Chapter 3

Linear Independence and Basis

3.1 Finitely Generated Spaces

We shall now begin investigating the question of obtaining a spanning set of
optimal size. We have introduced in the last chapter the notion of a finitely
generated subspace. We had,

Definition 3.1.1 Let V be a vector space over a field F. A subspace W of
V is said to be finitely generated if there exists a finite spanning set for W,
that is, if there exists S C W such that S is finite and L[S] =W

We illustrate this by some examples.

Example 3.1.1 Consider the vector space R3. Let W be the subspace de-

fined as
o
W = {x( 15} ):a,ﬂER}
a+ 3

Clearly the set of vectors

()0

form a finite spanning set for WW. Hence W is a finitely generated subspace.
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Clearly the set of vectors

1 0 0
€1 = 0 , € = 1 , €3 = 0
0 0 1

form a finite spanning set for R* and hence the vector spsce R? is itself finitely
generated.

Example 3.1.2 Let V be the vector space, fR [R] of all functions from R
to R. We have

F[Rl = {f:R—R}

Consider the subspace YW = R[] of all polynomials in = with real coefficients.
Then W is not finitely generated. For, suppose it is finitely generated. This
would then mean that there exists a finite spanning set

S =P1,P2, ", Pk

for W. Let
d= Maz.{degree p; : 1 < j < k}

Since S is a spanning set for VW we have

PEW = p=api+apa+ -+, (o €ER, 1< j<k)
= degreep <d

This means that no polynomial in W can have degree greater than d. Thus
is a contradiction, since for example, 9*! is a polynomial of degree greater
than d and is in W. Thus W is not finitely generated. On the other hand,
consider the subspace, W = Ry|[z], of all polynomials in V of degree less
than or equal to N. Then clearly

S ={pn= xn}gzo

is a finite spanning set for WW and hence this subspace is finitely generated.
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3.2 Linear Independence

We shall next introduce the notion of a linearly independent set. Consider a
finite set of vectors

Up, Uy == -y Uy
in a vector space V. Any linear combination of these vectors is of the form
QU] + GlUg + -+ - + QU
where a; € F, for 1 < j <r. In particular,
OU1+OU2++OUT

is a linear combination of these vectors and is equal to 6,,. This linear com-
bination is called the trivial linear combination of these vectors. Thus we
find that given any finite set of vectors, we can obtain the zero vector 6,,, as

a linear combination of these vectors.

Example 3.2.1 Consider the vector space ¥V = R? and the set of vectors,

1 0
S=ur=|[0 ]|, u=|1
1 1

Then clearly we can write the zero vector 6, as the trivial linear combination
of these vectors as

QV = Ou1 + OU2

Further this is the only way we can express 6, as a linear combination of
uy, ug. For, if a linear combination gives 0,,, then we must have,

ajug +opuy = 0,
_—
aq
B =0
ar + B
_—
ap, and ap, = 0
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On the other hand consider the set of vectors,

1 0 1
S:u1: 0 , Uy = 1 , Uz = 1
1 1 2

Then we have the trivial linear combination

0 = 0U1 + OUQ + 0U3

v

We also have
1’LL1 + 1U2 + (—1)U3 = GV
In fact, for any oo € R we have

auy + aug + (—a)ug = 6,

Thus nontrivial linear combinations of wuy,us,us also give rise to the zero
vector.

From the above example it follows that given any finite subset S of a vector
space V, the following two possibilities arise:

1. EITHER 6, can be expressed ONLY as the trivial linear combination
of the vectors in S,

2. OR 6, can also be expressed as a nontrivial linear combination of the
vectors in S

We distinguish these two possibilities with the following definition:

Definition 3.2.1 Let V be a vector space over a field F. A nonempty finite
subset
S:'Ll,l,'U/Q,"',UT

is said to be linearly independent if
au + Uy + -+ apu, =0, = a; =0,1<)3<r

(that is, the only way to express the zero vector as a linear combination of
the vectors in S is to express it as the trivial linear combination).
If S is not linearly independent it is said to be linearly dependent.
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Remark 3.2.1 The set
S:ulau%”'aur

is linearly dependent means that there exist aq, g, -+, . € F, at least one
of which is not zero, such that

QU + ol + - -+ apu, =0,
Example 3.2.2 In Example 3.2.1 above, the set
S = uy, us
is linearly independent, whereas te set
S = uy, ug, ug
is linearly dependent.

Example 3.2.3 Consider the vector space V = R[z| of all polynomials over
R.

a) Consider the set
S1 = p1,P2,P3
where
pr=1,p =2z, ps =2’

We have

aip1 + qops +azps = 0,
=

a4 e + asz® = 0
_—

ai, ag and a3 = 0

Hence the set S is linearly independent.
b) Next we consider the set

52 = f1>f2af3

where
f1:1+l’, f2:1+x27 f3:1—|—$’+1’2
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We have

arfi +asfo+asfs

—
a1 (1+2) + ag(1+ 2%) + az(1 + o + 2?)
—
(o1 + g + a3) + (@1 + a3)x + (a9 + az)z?
—

o)+ o +ay = 0

o1 + a3 = 0

Qg + (3 = 0
—

ay, ag and ag

Hence the set S is linearly independent.
c¢) Consider the set

53 = f17f27f3

where
fi=1+zx, f2:$+$2, f3:1—|—x2

We have

arfi+asfot+osfs =

=
(14 2) + oz + 2°) + as(1 + 2?) =
—
(1 +a3) + (a1 + ag)r + (ag + az)x® =
—
oy +ag = 0
o+ o = 0
g + o3 = 0
—

a1, g and ag =

Hence the set S5 is linearly independent
d) Consider the set

54 = f17f27f3
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where
fi=1l—-x, fo=1+2, f3=1

This set is linearly dependent since we have
Lfi+1fa+(-2)fs =0,

a nontrivial linear combination giving rise to 0,,.

3.3 Properties of Linearly Dependent Sets

We shall now look at an useful property of a linearly dependent set. Consider
a linearly dependent set
S:ubu?a"'aur

(We arrange these vectors in S in some order as above).
1) Let & = wg,ug, -+, Uy, Ugry1), - - -, U be any superset of S. Since S is
linearly dependent there exist aq, s, -+, a,, at least one of which is not
zero, such that

Uy + s + -+ pu, =0,

=
iy + g + - -+ aptly + Ougyry + -+ 0ug =0,

Since at least one of the «; is nonzero we have above a nontrivial linear
combination of &; vectors giving rise to the zero vector. Hence & is linearly
dependent. Hence we can conclude,
Property 1:

Any superset of a linearly dependent set is linearly dependent

2) There exist ay, g, - -+, o, € F, at least one of which is not zero, such that
oy + s + -+ apu, =0,

Let k be the largest index such that ag # 0, that is, o # 0 and «; = 0 if
j > k. Then we have

U + Qog + - - - + apuy = QV
Since oy, # 0 we get
up = Pruy + Batp + -+ + B Ug-1)
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where
Bj:OflOcj for 1 <j<(k-1)

Thus we see that uy, is a linear combination of the preceeding vectors uy, ug, =+ -, U(g—1).
Thus we have the folowing property of a linearly dependent set:

Property 2:

If S is a finite linearly dependent set, (in a vector space V), whose
vectors are arranged in some order

S =uj, Uz, 0, Uy

then there exists a vector u, such that it is a linear combination
of the preceeding vectors w, us, -+, Uk—_1)

3) We shall now use this property to remove the redundancies from a linearly
dependent spanning set for a subspace.
Consider a finite set of vectors

S:u17u27”.7u7’

Without loss of generality let us assume that these vectors are all nonzero.
Case 1: S is linearly independent

In this case S is a linearly independent spanning set for L[S].

Case 2; S is linearly dependent

In this case, by the above property of linearly dependent sets, we must
have a u such that it is a linear combination of the preceeding vectors
Uy, Uz, -+, Ug—1). Let ky be the smallest index such that wuy, is a linear com-
bination of the preceeding vectors. (Since the vectors are all nonzero vectors
we have k; > 1). Ths means that,

a) ug, is a linear combination of wuy, ug, - - - , Uk, —1), and

b) u; is NOT a linear combination of uy, ug, - - -, u(j_1) for any j < ky — 1
Now any vector that can be written as a linear combination of uy, us, - - -, u,
can also be written as a linear combinationof the set of vectors,

Sl = U1, Uz, " "+ 7u(k‘1—1)7 u(k‘l—i-l)u cec, U
obtained from S by removing the vector u;. Thus we have
L[S] = L[]

If S; is linearly independent then it is a linearly independent spanning set
for L][S] and S; C S.
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If S; is linearly dependent, we repeat the above process with S; and remove
one more vector to get a subset Sy C 57 C S such that

L[Se] = L[S:] = L]S]

If S5 is linearly independent then it is a linearly independent spanning set
for £[S]. If not, we continue this process and in each step we remove one
vector, and since S is a finite set, we get, after a finite number of steps, a
subset S C S such that S is a linearly independent spanning set for £[S].
Thus we have the folowing property of a linearly dependent set:

Property 3:

If S is a finite linearly dependent set in a vector space V, there exists
a subset S C S such that, Sisa linearly independent spanning set
for L[S].

Remark 3.3.1 We call the above process of getting a linearly independent
spanning set out of a linearly dependent spanning set, in short, as the “scan-
ning” (from the left) process

3.4 Basis

Consider a finitely generated subspace VW of a vector space V. Since W is
finitely generated there must be a finite spanning set, say

S = uy,ug, -, Uy

Since S is a spanning set for W, we have L[S] = W. If S is linearly inde-
pendent then we have a linearly independent spanning set for W. If S is
linearly dependent, then by Property 3 of the previous section we can get a
linearly independent subset S C S such that £[S] = £L[S] = W. Hence S is
a linearly independent spanning set. Thus, in any case, we see that a finitely
generated subspace must possess a linearly independent, finite, spanning set.
This leads us to the following definition:

Definition 3.4.1 A finite linearly independent spanning set for a finitely
generated subspace is called a BASIS for the subspace.

Remark 3.4.1 If the vector space V is itself finitely generated then it will
a have finite, linearly independent, spanning set and such a spanning set is
called a basis for V
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We shall now look at some properties of linearly independent sets and Basis.

1) It is easy to see that,
if S = wuy,us,---,u, is a linearly independent set then any nonempty
subset of S is also linearly independent

2) Suppose W is a finitely generated subspace of V and has basis having k
vectors,
B:UhuQ,"',Uk

Consider any linearly independent set in VW having r vectors, say
S:U1,U2,"',U7~

We then consider
S1 = V1, U, Uz, -+, Uy

Since v; € W and B is a basis we must have v; as a linear combination of the
vectors in B. Hence S; must be linearly dependent. Hence by Property 3 of
linearly dependent spanning sets obtained in the previous section, we must
have a subset gl C Sj such that Sl is a linearly independent spanning set for
W, that is, S is a basis for W. This is got by the process of removing the
redundancy in the linearly dependent spanning set, S;, using the scanning
process described in the previous section. Clearly the process does not remove
v1 from the set S;. Hence there must be a proper subset B’ of B, (obtained
by removing at least one vector from B), such that

Bl = U1, B,
is a basis for WW. Now we let
Sy = Vg, vy, B

Since this is a linearly dependent set we can repeat the above argument to
Ss to obtain a proper subset B of Bi, (and hence a proper subset of B), such
that

BQ = VU9, V1, Bll

is a basis for WW. We continue this process. There arise two possibilities.
Possibility 1: All the vectors from S have been exhaustsed.
In this case we get a basis

Br = Upr, U(r—1), """, V1, Bér—l)
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where Bzr_l) is a proper subset of B. Since in each step, we remove at least
one of the vectors in B and append one vector from S, we must have at least
r vectors in B, that is,

r < k (3.4.1)

Possibility 2: r > k. All the B vectors are removed first
In this case suppose at the jth stage (where, clearly j < r), we have a basis

Bj =vj,vg-1), 01
for W, and j < r. Hence we have
W = E[B]] and U(j+1) ew

Hence v(;41) must be a linear combination of vy, vy, - - -, v;, which is a contra-
diction, since S is linearly independent. Thus this possibility cannot arise.
Hence we have (3.4.1). Thus we have

Property 2:

If a subspace VW has a basis consisting of k vectors then any lin-
early independent set in VW can have at most k vectors

or equivalently we can say that,

If a finitely generated subspace W has a basis consisting of k vec-
tors, then any subset of VW having more than k vectors must be
linearly dependent

3) Suppose now W is a finitely generated subspace and
B:ul,UQ,"‘,Ud

By = uy,ug, - -, ug

are any two bases for W. Then we have since B is a basis and B; being a
basis is linearly independent, we must have by the Property 2 above that B’
must have at most d vectors, that is

k< d (3.4.2)

Similarly, since B’ is a basis and B is a linearly independent set, we must
have by above property that B has at most k vectors, that is,

d < k (3.4.3)
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Combining (3.4.3) and (3.4.4) we get
k=d (3.4.4)

Thus we have,

Property 3:

If VW is a finitely generated subspace then all bases for VW must
have the same number of vectors

4) Thus we see that with every finitely generated subspace W there is a finite
number associated, namely, the number of vectors in a basis for WW. This
leads us to the following definition:

Definition 3.4.2 If WV is a finitely generated subspace then the number of
vectors in a basis is called the “dimension” of W.

From now on, we shall therefore refer to a finitely generated subspace as a
finite dimensional subspace. If the vector space is itself finite dimensional we
refer to it as a finite dimensional vector space.

5) Consider a finite set S = uy,ug, -+, u, of linearly independent vectors
in V. Let u € V be such that u ¢ L[S]. We shall now show that S; =
Uy, Usg, - - -, Up, U, the set obtained by appending u to § is linearly indepen-
dent. We have

Uy + oy + - -+ U, +ou =0, =

a = 0 for otherwise u will be a linear combination of S vectors and hence
will be in £[S] which is not so

— Q1U1+CY2U2+"'+OZTU7*:0V —

— «a; =0, 1 <j <rsince S is linearly independent

=—> & is linearly independent. Thus we have,

Property 4:
S = uj,Us, - -+, u, is linearly independent in V and u ¢ L[S] —-
S1 = uy, U, ¢+ ¢, Uy, uw is also linearly independent.

6) Suppose now W is a finite dimensional subspace and dimension of W is
d. Then any basis for W has exactly d vectors. Suppose S is any linearly
independent set having d vectors. Then & must be a basis for W. For,

S NOT a basis for W = § is not a spanning set for W

—> § is properly contained in W

= There exists a w € W such that w ¢ L[S]

=—> S U {w} is linearly independent and has d + 1 vectors
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a contradiction because any d + 1 vectors in V¥V must be linearly dependent,
(by Property 4 above). Thus we have

Property 5:

W has dimension d —> Every linearly independent set having d
vectors must be a basis for W

7) Let V be a vector space and let S = wuy, us, - - -, u, be linearly independent
vectors in V. Let u € V be such that u ¢ S

Now consider the set S; obtained by appending u to S, that is,
Sl = Uy, Uy Up, U

We shall show that &) is linearly independent. We have
Qg + Uy + - -+ o, +ou =0, =

a = 0 (for otherwise u will become a linear combination of wy,ug, -, u,
and hence will be in £[S] which will be a contradiction since we have chosen
u ¢ L[S]) =

QiU + oy + - -+ apu, =0, =

a; =0for 1 <j <r, (since uy,ug,---,u, are linearly independent) =

& is linearly independent
Thus we have,

Property 6:
If S = uy,usz,---,u, is linearly independent in ¥V and u € V is
such that v ¢ L[S] then & = wuj,uz,+++,u,,u is also linearly
independent

8) Let W be a subspace and let S = uy,us, - -, u, be linearly independent
vectors in W. Let u € V be such that u ¢ W
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Then we have, £[S] € W and hence u ¢ L[S] (since we are given that u ¢ W)

= by Property 6 above, the set & = uy, u9, -+, u,, u is linearly indepen-
dent. Thus we have

Property 7

U1, Uz, -+ + 5 U, € WY linearly independent and u € W —> uq, Uz, -+, Uy, U

is linearly independent in YV
This leads us to the following important fact:

9) Let W be a finite dimensional subspace. Let dimension of W be d. Let
S = uy,us, -+, u, be any linearly independent set in V. Since any d + 1
vectors in W must be linearly dependent we must have r < d.

Case 1: r=d

Then § is a basis for W since any d vectors in a d dimensional subspace must
be a basis for that subspace.

Case 2: r < d

Letd —r =k.

Since S is a subspace of W and is properly contained in W, there exists a
vector wy € W such that wy € L[S]. By the above property we have

Sl = U1, U2, , Up, Wy

is a linearly independent set and is in WW. Then look at L£[S;] and get a
wy € W such that wy & L[S;]. Then we have

82 = U1, U2y~ Up, W1, W2
linearly independent in V. Continuing this process, at the kth step we get
Sk = Uy, Ug, *+, Up, W, W -+, W

linearly independent in W. since k = d — r, this gives us a linearly inde-
pendent set having d vectors in the d dimensional subspace. Hence S is a
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basis for YW by Property 5 above, and this basis is obtained by “extending”
the given linearly independent set by appending d — r more vectors suitably
from W. Thus we have

Property 8:

A linearly independent in a finite dimensional subspace W is either
a Basis for W or can be extended to be a basis for W

In particular,

if V is a finite dimensional vector space having dimension n, then
any linearly independent set wu;,us,:+-,u, (r < n) in V can be
extended to a basis by appending suitable n — r vectors

3.5 Rank Nullity Theorem

Let F be any field and consider the vector space F¥. Let

0
0

0 (kx1)
be the vector in F* with 1 in jth position and 0 elsewhere. The set of vectors,

B=ei, e,

form a basis for F¥ as it is easy to see that they form a linearly independent
set in F* and form a spanning set for F*. Hence we have

dim(F*) = k (3.5.1)

Now consider a matrix A € F™*". For such m x n matrix over F we have

introduced the following four fundamental subspaces:
1. Null Space of A denoted by N,

2. Range Space of A denoted by R,
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3. Null Space of A" denoted by N,

4. Range Space of A denoted by R,
We have seen that,

1. R, = Col(A) = Row(AT)

2. R, = Col(A") = Row(A)

The subspaces R . and N, are subspaces of F" and hence are finite dimen-
sional. We define

Definition 3.5.1

Nullity of A ' dimension of N, and is denoted by v, (3.5.2)

Rank of A “ dimension of R, and is denoted by p, (3.5.3)
Similarly we have

Nullity of AT “' dimension of N, and is denoted by v, (3.5.4)
Rank of AT I dimension of R, and is denoted by p . (3.5.5)

We shall now see an important relation between these numbers:
Let us consider the zero matrix 0 € F™*". Then clearly we have

N = F"and

R = {0}

0

Hence we have v, = n and ranko = 0. Thus we get
p, + v, = mn, the number of columns in 0

Next let A € F™™ be a nonzero matrix. Any basis for A/, will have v,
vectors. Let
BNA :9017()027"'7901/14

be a basis for N, (where v, < n). By the Property 8 obtained in Section
3.4, we can extend this to a basis

B:wl?w?’..‘790111471}171}27...7?](”71/14)
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for F*, by appending suitable vectors vy, vz, -, v(n-y,). Now any vector
b € R, is of the form Az for some z € F", and any x € F" is a linear
combination of the vectors in the basis B. Therefore we have,

beR, = reF'3b=Ax

v (n*VA)
- =A (ZACY]'(,O]' + Z ﬁkvk)

j=1 k=1
(where o, By €F, 1 <j<v,, 1<k<n-—v,)

N (n—VA)
= b= Z a;(Ap;) + Z Br(Avy) (since Ap; = 6,)

j=1 k=1

(n_l’A)
— b= Z Brug where u, = Av, € R,

k=1

Thus we see that the set of vectors,
S =y, ug, -, Uy

is in R, and every vector in R, is a linear combination of these vectors.
Hence S is a spanning set for R ,. If we show that S is also linearly inde-
pendent then it will become a linearly independent spanning set and hence
a basis for R ,. We now proceed to prove that S is linearly independent. We
have,

(TL—VA) (n—VA)
Z Bkuk = 9m - Z ﬁk<A1)k> = Gm (since Uy = Avk)
k=1 k=1

(n—z/A)
— Al Y Bk | =Om
k=1
(anA)

= Z Brug € NA
k=1

(n—v,) v

A
= ) Beor = Y ¢, since By, is a basis for N,
k=1 j=1
v, (TL—Z/A)
= Y vt Y (=Bu)uk =0,
j=1 k=1
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— v, =0, 6,=0,1<7<v,,1<k<n-v,
(since B is a basis and hence linearly independent)

—> S is linearly independent

Thus S is a linearly independent spanning set for R, and hence basis for
R ,. Since there are n — v, vectos in S we get

Dimension R, = n—v,
But the dimension of R, is p,, the rank of A. Thus we get
p, +v, = number of columns of A (3.5.6)
Similarly we get
P +V,, = number of columns of A" (3.5.7)

Thus we have,

Theorem 3.5.1 Rank Nullity Theorem:
For any matrix A € F™*" , we have

Rank of A+ Nullity of A = Number of Columns in A

Thus we have for any A € F™*",

v,+p, = n (3.5.8)
Por TV = m (3.5.9)

3.6 Some Properties of the Null Space of a
Square Matrix and Its Powers

Let F be any field and A € F"*". Clearly, for any positive integers k, ¢

we have that every vector in ./\/'Ak is also in NA[ whenever k£ < /. On the

other hand all vectors in N, may not be in /,,. We now observe some

consequences of such situations:

1) Let A € F**". Let k be any positive integer > 2. Suppose u € N, and
A

ug N ,_, - Then the vector Au € N, since

Alk—1

A(k_l)(Au) = AFy = 0, since u € NAk
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Ak

Since u € N it follows that u & N, and hence Au # 6,,. Thus Au, being

Alk=1)
a nonzero vector in ./\/A(k_l) , forms a linearly independent set in the subspace
N . Since u does not belong to this subspace, it follows that Au, u form
Ak—1) g p

a linearly independent set in J\/’Ak, (by Property 7 in Section 3.4). Thus we
have

Property 1

k:22,u€./\fA,c and'u,e./\fA
—

a) Au is a linearly independent set in NA(k—l) and
b) Au,wu is a linearly independent set in NAk

We shall now look at a simple generalization of this.

2) Let k be any positive integer k > 2. Let u,v be any two vectors in NAk

(k—1)

which are not in NA(k_l). Let W = NA(k—l) + L[u]. Suppose
v g W (3.6.1)

Clearly the vectors Au and Av are in N, since AR (Ay) = APy = 0,
and A* D (Av) = AFv = 6, as u,v € N, and as above they are nonzero

vectors.
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Further u, v are nonzero vectors since they are outside N, and 6, is in \V,.
We shall first see that the vectors Au, Av are linearly independent vectors in
N We have

Alk=1)"

aAu+ fAv = 6,

=
A(au+pv) = 46,

_—

au + B € N,

_—

au+ fu € N, (since N, TN )

_

au + o = x where z € NA(k—l)

_

B = 4+ (—a)u

_—

pu € N oy T Lu=W

=

B = 0 (since otherwise v will be in W violating (.1))
_—

ou = 40,

SN

« = 0 since u is a nonzero vector

Thus we have
aAu+ fAv =0, = a=p=0

Hence Au, Av are linearly independent vectors.
Now consider the set of vectors,

S = Au, Av,u

This is a linearly independent set of vectors since Au, Av are linearly in-
dependent vectors in the subspace ./\/A and u is outside this subspace.
Consequently,

(k—1)

S = Au, Av,u,v

is a linearly independent set of vectors since Au, Av,u are linearly indepen-
dent vectors in the subspace ¥V and v is outside this subspace. Thus we have
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Property 2:
Let k be any integer > 2. Then
u,v €N, and ¢ NA and v &€ NA(k_l) + L[u]

(k—1)
=
a) The set of vectors §; = Awu, Av is a linearly independent set in
NA(k—l)
b) The set of vectors S = Au, Av,u,v is a linearly independent

set in NAk We can easily follow the same arguments to prove the following
property:

Property 3
Let k be any integer > 2. Then
Uqy Uy oy Uy € NAk and & NA(k_l) are such that

U1 € NA(k—l) and
u; ¢ W; = NA(k_l) + Llug, uzy - s U1y for 2 < j <r
—

a) The set of vectors S; = Auq, Aus, - -+, Au, is a linearly indepen-
dent set in NA(k_l)
b) The set of vectors § = Au;, Auz, -+, AU,, U1, Uz, -+, U, is a lin-

early independent set in NAk
We shall now see further generalisations of this property.
3) Let k be any positive integer > 3. For any A € F"*" we have

N CN CN

Alk=2) — Alk=1) — Ak

(3.6.2)
Suppose the matrix A € F**" is such that

N #N o # N, (3.6.3)

(k—1)

Let uq, us, - - -, u, be vectors in /\/’Ak such that

w ¢ N and (3.6.4)

A(k=1)

Uj ¢ NA +£[U1,U2,"',U(J’_1)]

(k—1)

We define

Thus we have

U, ngfOI'QéjST’
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Clearly uq,us, - - -, u, are all nonzero vectors.
First we consider the vectors

Sl - AQUl) A2u2a e 7A2u7‘

These vectors are all in N/ since A®~2(A%u;) = AFu; =0, for 1 < j <r.

A(k—Q)
We shall now show that this is a linearly independent set of vectors in NA

We have,

(k=2) "

a1 A%y 4 anA®ug + - + o A%u, = 0,

_—
A? [aquy + agug 4 -+ o] = 6,
_—
auy 4 aguy + -+ opu, € N,
_—
o U + Qg + -+ U, € NA(k—U

(since k being > 3 we have N, C NA(k—l))

-

ou, = an J\/'A<k_1) vector + a vector in Lluy, ug, -+, ug—1)]
—

a, € N )+ Llug,ug, - up-n)]

=

a, = 0 (since otherwise u, € W, - a contradiction)
Hence we get
a1A2u1 + &2A2U2 + -+ Oé(r_l)A2U(T_1) = Qn

Repeating the above argument to this sum now we get 1) = 0. Continuing
this process we get

aj = Oforallj=23---,r

Hence we get oqu; € NA(k_l) which gives a; = 0 (since otherwise u; € NA
- a contradiction). Thus we see that

(k—1)

o A%uy + o Aus + -+ oA, =0, = a;=0for 1 <j<r
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Thus we get

The set §; = A2U17 A2u27 T ’Azur } (3.6.6)
(k—2)

is a linearly independent set in ./\/A
Next we consider the set of vectors
Sy = Auq, Aus, - - -, Au,
These vectors are clearly in NA(kfl) since AV (Au;) = AFu; = 0, for 1 <

7 < r. We shall now show that these vectors are linearly independent. We
have

Z OéjAUj = Qn
j=1

=
.,
A ZOéjUj = Qn
j=1
=
T
>au; € N,
j=1
=
.
Yoaju; € N ) (since N, CN )
j=1
—
au, = (a NA<k_1> vector) + (a vector in Lluy, ug, - -+, up—1)])
=
a, = 0 ( since otherwise u, € ./\/'A(k_l) + Llug, ug, -+, Up—1)] )
Hence we get
(r=1)
Z OéjAUj S NA(k—l)
j=1

Applying the above argument repeatedly we get
a = 0for2<j5<r
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Hence we get
U < NA(k—l)
This =

a; = 0 (since by our choice u; ¢ N (1) )

Thus we have

ZajAujzﬁn — a;=0for1<j5<r

Hence

The set S; = Auy., Aus, - - -, Au, }
A(k—1)

is a linearly independent set in A/ (3.6.7)

We next consider the set obtained by taking all the vectors in &; and in Sy
to get
S; = A%uy, A%us, - - -, A%u,, Auy, Aus, - - -, Au,.. (3.6.8)

Those are all vectors in N
dent set. We have

Jany We shall this set is also a linearly indepen-

S A%+ S BiAu; = 6,
i=1 i=1

—
A Z ajAuj + Z/Bjuj = 0,
j=1 =1
—

ZOéjA'LLj + Zﬁjﬂj S NA
j=1 J=1
Let
> ajAu; + Y B
j=1 J=1

We then have from above that x € N/, and hence x € N This gives

Ak=1)"

Bru, = $+Z —Qy AUJ+ZBJ“J

j=1
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r—1

= y+ Z Bju; where
j=1

y = x+ zzl(—ozj)Auj S /\/'A(,%l)
This = ’
Bru, € NA(kfl) + Llug, ug, -+, ug—1)
_
Bru, € Wy
_—
B. = 0 (since otherwiseu, € NA(k—l) + Lluy, ug, - -, up—1)] - a contradiction)

Thus we get 8, = 0 and hence we get

r (T‘—l)
ZajA2Uj+ Z BjAuj = O
= =1

Continuing this process we get all the ; as zero. Hence we get

Z OéjAQUj = Qn

j=1
But this gives us all a; = 0 since we have already shown that the set S; is
linearly independent. Thus we have

The set 83 = A2u17 A2u27 T 7A2u7“7 Auh Au27 T 7Au7“
is linearly independent

} (3.6.9)

Now the set
2 2 2
A Ul,A u27"'7A uT7Au17Au27”'7AU/T7u1

is linearly independent since all vectors except u, are linearly independent

vectors in the subspace NA(k_l) and u; is outside this subspace. Next the set

2 2 2
A ulaA u2>"'7A uraAulaAu2>“'aAuraul7u2

is linearly independent since all vectors except us are in the subspace NA +

(k—1)
L[uq] and uy is outside this subspace. Continuing this process we get,

The set
A?uq, A%uqy, - - - A%y, Aug, Aug, -+ - A, u — 1, ug, -+ Uy (3.6.10)
is linearly independent

7



Thus we have

Property 4:

(Let k be an integer > 3). Then

U1, Uz, * * + , U, are vectors in NAk such that u; & NAZ +L[wr, Uy ¢ ¢ ¢y UG—1)]
—

a) The vectors A%u;, A%uy,--+, A%u, are linearly independent in

N

A(k—2)
b) The vectors Auq, Aus, - - -, Au, are linearly independent in J\/A(k_l)
c) The vectors A?u;, A%ug,- -+, A%u,, Au;, Aus, -+, Au, are lin-

early independent in NA

d) The vectors

(k—1)

2 2 2
A%ug, A%ug, oy A%Upy, Auq, Aug, - ooy AUy, Ugy Uy s 00y Uy

are linearly independent in NAk Analogously, we can prove the follow-
ing generalisation:

Property 5:

Let k be any positive integer.

Uy, Uz, * + + , U, are vectors in NAk such that

i) uy QNA(k_l) and

i) u; & NA(k—l) + Llug, ugy -, ug—1))

—

a) The vectors A® Dy, ARy, ... A*=Dqy, form a linearly in-
dependent set in N,

b) The vectors A*=2u;, AF=Dy,, ..., A*®=2)qy, form a linearly in-
dependent set in N/ ,2» and in general,

c) In general the vectors A*—Dy;, ARy, ..., AF=Dy, form a

linearly independent set in NA(k_j) forj=1,2,.--,(k—1)

. T k . .

d) The vectors {{A(k_g)ug}e 1}, ) form a linearly independent set
—t J:

in NV,

e) For any j, (1 < j < k), the vectors {A(’“_j)ug} , form a linearly

,
. . e=
independent set in N/
A(k—3)
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