mean vector φk resembles
the person’s face well enough for identification. For large
components (200 or more associated tracklets), we observe
that 60% purity is enough for identifiability. We measure as
Cluster Purity (CP), the fraction of the selected components
which can be assigned to a person. We also measure as Per-
son Coverage (PC), what fraction of the persons with at least
10 tracklets, have been represented by at least one selected
component. On these measures we compare our inference al-
gorithms with sticky HDP-HMM [Fox et al., 2008]: the exist-
ing BNP model best suited to learning of mixture components
and segmentation.

Evaluation of Segmentation into Scenes We evaluate the
number of level-2 segments formed (NS2), and the sequence
segmentation error measure Pk. Pk is the probability that
two tokens, k positions apart, are inferred to be in the same
segment when they are actually in different segments in the
gold standard, and vice versa. This is measured as S2, aver-
aged over three values of k (maximum, minimum and aver-
age scene lengths). A third measure is segment purity (SP2),
which is the fraction of the discovered segments which lie

2http://johmathe.name/shotdetect.html
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Video SMI MI-BGS SpMI sHDP-HMM
CP PC CP PC CP PC CP PC

BBTe1 0.84 6 0.78 5 0.80 6 0.84 5
BBTe3 0.91 8 0.94 8 0.96 10 0.76 6
BBTe4 0.89 6 0.91 8 0.90 8 0.83 8
Maha22 0.96 12 0.89 14 0.94 13 0.86 14
Maha64 0.94 14 0.92 13 0.91 12 0.91 14
Maha65 0.88 16 0.83 15 0.90 18 0.90 17
Maha66 0.91 14 0.81 15 0.89 15 0.95 13
Maha81 0.86 22 0.86 21 0.85 20 0.84 20
Maha82 0.93 19 0.89 19 0.81 20 0.86 20

Table 1: Learning Mixture Components (persons) by SMI, MI-
BGS, SpMI and sHDP-HMM

Video SMI MI-BGS SpMI
CP-RC2 CP-PR2 CP-RC2 CP-PR2 CP-RC2 CP-PR2

BBTe1 0.78 0.26 0.78 0.30 0.33 0.22
BBTe3 0.77 0.24 0.85 0.23 0.85 0.30
BBTe4 0.75 0.32 0.83 0.26 0.75 0.24
Maha22 0.71 0.21 0.76 0.24 0.53 0.20
Maha64 0.88 0.16 0.82 0.17 0.71 0.23
Maha65 0.78 0.20 0.87 0.27 0.74 0.23
Maha66 0.80 0.13 0.87 0.16 0.47 0.19
Maha81 0.55 0.19 0.80 0.22 0.75 0.16
Maha82 0.32 0.15 0.72 0.38 0.48 0.26

Table 2: Recall and Precision of segment boundaries, using align-
ment threshold to be 20% of the average scene length

entirely within a scene (i.e. a single gold standard segment).
We can look upon segmentation as a retrieval problem, and

define the Precision and Recall of level-2 changepoints (CP-
RC2 and CP-PR2). Let j be the starting frame index of an
inferred segment s, i.e. Sj−1 6= Sj . Then, if there exists
(j0, s0) such that j0 is the starting frame index of a gold-
standard segment s0 satisfying |F (j)−F (j0)| < threshold
then inferred changepoint (j, s) is aligned to gold standard
changepoint (j0, s0). The formal definitions are:

Precision =
#inferred segment boundaries aligned to a true segment boundary

#inferred segment boundaries

Recall =
#true segment boundaries aligned to an inferred segment boundary

#true segment boundaries

The data, code and illustrations of the measures can be found
at http://clweb.csa.iisc.ernet.in/adway

5.3 Results
The component evaluation results are shown in Table 1, and
the segmentation results in Tables 2,3,4. In terms of com-
ponent evaluation, all the methods (including sHDP-HMM)
are comparable. Averaged across all the videos, SMI leads
in terms of Cluster Purity, while sHDP-HMM is the worst.
In terms of Person Coverage, all methods are almost at par
when averaged across the videos. At level-2 (i.e. scenes),
we see that MI-BGS clearly performs better than SMI and
SpMI on precision and recall of segment boundaries (CP-
PR2, CP-RC2) and also fares best on the segmentation error
(S2). However, SMI is found to be better in terms of seg-
ment purity (SP2), which is understandable since it produces
a large number (NS2) of pure but small segments. On the
other hand, SpMI produces a small number of segments, but
they are often inaccurate, resulting in its poor performance in
terms of all the measures. This happens because many adja-
cent initial segments keep splitting and merged, resulting in
failure to choose changepoints. The results show that jointly

Video SMI MI-BGS SpMI
S2 NS2 SP2 S2 NS2 SP2 S2 NS2 SP2

BBTe1 0.14 51 0.77 0.09 44 0.67 0.19 25 0.61
BBTe3 0.10 40 0.74 0.08 46 0.88 0.10 30 0.68
BBTe4 0.11 26 0.71 0.12 37 0.79 0.13 35 0.81
Maha22 0.16 41 0.82 0.12 53 0.84 0.15 73 0.74
Maha64 0.19 94 0.91 0.19 81 0.89 0.18 50 0.77
Maha65 0.18 87 0.82 0.16 71 0.71 0.19 72 0.82
Maha66 0.12 87 0.82 0.20 79 0.90 0.19 35 0.78
Maha81 0.23 56 0.88 0.15 68 0.78 0.20 89 0.82
Maha82 0.15 50 0.77 0.07 46 0.71 0.19 69 0.68

Table 3: Segmentation error (S2), number of segments formed
(NS2) and segment purity (SP2) at level 2

Video SMI MI-BGS SpMI
CP-RC2 CP-PR2 CP-RC2 CP-PR2 CP-RC2 CP-PR2

BBTe1 0.61 0.21 0.72 0.28 0.22 0.15
BBTe3 0.23 0.07 0.77 0.21 0.54 0.19
BBTe4 0.58 0.25 0.67 0.21 0.50 0.16
Maha22 0.29 0.09 0.65 0.20 0.24 0.09
Maha64 0.59 0.10 0.76 0.16 0.41 0.13
Maha65 0.35 0.09 0.57 0.18 0.48 0.15
Maha66 0.47 0.08 0.53 0.10 0.27 0.11
Maha81 0.35 0.12 0.55 0.15 0.50 0.11
Maha82 0.24 0.12 0.28 0.15 0.16 0.09

Table 4: Recall and Precision of segment boundaries, using align-
ment threshold to be 200 frames (about 8 seconds)

discovering the entities and the segmentation (MI-BGS) is
better than doing them separately (SMI) in terms of segmen-
tation, and in terms of entity discovery they are comparable.

In general the number of segments formed (NS2) is quite
high compared to the actual number of scenes, and this affects
the precision values for all the methods. This is because of the
challenges of scene discovery mentioned in Section 3.

6 EntScene for Temporal Co-segmentation
EntScene can be extended to multiple videos, which share the
same persons (with similar facial appearances). This may be
done by allowing the videos to share the mixture components
{φk}, though the weights may differ. In that case, the infer-
ence process (SMI, SpMI or MI-BGS) can consider all the
initial segments induced by CP2 from all the sequences to-
gether, and estimate the shared components while initializing
{B} and {Z} variables accordingly. Using shared mixture
components allow us to easily find out common persons and
temporal segments from the videos. If they are modeled sep-
arately, discovery of common persons and segments require
matching the sets of mixture components from the different
videos.

For this we collect a set of videos corresponding to 3
episodes of the TV series The Big Bang Theory. For each
episode, we have a main video (full episode) and a short video
showing snippets. Every such pair of videos contain the same
persons in same facial appearances, and hence fits our case.
Our aim is to temporally segment both videos, and find the
correspondences between the two sets of temporal segments.

We first create initial segmentations of all the videos using
their respective shot boundaries (CP2). Next, for each pair
of videos from same episodes we learn the mixture compo-
nents together, and use these common components to identify
similar segments (that contain the same persons) across the
pairs. The binary vector Bs learnt for every segment s is
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Method BBTe1 BBTe3 BBTe4
Co-Modeling 0.72 0.76 0.67

Individual 0.58 0.77 0.64

Table 5: Segment Matching precision for Co-Modeling and separate modeling of
video pairs, using SMI. For MI-BGS and SpMI also, the same trend is seen

used for this purpose. We say that a segment sai from video
a and another segment sbj from video b are similar based on
the Hamming distance of the corresponding B-vectors. Ev-
ery pair of matched segments can then be classified as good
or bad according to a gold-standard matching of such seg-
ments, and the Matching Precision (fraction of matches that
are good) can be measured. As baseline, we repeat this for
the case where the two videos in a pair are modeled indi-
vidually, and then the two sets of learnt mixture components
are matched based on `2-distance of their mean vectors. The
results are shown in Table 5, which show that co-modeling
performs clearly better than individual modeling in this case.

7 Conclusion
In this paper we described EntScene: a generative model for
entities and scenes in a video, and proposed inference algo-
rithms for discovery of entities and scenes by hierarchical
temporal segmentation. This is the first attempt at entity-
driven scene modelling and temporal segmentation in videos.
We also proposed alternative inference algorithms, and con-
sidered the novel task of entity-driven temporal cosegmenta-
tion of videos. In our experiments we used only one type of
entities (persons), but our method should work for any type
of entity such that every instance of it can be modelled with
a single vector. Also, the proposed inference algorithms may
be useful for other kinds of sequential data, apart from videos.
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