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Abstract

We consider the problem of extracting a signature

representation of similar entities employing covariance

descriptors. Covariance descriptors can efficiently rep-

resent objects and are robust to scale and pose changes.

We posit that covariance descriptors corresponding to

similar objects share a common geometrical structure

which can be extracted through joint diagonalization.

We term this diagonalizing matrix as the Covariance

Profile (CP). CP can be used to measure the distance of

a novel object to an object set through the diagonality

measure. We demonstrate how CP can be employed on

images as well as for videos, for applications such as

face recognition and object-track clustering.

1 Introduction

With the advent of sites such as YouTube, Picasa

and Flickr, there has been an explosion of visual con-

tent on the internet. However, this has also resulted in

enormous redundancy of information owing to content

duplication. Efficient representation of visual content

can minimize storage requirements and enable efficient

comparison of images and videos, facilitating tasks like

face recognition, video clustering and retrieval.

Efficient object representation has been well stud-

ied in computer vision. Many object comparison tech-

niques fail in the presence of pose, scale or illumination

changes. In this respect, covariance descriptors [8] have

been generally found to be stable, robust to pose or scale

variations and also provide for efficiently fusing multi-

ple features by capturing between-feature relationships.

Principal Angles (PA) [11] are popularly employed

for comparing object sets. The underlying assumption

in PA is that instances belonging to the same entity span

a linear subspace. Two sets are compared by measuring

the angle between their subspaces. Kernelized princi-

pal angles (KPA) has also been discussed in [9]. How-

ever, they don’t allow for compact data representation

and the subspace constraint makes them suitable only

for matching sets (as against individual elements).

We propose the covariance profile (CP), a novel sig-

nature descriptor that compactly represents a set of sim-

ilar objects. The intuition behind CP is that the same

principal directions are shared by similar objects. These

directions are obtained by simultaneously diagonalizing

the covariance matrices corresponding to the individual

objects. This paper represents the first work employing

CP as a concise object-set representation. We demon-

strate how CPs are useful for a) object-track clustering

(where a object-track denotes regions corresponding to

an object tracked in a video) and b) image-based face

recognition on badly aligned and cropped faces.

2 Covariance Profiles

This section formally defines a covariance profile

and discusses its extraction.

2.1 Definition and Estimation of Covariance
Profile

Consider a set of similar objects {I1, I2, . . . , IN},

described by their Covariance Descriptors as set T =
{C1, C2, . . . , CN} henceforth referred as a family. We

attempt to capture the similarity structure for the fam-

ily with a set of vectors β1, β2, . . . , βd, where d is the

number of columns of the Ci’s, such that

Ci =
∑

j

λijβjβ
T
j (1)

We consider the matrix V , with vectors {βj} as its

columns. V Jointly Diagonalizes the individual Ci ma-

trices, i.e. Λi = V TCiV is a diagonal matrix whose

diagonal entries are λij . In practice, such a V may not

exist. However, it is possible to compute a V which will

approximately diagonalize the {Ci} matrices. This ma-

trix is defined as the covariance profile for the family.

To estimate a CP of a given family, we make use

of approximate joint diagonalization algorithms. Dif-

ferent formulations have been reviewed and discussed

in [12]. We estimate CP using Pham’s algorithm [7]

which is designed for joint diagonalization of positive

definite Hermitian matrices. At each step, the algorithm



proceeds by performing successive transformations on

rows l,m of V , according to

[

Vl

Vm

]

= Flm

[

Vl

Vm

]

(2)

where Flm is a 2 × 2 non-singular matrix such that (3)

is sufficiently reduced. Here V need not be orthogonal.

∑

i score(V,Ci) (3)

where score(V,Ci) = log(det(diag(V
TCiV ))

det(V TCiV )
) (4)

Algorithm consists of repeated sweeps till convergence.

2.2 Distance Measures based on CP

The diagonality score is a measure of diagonality of

the matrix C, with respect to the CP, V . It is shown

in [3] that this value decreases with decreasing Frobe-

nius norm of the off-diagonal elements in V TCV , and

is 0 if and only if it is fully diagonal. Consider a fam-

ily T with CP V . Given a new covariance matrix C, its

closeness to the family T can be computed using the di-

agonality measure (4). A sufficiently small diagonality

score indicates that C is almost perfectly diagonalized

by V , and hence likely to belong to the family T . We

also compare a family to a CP V as

score(V, T ) = min
i

score(V,Ci) (5)

If Vi and Vj denote the CPs of Ti =
{Ci1, Ci2, . . . , CiNi

} and Tj = {Cj1, Cj2, . . . , CjNj
}

respectively then the distance between the families is

measured as

score(Ti, Tj) = min(score(Vi, Tj), score(Vj , Ti))
(6)

3 Applications

In this section, to evaluate CP we demonstrate how

they can be used for clustering object-tracks in videos

and for giving a signature representation to a person as

in face recognition.

3.1 Object-track Clustering

A video consists of successive frames captured over

a period of time with temporally adjacent frames being

similar. We define an object-track (or simply, a track) as

a set of images obtained from successive video frames,

such that each of these images contain a unique object-

these images can be the cropped outputs of an object

detector or a tracker. Frames from a car video and

the track corresponding to the car are shown in Fig 1.

Object-track clustering is the task of grouping tracks

such that all tracks assigned to a particular cluster cor-

respond to the same entity.

Let each frame of the track be represented by R over-

lapping region covariance descriptors. We denote T r
i as

that part of the ithtrack corresponding to region r, i.e.

T r
i = {Cr

il} ∀ l = 1, 2, ..., ni, r = 1, 2, ...R (7)

Here, ni is the number of frames in track Ti while l de-
notes frame number. A total of R regions are considered

for representing each frame of the track. In our experi-

ments, we fix R = 5 and the corresponding regions for

a face are as shown in Fig 2.

Figure 1. Top: A car tracked in consecu-

tive frames; Bottom: Regions in bound-
ing box of the track forms the object-track

Figure 2. Five face regions considered .

Let the CP associated with track T r
i be V r

i . Distance

measure between two tracks Ti and Tj is defined by

d(Ti, Tj) =

R
∑

r=1

score(T r
i , T

r
j )−max

r
score(T r

i , T
r
j )

(8)

This is converted to a similarity measure as

S(Ti, Tj) = e−d(Ti,Tj)/2b (9)

where b is a constant.

To evaluate the clustering, we use the purity mea-

sure. Intuitively, we want each group to be pure, i.e.,

all the tracks assigned to the group should be associ-

ated with the same entity, even though a particular en-

tity may generate more than one cluster. Let the total

number of clusters be m. To a particular cluster k, we

assign an entity label Lk as

Lk = argmax
e

∑

1≤i≤Nk

δiek (10)

where δiek = 1 if the ith track in cluster k belongs to

entity e, and Nk is the number of tracks in kth cluster.

In other words, we find the most frequently assigned

entity label for all tracks in the cluster. Next, we define

the clustering purity for m clusters as



P (m) =
1

N

∑

1≤k≤m

∑

1≤i≤Nk

δiLkk (11)

where N is the total number of tracks. Finally, if ex-

periments are done over different cluster configurations

{m1,m2, . . . ,mk, . . . ,mK}, the maximum clustering

purity is defined as MC = maxk P (mk)

3.1.1 Experiments and Results
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Figure 3. Plot of cluster purity v/s Number

of clusters for YouTube celebrity dataset

Dataset CP PA KPA

Sitcom 90.57(10) 88.86(10) 90.76(10)

YouTube 80.35(46) 78.60(46) 79.7 (46)

Objects 69.62(15) 64.62(16) 65 (15)

Table 1. Comparison of maximum cluster-
ing purity for different methods. Numbers

in brackets denote number of clusters for
which clustering purity is maximum.

Datasets: We used 3 datasets for our experiments. The

first dataset consists of 175 clips corresponding to 5 ac-

tors (35 clips per actor) obtained from a television sit-

com. The length of each clip is between 10-350 frames.

The second consists of 789 YouTube clips taken from [4]

corresponding to 23 celebrities containing their respec-

tive face. However, the face pose can vary from frontal

to profile. The third comprises 260 short YouTube

videos corresponding to 8 different objects.

Each of these clips is associated with a single entity

(person for first two datasets and object for the third).

We created tracks from each clip by detecting/tracking

this entity [1, 2]. 40-dimensional Gabor features (5
scales and 8 orientations) were used to compute covari-

ance features for each region as in [8].

After obtaining tracks for all clips we calculate the

similarity between each pair using (9). Thus, we obtain

a symmetric matrix S, where S(i, j) specifies the simi-

larity between tracks i, j. Spectral clustering [5] is then

performed on S. For K entities, we vary the number of

clusters from K to 2K. We compare our proposed sim-

ilarity measure using CP against principal angles [11]

and Kernelized Principal Angles (KPA) [9] with spec-

tral clustering. Comparable results with respect to com-

putationally intensive KPA are obtained for the first two

datasets, while we outperform both PA and KPA-based

approaches for the ‘Objects’ dataset. The results are as

shown in Table 1. Fig 3 shows the variation in purity-

with the number of clusters. In general, purity improves

with number of clusters because multiple, tighter clus-

ters are generated corresponding to each entity.

Figure 4. Sample frames from the first
(rows 1 and 2), second (3rd row) and third
(bottom-row) datasets.

3.2 Face Recognition

In this subsection, we demonstrate how CPs are use-

ful for discriminating between different instances of the

same entity. We consider the problem of image-based

face recognition where the images are badly aligned

and cropped.

3.2.1 Procedure

Each face is represented by R covariance matrices, as

described earlier. Thus, from the training set for a class

we obtain R CPs representing the class. Classifica-

tion is performed using the diagonality scores, eqn. (4),

of the covariance matrices corresponding to a test face

with the CPs of each class as illustrated in Algorithm 1.

3.2.2 Experiments and Results

Our approach can efficiently perform recognition with

badly aligned and cropped faces, where traditional ap-

proaches fare poorly. We compare our proposed dis-

tance measure using CP (4) against two other methods

which can also work under similar conditions. The first

approach by Wright et al. [10] employs sparse model-

ing, which is efficient independent of the features used.

The second approach employs Gabor-based covariance

features [6] for classification based on geodesic dis-

tance.

We use standard AR and YaleB databases. The faces

used in our experiment are cropped using a face detec-

tor and are not preprocessed. The AR database contains



Algorithm 1 CLASSIFICATION ALGORITHM

TRAINING ALGORITHM

Number of Classes= N

for each i = 1 : N
Represent each training image in class i with R Co-

variance Matrices

for each r = 1 : R
Obtain and save CPs V r

i

end for

end for

TESTING ALGORITHM

Represent the test image I by R covariance matrices

Cr
I where r = 1 : R.

for i = 1 : N
Calculate driI = score(V r

i , C
r
I ), ∀ r = 1 : R.

end for

Class(I) = argmin
i=1→N

(
∑R

r=1 d
r
iI −maxr driI)

faces of 110 subjects. For each subject, we consider

14 faces without occlusion, of which, seven are respec-

tively used for training and testing. The YaleB database

consists of 28 subjects, and 10 randomly chosen images

are used for training and testing without any overlap be-

tween the two sets.

The recognition results are presented in Figure 5. For

the sparse modeling approach, results are shown for the

dimension that produces the maximum accuracy. Ev-

idently, our approach outperforms competing methods

for poorly cropped and aligned faces, demonstrating

the robustness of covariance profiles. In Figure 6 our

approach shows superior recognition performance with

increasing training samples for the YaleB dataset.

Figure 5. Plot of face recognition accu-

racy for AR and YaleB database.

4 Conclusions

This paper introduces covariance profiles (CPs),

which is a novel signature representation for an object-

set. The object-set, or family, can contain many in-

stances of the same entity/similar entities. CPs provide

for an efficient comparison of novel objects with the

family through the diagonality score. The utility of CPs

Figure 6. Accuracy with increasing train-
ing samples for YaleB dataset

is demonstrated for object-track clustering in videos, as

well as for image-based face recognition. We observe

that the performance obtained employing CPs is com-

parable to/superior than competing methods for both the

test scenarios.
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