
Chapter 3

Linear Independence and Basis

3.1 Finitely Generated Spaces

We shall now begin investigating the question of obtaining a spanning set of
optimal size. We have introduced in the last chapter the notion of a finitely
generated subspace. We had,

Definition 3.1.1 Let V be a vector space over a field F . A subspace W of
V is said to be finitely generated if there exists a finite spanning set for W ,
that is, if there exists S ⊂ W such that S is finite and L[S] =W

We illustrate this by some examples.

Example 3.1.1 Consider the vector space R3. Let W be the subspace de-
fined as

W =

x =

 α
β

α + β

 : α, β ∈ R


Clearly the set of vectors

u1 =

 1
0
1

 , u2 =

 0
1
1


form a finite spanning set for W . Hence W is a finitely generated subspace.
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Clearly the set of vectors

e1 =

 1
0
0

 , e2 =

 0
1
0

 , e3 =

 0
0
1


form a finite spanning set for R3 and hence the vector spsce R3 is itself finitely
generated.

Example 3.1.2 Let V be the vector space, FR [R] of all functions from R
to R. We have

FR [R] = {f : R −→ R}

Consider the subspaceW = R[x] of all polynomials in x with real coefficients.
Then W is not finitely generated. For, suppose it is finitely generated. This
would then mean that there exists a finite spanning set

S = p1, p2, · · · , pk

for W . Let

d = Max. {degree pj : 1 ≤ j ≤ k}

Since S is a spanning set for W we have

p ∈ W =⇒ p = α1p1 + α2p2 + · · ·+ αkpk, (αj ∈ R, 1 ≤ j ≤ k)

=⇒ degree p ≤ d

This means that no polynomial in W can have degree greater than d. Thus
is a contradiction, since for example, xd+1 is a polynomial of degree greater
than d and is in W . Thus W is not finitely generated. On the other hand,
consider the subspace, W = RN [x], of all polynomials in V of degree less
than or equal to N . Then clearly

S = {pn = xn}Nn=0

is a finite spanning set for W and hence this subspace is finitely generated.
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3.2 Linear Independence

We shall next introduce the notion of a linearly independent set. Consider a
finite set of vectors

u1, u2, · · · , ur

in a vector space V . Any linear combination of these vectors is of the form

α1u1 + α2u2 + · · ·+ αrur

where αj ∈ F , for 1 ≤ j ≤ r. In particular,

0u1 + 0u2 + · · ·+ 0ur

is a linear combination of these vectors and is equal to θV . This linear com-
bination is called the trivial linear combination of these vectors. Thus we
find that given any finite set of vectors, we can obtain the zero vector θV , as
a linear combination of these vectors.

Example 3.2.1 Consider the vector space V = R3 and the set of vectors,

S = u1 =

 1
0
1

 , u2 =

 0
1
1


Then clearly we can write the zero vector θV as the trivial linear combination
of these vectors as

θV = 0u1 + 0u2

Further this is the only way we can express θV as a linear combination of
u1, u2. For, if a linear combination gives θV , then we must have,

α1u1 + α2u2 = θV
=⇒ α1

β1
α1 + β1

 = 0

=⇒
α1, and α2 = 0

55



On the other hand consider the set of vectors,

S = u1 =

 1
0
1

 , u2 =

 0
1
1

 , u3 =

 1
1
2


Then we have the trivial linear combination

θV = 0u1 + 0u2 + 0u3

We also have

1u1 + 1u2 + (−1)u3 = θV

In fact, for any α ∈ R we have

αu1 + αu2 + (−α)u3 = θV

Thus nontrivial linear combinations of u1, u2, u3 also give rise to the zero
vector.

From the above example it follows that given any finite subset S of a vector
space V , the following two possibilities arise:

1. EITHER θV can be expressed ONLY as the trivial linear combination
of the vectors in S,

2. OR θV can also be expressed as a nontrivial linear combination of the
vectors in S

We distinguish these two possibilities with the following definition:

Definition 3.2.1 Let V be a vector space over a field F . A nonempty finite
subset

S = u1, u2, · · · , ur
is said to be linearly independent if

α1u1 + α2u2 + · · ·+ αrur = θV =⇒ αj = 0, 1 ≤  ≤ r

(that is, the only way to express the zero vector as a linear combination of
the vectors in S is to express it as the trivial linear combination).
If S is not linearly independent it is said to be linearly dependent.
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Remark 3.2.1 The set
S = u1, u2, · · · , ur

is linearly dependent means that there exist α1, α2, · · · , αr ∈ F , at least one
of which is not zero, such that

α1u1 + α2u2 + · · ·+ αrur = θV

Example 3.2.2 In Example 3.2.1 above, the set

S = u1, u2

is linearly independent, whereas te set

S = u1, u2, u3

is linearly dependent.

Example 3.2.3 Consider the vector space V = R[x] of all polynomials over
R.
a) Consider the set

S1 = p1, p2, p3

where
p1 = 1, p2 = x, p3 = x2

We have

α1p1 + α2p2 + α3p3 = θV
=⇒

α1 + α2x+ α3x
2 = θV

=⇒
α1, α2 and α3 = 0

Hence the set S1 is linearly independent.
b) Next we consider the set

S2 = f1, f2, f3

where
f1 = 1 + x, f2 = 1 + x2, f3 = 1 + x+ x2
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We have

α1f1 + α2f2 + α3f3 = θV
=⇒

α1(1 + x) + α2(1 + x2) + α3(1 + x+ x2) = θV
=⇒

(α1 + α2 + α3) + (α1 + α3)x+ (α2 + α3)x
2 = θV

=⇒
α1 + α2 + α3 = 0
α1 + α3 = 0
α2 + α3 = 0


=⇒

α1, α2 and α3 = 0

Hence the set S2 is linearly independent.
c) Consider the set

S3 = f1, f2, f3

where
f1 = 1 + x, f2 = x+ x2, f3 = 1 + x2

We have

α1f1 + α2f2 + α3f3 = θV
=⇒

α1(1 + x) + α2(x+ x2) + α3(1 + x2) = θV
=⇒

(α1 + α3) + (α1 + α2)x+ (α2 + α3)x
2 = θV

=⇒
α1 + α3 = 0
α1 + α2 = 0
α2 + α3 = 0


=⇒

α1, α2 and α3 = 0

Hence the set S3 is linearly independent
d) Consider the set

S4 = f1, f2, f3
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where
f1 = 1− x, f2 = 1 + x, f3 = 1

This set is linearly dependent since we have

1f1 + 1f2 + (−2)f3 = θV

a nontrivial linear combination giving rise to θV .

3.3 Properties of Linearly Dependent Sets

We shall now look at an useful property of a linearly dependent set. Consider
a linearly dependent set

S = u1, u2, · · · , ur
(We arrange these vectors in S in some order as above).
1) Let S1 = u1, u2, · · · , ur, u(r+1), · · · , uk be any superset of S. Since S is
linearly dependent there exist α1, α2, · · · , αr, at least one of which is not
zero, such that

α1u1 + α2u2 + · · ·+ αrur = θV

=⇒
α1u1 + α2u2 + · · ·+ αrur + 0u(r+1) + · · ·+ 0uk = θV

Since at least one of the αj is nonzero we have above a nontrivial linear
combination of S1 vectors giving rise to the zero vector. Hence S1 is linearly
dependent. Hence we can conclude,
Property 1:
Any superset of a linearly dependent set is linearly dependent

2) There exist α1, α2, · · · , αr ∈ F , at least one of which is not zero, such that

α1u1 + α2u2 + · · ·+ αrur = θV

Let k be the largest index such that αk 6= 0, that is, αk 6= 0 and αj = 0 if
j > k. Then we have

α1u1 + α2u2 + · · ·+ αkuk = θV

Since αk 6= 0 we get

uk = β1u1 + β2u2 + · · ·+ β(k−1)u(k−1)
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where
βj = α−1αj for 1 ≤ j ≤ (k − 1)

Thus we see that uk is a linear combination of the preceeding vectors u1, u2, · · · , u(k−1).
Thus we have the folowing property of a linearly dependent set:
Property 2:
If S is a finite linearly dependent set, (in a vector space V), whose
vectors are arranged in some order

S = u1, u2, · · · , ur

then there exists a vector uk such that it is a linear combination
of the preceeding vectors u1, u2, · · · , u(k−1)

3) We shall now use this property to remove the redundancies from a linearly
dependent spanning set for a subspace.
Consider a finite set of vectors

S = u1, u2, · · · , ur

Without loss of generality let us assume that these vectors are all nonzero.
Case 1: S is linearly independent
In this case S is a linearly independent spanning set for L[S].
Case 2; S is linearly dependent
In this case, by the above property of linearly dependent sets, we must
have a uk such that it is a linear combination of the preceeding vectors
u1, u2, · · · , u(k−1). Let k1 be the smallest index such that uk1 is a linear com-
bination of the preceeding vectors. (Since the vectors are all nonzero vectors
we have k1 > 1). Ths means that,
a) uk1 is a linear combination of u1, u2, · · · , u(k1−1), and
b) uj is NOT a linear combination of u1, u2, · · · , u(j−1) for any j < k1 − 1
Now any vector that can be written as a linear combination of u1, u2, · · · , ur
can also be written as a linear combinationof the set of vectors,

S1 = u1, u2, · · · , u(k1−1), u(k1+1), · · · , ur

obtained from S by removing the vector uk. Thus we have

L[S] = L[S1]

If S1 is linearly independent then it is a linearly independent spanning set
for L[S] and S1 ⊂ S.
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If S1 is linearly dependent, we repeat the above process with S1 and remove
one more vector to get a subset S2 ⊂ S1 ⊂ S such that

L[S2] = L[S1] = L[S]

If S2 is linearly independent then it is a linearly independent spanning set
for L[S]. If not, we continue this process and in each step we remove one
vector, and since S is a finite set, we get, after a finite number of steps, a
subset S̃ ⊂ S such that S̃ is a linearly independent spanning set for L[S].
Thus we have the folowing property of a linearly dependent set:
Property 3:
If S is a finite linearly dependent set in a vector space V, there exists
a subset S̃ ⊂ S such that, S̃ is a linearly independent spanning set
for L[S].

Remark 3.3.1 We call the above process of getting a linearly independent
spanning set out of a linearly dependent spanning set, in short, as the “scan-
ning” (from the left) process

3.4 Basis

Consider a finitely generated subspace W of a vector space V . Since W is
finitely generated there must be a finite spanning set, say

S = u1, u2, · · · , ur

Since S is a spanning set for W , we have L[S] = W . If S is linearly inde-
pendent then we have a linearly independent spanning set for W . If S is
linearly dependent, then by Property 3 of the previous section we can get a
linearly independent subset S̃ ⊂ S such that L[S̃] = L[S] = W . Hence S̃ is
a linearly independent spanning set. Thus, in any case, we see that a finitely
generated subspace must possess a linearly independent, finite, spanning set.
This leads us to the following definition:

Definition 3.4.1 A finite linearly independent spanning set for a finitely
generated subspace is called a BASIS for the subspace.

Remark 3.4.1 If the vector space V is itself finitely generated then it will
a have finite, linearly independent, spanning set and such a spanning set is
called a basis for V
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We shall now look at some properties of linearly independent sets and Basis.

1) It is easy to see that,
if S = u1, u2, · · · , ur is a linearly independent set then any nonempty
subset of S is also linearly independent

2) Suppose W is a finitely generated subspace of V and has basis having k
vectors,

B = u1, u2, · · · , uk
Consider any linearly independent set in W having r vectors, say

S = v1, v2, · · · , vr

We then consider
S1 = v1, u1, u2, · · · , uk

Since v1 ∈ W and B is a basis we must have v1 as a linear combination of the
vectors in B. Hence S1 must be linearly dependent. Hence by Property 3 of
linearly dependent spanning sets obtained in the previous section, we must
have a subset S̃1 ⊂ S1 such that S̃1 is a linearly independent spanning set for
W , that is, S̃1 is a basis for W . This is got by the process of removing the
redundancy in the linearly dependent spanning set, S1, using the scanning
process described in the previous section. Clearly the process does not remove
v1 from the set S1. Hence there must be a proper subset B′ of B, (obtained
by removing at least one vector from B), such that

B1 = v1,B′

is a basis for W . Now we let

S2 = v2, v1,B′

Since this is a linearly dependent set we can repeat the above argument to
S2 to obtain a proper subset B′1 of B1, (and hence a proper subset of B), such
that

B2 = v2, v1,B′1
is a basis for W . We continue this process. There arise two possibilities.
Possibility 1: All the vectors from S have been exhaustsed.
In this case we get a basis

Br = vr, v(r−1), · · · , v1,B′(r−1)
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where B′(r−1) is a proper subset of B. Since in each step, we remove at least
one of the vectors in B and append one vector from S, we must have at least
r vectors in B, that is,

r ≤ k (3.4.1)

Possibility 2: r > k. All the B vectors are removed first
In this case suppose at the jth stage (where, clearly j ≤ r), we have a basis

Bj = vj, v(j−1), · · · , v1

for W , and j ≤ r. Hence we have

W = L[Bj] and v(j+1) ∈ W

Hence v(j+1) must be a linear combination of v1, v2, · · · , vj, which is a contra-
diction, since S is linearly independent. Thus this possibility cannot arise.
Hence we have (3.4.1). Thus we have
Property 2:
If a subspace W has a basis consisting of k vectors then any lin-
early independent set in W can have at most k vectors
or equivalently we can say that,
If a finitely generated subspace W has a basis consisting of k vec-
tors, then any subset of W having more than k vectors must be
linearly dependent

3) Suppose now W is a finitely generated subspace and

B = u1, u2, · · · , ud

B1 = u1, u2, · · · , uk
are any two bases for W . Then we have since B is a basis and B1 being a
basis is linearly independent, we must have by the Property 2 above that B′
must have at most d vectors, that is

k ≤ d (3.4.2)

Similarly, since B′ is a basis and B is a linearly independent set, we must
have by above property that B has at most k vectors, that is,

d ≤ k (3.4.3)
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Combining (3.4.3) and (3.4.4) we get

k = d (3.4.4)

Thus we have,
Property 3:
If W is a finitely generated subspace then all bases for W must
have the same number of vectors

4) Thus we see that with every finitely generated subspaceW there is a finite
number associated, namely, the number of vectors in a basis for W . This
leads us to the following definition:

Definition 3.4.2 If W is a finitely generated subspace then the number of
vectors in a basis is called the “dimension” of W .

From now on, we shall therefore refer to a finitely generated subspace as a
finite dimensional subspace. If the vector space is itself finite dimensional we
refer to it as a finite dimensional vector space.

5) Consider a finite set S = u1, u2, · · · , ur of linearly independent vectors
in V . Let u ∈ V be such that u 6∈ L[S]. We shall now show that S1 =
u1, u2, · · · , ur, u, the set obtained by appending u to S is linearly indepen-
dent. We have
α1u1 + α2u2 + · · ·+ αrur + αu = θV =⇒
α = 0 for otherwise u will be a linear combination of S vectors and hence
will be in L[S] which is not so
=⇒ α1u1 + α2u2 + · · ·+ αrur = θV =⇒
=⇒ αj = 0, 1 ≤ j ≤ r since S is linearly independent
=⇒ S1 is linearly independent. Thus we have,
Property 4:
S = u1, u2, · · · , ur is linearly independent in V and u 6∈ L[S] =⇒
S1 = u1, u2, · · · , ur, u is also linearly independent.

6) Suppose now W is a finite dimensional subspace and dimension of W is
d. Then any basis for W has exactly d vectors. Suppose S is any linearly
independent set having d vectors. Then S must be a basis for W . For,
S NOT a basis for W =⇒ S is not a spanning set for W
=⇒ S is properly contained in W
=⇒ There exists a w ∈ W such that w 6∈ L[S]
=⇒ S ∪ {w} is linearly independent and has d+ 1 vectors
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a contradiction because any d+ 1 vectors in W must be linearly dependent,
(by Property 4 above). Thus we have
Property 5:
W has dimension d =⇒ Every linearly independent set having d
vectors must be a basis for W

7) Let V be a vector space and let S = u1, u2, · · · , ur be linearly independent
vectors in V . Let u ∈ V be such that u 6∈ S

u1

u2u3

ur L[S]

V
u

Now consider the set S1 obtained by appending u to S, that is,

S1 = u1, u2, · · · , ur, u

We shall show that S1 is linearly independent. We have
α1u1 + α2u2 + · · ·+ αrur + αu = θV =⇒
α = 0 (for otherwise u will become a linear combination of u1, u2, · · · , ur
and hence will be in L[S] which will be a contradiction since we have chosen
u 6∈ L[S]) =⇒
α1u1 + α2u2 + · · ·+ αrur = θV =⇒
αj = 0 for 1 ≤ j ≤ r, (since u1, u2, · · · , ur are linearly independent) =⇒
S1 is linearly independent
Thus we have,
Property 6:
If S = u1, u2, · · · , ur is linearly independent in V and u ∈ V is
such that u 6∈ L[S] then S1 = u1, u2, · · · , ur, u is also linearly
independent

8) Let W be a subspace and let S = u1, u2, · · · , ur be linearly independent
vectors in W . Let u ∈ V be such that u 6∈ W
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u1

u2u3

ur W

V
u

Then we have, L[S] ⊆ W and hence u 6∈ L[S] (since we are given that u 6∈ W)
=⇒ by Property 6 above, the set S1 = u1, u2, · · · , ur, u is linearly indepen-
dent. Thus we have
Property 7
u1, u2, · · · , ur ∈ W linearly independent and u 6∈ W =⇒ u1, u2, · · · , ur, u
is linearly independent in V
This leads us to the following important fact:

9) Let W be a finite dimensional subspace. Let dimension of W be d. Let
S = u1, u2, · · · , ur be any linearly independent set in W . Since any d + 1
vectors in W must be linearly dependent we must have r ≤ d.
Case 1: r = d
Then S is a basis forW since any d vectors in a d dimensional subspace must
be a basis for that subspace.
Case 2: r < d
Let d− r = k.
Since S is a subspace of W and is properly contained in W , there exists a
vector w1 ∈ W such that w1 6∈ L[S]. By the above property we have

S1 = u1, u2, · · · , ur, w1

is a linearly independent set and is in W . Then look at L[S1] and get a
w2 ∈ W such that w2 6∈ L[S1]. Then we have

S2 = u1, u2, · · · , ur, w1, w2

linearly independent in W . Continuing this process, at the kth step we get

Sk = u1, u2, · · · , ur, w1, w2 · · · , wk

linearly independent in W . since k = d − r, this gives us a linearly inde-
pendent set having d vectors in the d dimensional subspace. Hence Sk is a

66



basis for W by Property 5 above, and this basis is obtained by “extending”
the given linearly independent set by appending d− r more vectors suitably
from W . Thus we have
Property 8:
A linearly independent in a finite dimensional subspaceW is either
a Basis for W or can be extended to be a basis for W
In particular,
if V is a finite dimensional vector space having dimension n, then
any linearly independent set u1, u2, · · · , ur (r < n) in V can be
extended to a basis by appending suitable n− r vectors

3.5 Rank Nullity Theorem

Let F be any field and consider the vector space Fk. Let

ej =



0
0
...
0
1
0
...
0


(k×1)

be the vector in Fk with 1 in jth position and 0 elsewhere. The set of vectors,

B = e1, e2, · · · , ek

form a basis for Fk as it is easy to see that they form a linearly independent
set in Fk and form a spanning set for Fk. Hence we have

dim(Fk) = k (3.5.1)

Now consider a matrix A ∈ Fm×n. For such m × n matrix over F we have
introduced the following four fundamental subspaces:

1. Null Space of A denoted by N
A

2. Range Space of A denoted by R
A
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3. Null Space of AT denoted by N
AT

4. Range Space of A denoted by R
AT

We have seen that,

1. R
A

= Col(A) = Row(AT )

2. R
AT

= Col(AT ) = Row(A)

The subspaces R
AT

and N
A

are subspaces of Fn and hence are finite dimen-
sional. We define

Definition 3.5.1

Nullity of A
def
= dimension of N

A
and is denoted by ν

A
(3.5.2)

Rank of A
def
= dimension of R

A
and is denoted by ρ

A
(3.5.3)

Similarly we have

Nullity of AT
def
= dimension of N

AT
and is denoted by ν

AT
(3.5.4)

Rank of AT
def
= dimension of R

AT
and is denoted by ρ

AT
(3.5.5)

We shall now see an important relation between these numbers:
Let us consider the zero matrix 0 ∈ Fm×n. Then clearly we have

N
0

= Fn and

R
0

= {θn}

Hence we have ν0 = n and ranko = 0. Thus we get

ρ0 + ν0 = n, the number of columns in 0

Next let A ∈ Fm×n be a nonzero matrix. Any basis for N
A

will have ν
A

vectors. Let
BN

A
= ϕ1, ϕ2, · · · , ϕν

A

be a basis for N
A

, (where ν
A
< n). By the Property 8 obtained in Section

3.4, we can extend this to a basis

B = ϕ1, ϕ2, · · · , ϕν
A
, v1, v2, · · · , v(n−ν

A
)
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for Fn, by appending suitable vectors v1, v2, · · · , v(n−ν
A
). Now any vector

b ∈ R
A

is of the form Ax for some x ∈ Fn, and any x ∈ Fn is a linear
combination of the vectors in the basis B. Therefore we have,

b ∈ R
A

=⇒ ∃x ∈ Fn 3 b = Ax

=⇒ b = A

 ν∑
j=1

A
αjϕj +

(n−ν
A
)∑

k=1

βkvk


(where αj, βk ∈ F, 1 ≤ j ≤ ν

A
, 1 ≤ k ≤ n− ν

A
)

=⇒ b =

ν
A∑

j=1

αj(Aϕj) +

(n−ν
A
)∑

k=1

βk(Avk) (since Aϕj = θn)

=⇒ b =

(n−ν
A
)∑

k=1

βkuk where uk = Avk ∈ RA

Thus we see that the set of vectors,

S = u1, u2, · · · , uk

is in R
A

and every vector in R
A

is a linear combination of these vectors.
Hence S is a spanning set for R

A
. If we show that S is also linearly inde-

pendent then it will become a linearly independent spanning set and hence
a basis for R

A
. We now proceed to prove that S is linearly independent. We

have,

(n−ν
A
)∑

k=1

βkuk = θm =⇒
(n−ν

A
)∑

k=1

βk(Avk) = θm (since uk = Avk)

=⇒ A

(n−ν
A
)∑

k=1

βkvk

 = θm

=⇒
(n−ν

A
)∑

k=1

βkvk ∈ NA

=⇒
(n−ν

A
)∑

k=1

βkvk =

ν
A∑

j=1

γjϕj, since BN A
is a basis for N

A

=⇒
ν
A∑

j=1

γjϕj +

(n−ν
A
)∑

k=1

(−βk)vk = θn
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=⇒ γj = 0, βk = 0, 1 ≤ j ≤ ν
A
, 1 ≤ k ≤ n− ν

A

(since B is a basis and hence linearly independent)

=⇒ S is linearly independent

Thus S is a linearly independent spanning set for R
A

and hence basis for
R

A
. Since there are n− ν

A
vectos in S we get

Dimension R
A

= n− ν
A

But the dimension of R
A

is ρ
A

, the rank of A. Thus we get

ρ
A

+ ν
A

= number of columns of A (3.5.6)

Similarly we get

ρ
AT

+ ν
AT

= number of columns of AT (3.5.7)

Thus we have,

Theorem 3.5.1 Rank Nullity Theorem:
For any matrix A ∈ Fm×n , we have

Rank of A + Nullity of A = Number of Columns in A

Thus we have for any A ∈ Fm×n,

ν
A

+ ρ
A

= n (3.5.8)

ρ
AT

+ ν
AT

= m (3.5.9)

3.6 Some Properties of the Null Space of a

Square Matrix and Its Powers

Let F be any field and A ∈ Fn×n. Clearly, for any positive integers k, `
we have that every vector in N

Ak
is also in N

A`
whenever k < `. On the

other hand all vectors in N
A`

may not be in N
Ak

. We now observe some
consequences of such situations:
1) Let A ∈ Fn×n. Let k be any positive integer ≥ 2. Suppose u ∈ N

Ak
and

u 6∈ N
A(k−1)

. Then the vector Au ∈ N
A(k−1)

since

A(k−1)(Au) = Aku = θn since u ∈ N
Ak
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N
A(k−1)

N
AkAu

u

Since u 6∈ N
A(k−1)

it follows that u 6∈ N
A

and hence Au 6= θn. Thus Au, being
a nonzero vector in N

A(k−1)
, forms a linearly independent set in the subspace

N
A(k−1)

. Since u does not belong to this subspace, it follows that Au, u form

a linearly independent set in N
Ak

, (by Property 7 in Section 3.4). Thus we
have
Property 1
k ≥ 2, u ∈ N

Ak
and u 6∈ N

A(k−1)

=⇒
a) Au is a linearly independent set in N

A(k−1)
and

b) Au, u is a linearly independent set in N
Ak

We shall now look at a simple generalization of this.
2) Let k be any positive integer k ≥ 2. Let u, v be any two vectors in N

Ak

which are not in N
A(k−1)

. Let W = N
A(k−1)

+ L[u]. Suppose

v 6∈ W (3.6.1)

Clearly the vectors Au and Av are in N
A(k−1)

since A(k−1)(Au) = Aku = θn

and A(k−1)(Av) = Akv = θn as u, v ∈ N
Ak

and as above they are nonzero
vectors.

N
A(k−1) u

W

vN
Ak Au

Av
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Further u, v are nonzero vectors since they are outside N
A

and θn is in N
A

.
We shall first see that the vectors Au,Av are linearly independent vectors in
N

A(k−1)
. We have

αAu+ βAv = θn
=⇒
A (αu+ βv) = θn
=⇒
αu+ βv ∈ N

A

=⇒
αu+ βv ∈ N

A(k−1)
(since N

A
⊆ N

A(k−1)
)

=⇒
αu+ βv = x where x ∈ N

A(k−1)

=⇒
βv = x+ (−α)u
=⇒
βv ∈ N

A(k−1)
+ L[u] =W

=⇒
β = 0 (since otherwise v will be in W violating (.1))
=⇒
αu = θn
=⇒
α = 0 since u is a nonzero vector

Thus we have

αAu+ βAv = θn =⇒ α = β = 0

Hence Au,Av are linearly independent vectors.
Now consider the set of vectors,

S = Au,Av, u

This is a linearly independent set of vectors since Au,Av are linearly in-
dependent vectors in the subspace N

A(k−1)
and u is outside this subspace.

Consequently,
S = Au,Av, u, v

is a linearly independent set of vectors since Au,Av, u are linearly indepen-
dent vectors in the subspaceW and v is outside this subspace. Thus we have
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Property 2:
Let k be any integer ≥ 2. Then
u, v ∈ N

Ak
and 6∈ N

A(k−1)
and v 6∈ N

A(k−1)
+ L[u]

=⇒
a) The set of vectors S1 = Au,Av is a linearly independent set in
N

A(k−1)

b) The set of vectors S = Au,Av, u, v is a linearly independent
set in N

Ak
We can easily follow the same arguments to prove the following

property:
Property 3
Let k be any integer ≥ 2. Then
u1, u2, · · · , ur ∈ N

Ak
and 6∈ N

A(k−1)
are such that

u1 6∈ N
A(k−1)

and

uj 6∈ Wj = N
A(k−1)

+ L[u1, u2, · · · , u(u−1)] for 2 ≤ j ≤ r
=⇒
a) The set of vectors S1 = Au1, Au2, · · · , Aur is a linearly indepen-
dent set in N

A(k−1)

b) The set of vectors S = Au1, Au2, · · · , Aur, u1, u2, · · · , ur is a lin-
early independent set in N

Ak

We shall now see further generalisations of this property.
3) Let k be any positive integer ≥ 3. For any A ∈ Fn×n we have

N
A(k−2)

⊆ N
A(k−1)

⊆ N
Ak

(3.6.2)

Suppose the matrix A ∈ Fn×n is such that

N
A(k−2)

6= N
A(k−1)

6= N
Ak

(3.6.3)

Let u1, u2, · · · , ur be vectors in N
Ak

such that

u1 6∈ N
A(k−1)

and (3.6.4)

uj 6∈ N
A(k−1)

+ L[u1, u2, · · · , u(j−1)] (3.6.5)

We define

Wj
def
= N

A(k−1)
+ L[u1, u2, · · · , u(j−1)]

Thus we have

uj 6∈ Wj for 2 ≤ j ≤ r
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Clearly u1, u2, · · · , ur are all nonzero vectors.
First we consider the vectors

S1 = A2u1, A
2u2, · · · , A2ur

These vectors are all inN
A(k−2)

since A(k−2)(A2uj) = Akuj = θn for 1 ≤ j ≤ r.
We shall now show that this is a linearly independent set of vectors inN

A(k−2)
.

We have,

α1A
2u1 + α2A

2u2 + · · ·+ αrA
2ur = θn

=⇒
A2 [α1u1 + α2u2 + · · ·+ αrur] = θn

=⇒
α1u1 + α2u2 + · · ·+ αrur ∈ N

A2

=⇒
α1u1 + α2u2 + · · ·+ αrur ∈ N

A(k−1)(
since k being ≥ 3 we have N

A2 ⊆ NA(k−1)

)
=⇒
αrur = an N

A(k−1)
vector + a vector in L[u1, u2, · · · , u(r−1)]

=⇒
αrur ∈ N

A(k−1)
+ L[u1, u2, · · · , u(r−1)]

=⇒
αr = 0 (since otherwise ur ∈ Wr - a contradiction)

Hence we get

α1A
2u1 + α2A

2u2 + · · ·+ α(r−1)A
2u(r−1) = θn

Repeating the above argument to this sum now we get α(r−1) = 0. Continuing
this process we get

αj = 0 for all j = 2, 3, · · · , r

Hence we get α1u1 ∈ N
A(k−1)

which gives α1 = 0 (since otherwise u1 ∈ N
A(k−1)

- a contradiction). Thus we see that

α1A
2u1 + α2A

2u2 + · · ·+ αrA
2ur = θn =⇒ αj = 0 for 1 ≤ j ≤ r
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Thus we get

The set S1 = A2u1, A
2u2, · · · , A2ur

is a linearly independent set in N
A(k−2)

}
(3.6.6)

Next we consider the set of vectors

S2 = Au1, Au2, · · · , Aur

These vectors are clearly in N
A(k−1)

since A(k−1)(Auj) = Akuj = θn for 1 ≤
j ≤ r. We shall now show that these vectors are linearly independent. We
have

r∑
j=1

αjAuj = θn

=⇒

A

 r∑
j=1

αjuj

 = θn

=⇒
r∑
j=1

αjuj ∈ N
A

=⇒
r∑
j=1

αjuj ∈ N
A(k−1)

(since N
A
⊂ N

A(k−1)
)

=⇒
αrur = (a N

A(k−1)
vector) + (a vector in L[u1, u2, · · · , u(r−1)])

=⇒
αr = 0 ( since otherwise ur ∈ N

A(k−1)
+ L[u1, u2, · · · , u(r−1)] )

Hence we get

(r−1)∑
j=1

αjAuj ∈ N
A(k−1)

Applying the above argument repeatedly we get

αj = 0 for 2 ≤ j ≤ r
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Hence we get

α1u1 ∈ N
A(k−1)

This =⇒
α1 = 0 (since by our choice u1 6∈ N

A(k−1)
)

Thus we have
r∑
j=1

αjAuj = θn =⇒ αj = 0 for 1 ≤ j ≤ r

Hence

The set S2 = Au1., Au2, · · · , Aur
is a linearly independent set in N

A(k−1)

}
(3.6.7)

We next consider the set obtained by taking all the vectors in S1 and in S2
to get

S3 = A2u1, A
2u2, · · · , A2ur, Au1, Au2, · · · , Aur. (3.6.8)

Those are all vectors in N
A(k−1)

. We shall this set is also a linearly indepen-
dent set. We have

r∑
j=1

αjA
2uj +

r∑
j=1

βjAuj = θn

=⇒

A

 r∑
j=1

αjAuj +
r∑
j=1

βjuj

 = θn

=⇒
r∑
j=1

αjAuj +
r∑
j=1

βjuj ∈ N
A

Let

x =
r∑
j=1

αjAuj +
r∑
j=1

βjuj

We then have from above that x ∈ N
A

and hence x ∈ N
A(k−1)

. This gives

βrur = x+
r∑
j=1

(−αj)Auj +
r−1∑
j=1

βjuj
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= y +
r−1∑
j=1

βjuj where

y = x+
r∑
j=1

(−αj)Auj ∈ N
A(k−1)

This =⇒
βrur ∈ N

A(k−1)
+ L[u1, u2, · · · , u(r−1)]

=⇒
βrur ∈ Wr

=⇒
βr = 0 (since otherwiseur ∈ N

A(k−1)
+ L[u1, u2, · · · , u(r−1)] - a contradiction)

Thus we get βr = 0 and hence we get

r∑
j=1

αjA
2uj +

(r−1)∑
j=1

βjAuj = θn

Continuing this process we get all the βj as zero. Hence we get

r∑
j=1

αjA
2uj = θn

But this gives us all αj = 0 since we have already shown that the set S1 is
linearly independent. Thus we have

The set S3 = A2u1, A
2u2, · · · , A2ur, Au1, Au2, · · · , Aur

is linearly independent

}
(3.6.9)

Now the set

A2u1, A
2u2, · · · , A2ur, Au1, Au2, · · · , Aur, u1

is linearly independent since all vectors except ur are linearly independent
vectors in the subspace N

A(k−1)
and u1 is outside this subspace. Next the set

A2u1, A
2u2, · · · , A2ur, Au1, Au2, · · · , Aur, u1, u2

is linearly independent since all vectors except u2 are in the subspaceN
A(k−1)

+

L[u1] and u2 is outside this subspace. Continuing this process we get,

The set
A2u1, A

2u2, · · · , A2ur, Au1, Au2, · · · , Aur, u− 1, u2, · · · , ur
is linearly independent

 (3.6.10)
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Thus we have
Property 4:
(Let k be an integer ≥ 3). Then
u1, u2, · · · , ur are vectors inN

Ak
such that uj 6∈ NA2+L[u1, u2, · · · , u(j−1)]

=⇒
a) The vectors A2u1, A

2u2, · · · , A2ur are linearly independent in
N

A(k−2)

b) The vectors Au1, Au2, · · · , Aur are linearly independent inN
A(k−1)

c) The vectors A2u1, A
2u2, · · · , A2ur, Au1, Au2, · · · , Aur are lin-

early independent in N
A(k−1)

d) The vectors

A2u1, A
2u2, · · · , A2ur, Au1, Au2, · · · , Aur, u1, u2, · · · , ur

are linearly independent in N
Ak

Analogously, we can prove the follow-
ing generalisation:
Property 5:
Let k be any positive integer.
u1, u2, · · · , ur are vectors in N

Ak
such that

i) u1 6∈ N
A(k−1)

and

ii) uj 6∈ N
A(k−1)

+ L[u1, u2, · · · , u(j−1)]
=⇒
a) The vectors A(k−1)u1, A

(k−1)u2, · · · , A(k−1)ur form a linearly in-
dependent set in N

A

b) The vectors A(k−2)u1, A
(k−2)u2, · · · , A(k−2)ur form a linearly in-

dependent set in N
A2 , and in general,

c) In general the vectors A(k−j)u1, A
(k−j)u2, · · · , A(k−j)ur form a

linearly independent set in N
A(k−j)

for j = 1, 2, · · · , (k − 1)

d) The vectors
{{

A(k−j)u`

}r
`=1

}k
j=1

form a linearly independent set

in N
Ak

e) For any j, (1 ≤ j ≤ k), the vectors
{
A(k−j)u`

}r
`=1

form a linearly

independent set in N
A(k−j)
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