
Chapter 1

PROLOGUE

1.1 Introduction

The subject of LINEAR ALGEBRA has its origin in the study of sytems of
linear equations. Therefore, it is natural that we begin our course with a
discussion on linear systems of equations. We shall begin our discussion not
from the point of view of a rigorous treatment but restrict ourselves, for the
moment, only to motivate the basic and fundamental questions that arise
and that we will be discussing in this course. We shall begin our discussion
with a simple system of equations involving two equations in two unknowns.
Consider the simple system of equation

x+ 3y = 6 (1.1.1)

x− y = 2 (1.1.2)

It can be easily verified that x = 3, y = 1 is a solution of this sytem, and
moreover, it can be shown that this is the ONLY solution to this system. We
can also geometrically interpret this as the point of intersection of the two
lines represented by the above two equations, the solution, (x, y) = (3, 1),
being the coordinates of the point of intersection of these two lines. (See
Figure 1.1).
When we look at the system from a geometric point of view, we see that we
can, in general, look at two lines represented by the two equations

a1x+ a2y = c (1.1.3)

b1x+ b2y = d (1.1.4)
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Figure 1.1

We can then interpret the problem of finding a solution to the system as that
of finding the point of intersection of these two lines. However, this could
lead to several possibilities, namely,

1. The two lines intersect at exactly one point, or,

2. The two lines coincide with each other, or,

3. The two lines are parallel

This leads to the following possibilities regarding the solution of the corre-
sponding system.

1. In the first case when the two lines intersect at exactly one point, the
coordinates of this point give us a UNIQUE solution of the system

2. In the second case, every point on the (common) line is a point of
intersection and hence the coordinates of every point on the line give
us a solution of the system. Thus in this case we have an INFINITE
number of solutions of the system
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3. In the third case, when the two lines are parallel, they do not have any
point of intersection, and hence the system has NO solution

Thus, in general, a system of two linear equations in two unknowns may have
exactly one solution, or an infinite number of solutions, or may not have any
solution at all.
We would be, in general, interested in considering m equations in n un-
knowns, which is written in the form

a11x1 + a12x2 + · · · + a1jxj + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2jxj + · · · + a2nxn = b2
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
ai1x1 + ai2x2 + · · · + aijxj + · · · + ainxn = bi
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
am1x1 + am2x2 + · · · + amjxj + · · · + amnxn = bm


(1.1.5)

In the above system, x1, x2, · · · , xn are the n unknowns to be determined. In
the coefficients aij, the first index i refers to the equation number and the
second index j refers to the unknown whose coefficient is aij. Thus a34 refers
to the fact that it is the coefficient of the unknown x4 in the 3rd equation.
Note that the aij and bj are known and we have to determine the xj. We
write this in matrix notation as

Ax = b (1.1.6)

where A is the m × n matrix A = (aij)m×n, b is the m × 1 column vector
b = (bi)m×1 and x is the n× 1 column vector x = (xj)n×1.
Our main problem is the following:
Main Problem:
Given the matrix A find the solution(s) of the system for different
b.
Since we have already seen that we may have situations where the system
may not have any solution, the first fundamental question that arises is the
following:
First Question
What is the condition that b should satisfy in order that there
exists a solution to the system Ax = b ?
Any such condition(s) is called Consistency Condition, and we shall de-
note these by [C]. So, given a b the first question that we have to ask is the
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following:
Does b satisfy the condition(s) [C]?
Obviously there are two possible answers, namely “YES” and “NO”, and
each answer leads to several other natural questions. Let us first look at the
basic questions that arise when b satisfies the consistency condition, that is,
when the answer to the above question is “YES”. All the questions that arise
are described in Figure 1.2
Let us next look at the case when b does not satisfy the consistency condition
[C]. In this case we can only conclude that there is NO SOLUTION to the
system. What can we do in such a situation? In order to understand the
question let us first understand the following question:
What do we mean by the fact that the system has no solution?
The system does not have any solution
=⇒
Whatever x we choose and calculate Ax this is not going to be equal to b.
So if we take an x as a solution we should have got b, but we get only Ax
which is not equal to b. So taking x as a solution leads to an “Error”, namely
b − Ax. Note that the error, b − Ax, is an m × 1 column vector. What we
would like to do is to “minimize” this error. For this purpose we quantify
the error b− Ax, by the sum of the squares of its components, that is,

m∑
i=1

(bi − (Ax)i)
2

What we want to do is to minimize this error. Is it possible? What do we
mean by this? Can we find an x` such that the error corresponding to x`,
namely,

m∑
i=1

(bi − (Ax`)i)
2

is the smallest error, that is,

m∑
i=1

(bi − (Ax`)i)
2 ≤

m∑
i=1

(bi − (Ax)i)
2 for all x

We shall see later that this is possible and this leads us to the notion of
“Least Square Solution”.
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Does b satisfy the consistency conditions?

Yes No

Solution Exists

How many?

Exactly One Infinite

When? When?

Find THE solution

Find All Solutions

Criterion for Unique Representative xo?

Find THE xo

Figure 1.2
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Definition 1.1.1 If b does not satisfy the consistency criterion [C], then any
n× 1 vector x` such that

m∑
i=1

(bi − (Ax`)i)
2 ≤

m∑
i=1

(bi − (Ax)i)
2 for all x (1.1.7)

is called a Least Square Solution for the system.

We can show that we can always get a least square solution if b does not
satisfy the consistency criterion [C]. The basic questions in the case when b
does not satisfy the cosistency criterion [C] are described in Figure 1.3.
We should develop mathematical theory to answer these questions and find
techniques to find the solution

1.2 Simple Systems

What exactly do we mean by “easy” or “simple” systems? To understand
this let us rephrase the question as follows: Why is it “difficult” to solve a
general linear system? The main difficulty is the fact that each equation will
involve all or at least several of the unknowns. Consequently no equation on
its own is able to help us in solving for one of the unknowns. This means
that the variables are “coupled” in a general system. When we say we want
to solve the system, we actually mean that we want to get x1,x2 · · · , xn sep-
arately, that is we want to uncouple the system. It is the uncoupling process
that becomes difficult as more and more variables get coupled in each equa-
tion. So an easy or simple system is one in which such an uncoupling is easy.
Clearly a system in which, to start with, there is no coupling, is an easy
system since the uncoupling is already done. Each equation in such a system
involves exactly one unknown. Let us look at the simple situation where we
have n equations in n unknowns where the ith equation involves only the ith
unknown xi. Then the system is of the form

d1x1 = b1
d2x2 = b2
· · · · · · · · ·
dixi = bi
· · · · · · · · ·
dnxn = bn


(1.2.1)
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Does b satisfy the consistency conditions?

Yes No

Solution Exists

How many?

Exactly One Infinite

When? When?

Find THE solution

Find All Solutions

Criterion for Unique Representative xo?

Find THE xo

Only Least square solution

How many?

Exactly One, x` Infinite

When? When?

Find THE x`

Find All least square solutions

Criterion For Representative (x`)o?

Find THE (x`)o

Figure 1.3
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If we now use the ith equation to solve for the ith unknown xi, then we have
to divide by di which will be a problem if di = 0. So those equations of the
above type, in which one or more of the di happen to be zero will have some
problem. Without loss of generality let us assume that we have arranged the
system in such a way that the first ρ of the di are not zero and the remaining
are zero, that is

d1, d2, · · · , dρ 6= 0 (1.2.2)

dρ+1, dρ+2, · · · , dn = 0 (1.2.3)

Then from the first ρ equations we get

xi =
bi
di

for 1 ≤ i ≤ ρ (1.2.4)

For i = ρ+ 1 onwards the equations look like

0 = bi for ρ+ 1 ≤ i ≤ n (1.2.5)

Thus we see that the Consistency Conditions are

bi = 0 for ρ+ 1 ≤ i ≤ n (1.2.6)

When b satisfies these conditions we see that whatever values we choose for
xi, for ρ + 1 ≤ i ≤ n, the equations from the ρ + 1th equation are satisfied.
Thus we see that in this case we have the solution as

xi = bi
di

for 1 ≤ i ≤ ρ

xi = any arbitrary value, for ρ+ 1 ≤ i ≤ n

}
(1.2.7)

Thus even if one of the di is zero, that is if ρ < n, then one of the unknowns
can take arbitrary values and hence the system has an infinite number of
solutions. Hence we get the following result:
When b satisfies the consistency condition (1.2.6), the system has a solution.
Further,
i) If all the di are nonzero, (that is ρ = n), then the system has a unique
solution, and
ii) If ρ < n of the di are zero then the system has a solution if b satisfies the
consistency condition (1.2.6), and
iii) when b satisfies the consistency condition (1.2.6), the system has infinite
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number of solutions and we get all solutions from (1.2.7), by giving all possible
values for the xi for ρ+ 1 ≤ i ≤ n.
Suppose next that the system (1.2.1) is such that (1.2.2) and (1.2.3) hold
and the system is not consistent. This means that at least one of the bj for
ρ+1 ≤ j ≤ n must be nonzero. In this case we can look for only least square
solutions. How do the least square solutions look like? For any vector x we
have

n∑
i=1

(bi − (Ax)i)
2 =

ρ∑
i=1

(bi − dixi)2 +
n∑

i=ρ+1

b2i

The rhs above will be minimum when

bi − dixi = 0 for 1 ≤ i ≤ ρ

Whatever values of xj we choose for ρ + 1 ≤ j ≤ n, the error above is not
affected. Thus the vectors that give the least square error must be chosen
such that

xi = bi
di

for 1 ≤ i ≤ ρ

xi = any arbitrary value, for ρ+ 1 ≤ i ≤ n

}
(1.2.8)

Thus we can get all least square solutions by giving all possible values for
the xj for ρ+ 1 ≤ j ≤ n.
The system that we have discussed above is of the form

dixi = bi for 1 ≤ i ≤ n (1.2.9)

The matrix of the system is given by the diagonal matrix

A =



d1
d2

. . .

di
. . .

dn


We see that the matrix is a diagonal matrix. Hence we call such systems
as diagonal systems. The above discussion, therefore, tells us that diagonal
systems are easy to handle.
In addition to diagonal systems, we also have other types of systems which
are easy to handle. These are
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1. Lower Triangular Systems, in which the coefficient matrix A is a
lower triangular matrix, that is

A = L =



`11 0 0 · · · 0 0
`21 `22 0 · · · 0 0
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·

`(n−1)1 `(n−1)2 `(n−1)3 · · · `(n−1)(n−1) 0
`n1 `n2 `n3 · · · `n(n−1) `nn


Such systems can be analysed by forward substitution.

2. Upper Triangular Systems, in which the coefficient matrix A is an
upper triangular matrix, that is

A = U =



u11 u12 u13 · · · u1(n−1) u1n
0 u22 u23 · · · u2(n−1) u2n
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · u(n−1)(n−1) u(n−1)n
0 0 0 · · · 0 unn


Such systems can be analysed by backward substitution

We shall next see what we can do with general systems.

1.3 General Systems

Given any general system Ax = b of n equations in n unknowns, we now see
whether we can reduce the analysis to that of a diagonal system. To this end
we look for a change of variables which could lead us to this. Let us consider
a system

Ax = b (1.3.1)

where A is an n × n matrix, b is an n × 1 column vector and x is the
n× 1 column vector that is to be determined satisfying the equation (1.3.1).
Suppose we now introduce a change of variables,

y = Kx (1.3.2)
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Since we should be able to move from the new variable y to the old variable
x, and vice versa, we need to assume that our K should be an invertible n×n
matrix. Then we can write (1.3.2) as

x = Py where P = K−1 (1.3.3)

We shall similarly write

b = Pz where z = Kb (1.3.4)

Then the given system (1.3.1) can be written as

A(Py) = Pz

which can be rewritten as

Ty = z (1.3.5)

where

T = P−1AP (1.3.6)

If we can solve for y from (1.3.5) then we can get our x from (1.3.3) as
x = Py. So the question is whether we can find our transformation matrix
P such that it is easy to solve (1.3.5). From our discussion of the previous
section we know that we can solve (1.3.5) easily if the matrix T is a diagonal
matrix. Thus we have the following conclusion:
Suppose we can find P an invertible n× n matrix such that T = P−1AP is
a DIAGONAL MATRIX. Then this =⇒
We can solve for y easily from (1.3.5) (because it is a diagonal system). This
=⇒
We can solve for x by using (1.3.3). This =⇒
The original system (1.3.1) can be handled.
Thus if we can find such a P we could handle the given system. Hence a
fundamental question is the following:
Diagonalization Problem
Given an n× n matrix A, can we find an invertible n× n matrix P
such that P−1AP is a diagonal matrix?
The search for an answer to this question leads to some interesting canonical
forms of matrices. We shall see through some examples the hurdles that we
may face in getting the transformation P .
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1.4 Questions Arising From Diagonalizability

We first look at some simple examples.

Example 1.4.1 Consider the matrix A ∈ R2×2 given below:

A =

(
1 1
0 2

)
(1.4.1)

Then the matrix

P =

(
1 1
0 1

)
(1.4.2)

is in R2×2 and is inveretible. In fact

P−1 =

(
1 −1
0 1

)
(1.4.3)

Further we have

P−1AP =

(
1 0
0 2

)
(1.4.4)

a diagonal matrix in R2×2

Example 1.4.2 Consider the matrix A ∈ R2×2 given below:

A =

(
0 1
0 0

)
(1.4.5)

There is no invertible matrix P ∈ R2×2 such that P−1AP is diagonal matrix
in R2×2. For suppose there exists such a P , say

P =

(
p q
r s

)
(1.4.6)

Then we must have

P−1AP = D =

(
d1 0
0 d2

)
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This =⇒ AP = PD
=⇒

(
0 1
0 0

)(
p q
r s

)
=

(
p q
r s

)(
d1 0
0 d2

)
=⇒(

r s
0 0

)
=

(
d1p d2q
d1r d2s

)

Comparison of the entries on both sides leads to the conclusion that P is not
invertible, a contradiction since we assumed to start with that P is invertible.
Thus there is no P ∈ R2×2 invertible such that P−1AP is a diagonal matrix
in R2×2

Example 1.4.3 Consider the matrix A ∈ R2×2 given below:

A =

(
0 −1
1 0

)
(1.4.7)

Again we can show that there is no P ∈ R2×2 invertible such that P−1AP

is a diagonal matrix in D =

(
d1 0
0 d2

)
∈ R2×2. For suppose there exists a

P =

(
p q
r s

)
∈ R2×2 which is invertible and such that P−1AP is a diagional

matrix. This then gives

AP = PD

=⇒(
0 −1
1 0

)(
p q
r s

)
=

(
d1p d2q
d1r d2s

)
=⇒(

−r −s
p q

)
=

(
d1p d2q
d1r d2s

)
=⇒
−r = d1p

p = d1r

−s = d2q

q = d2s
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=⇒
(1 + d21)r = 0

(1 + d22)s = 0

=⇒
r, s = 0 since d1 and d2 are assumed to be real

=⇒

P is not invertible, a contradiction. Hence there is no P ∈ R2×2 such that
P−1AP is a diagonal matrix D ∈ R2×2.

Example 1.4.4 On the other hand consider the above matrix given in (1.4.7)
as a matrix in C2×2. Then the matrix

P =

(
1 1
i −i

)
(1.4.8)

is in C2×2, is invertible with

P−1 =


1
2

− i
2

1
2

i
2

 (1.4.9)

and

P−1AP =

(
i 0
0 −i

)
(1.4.10)

which is a diagonal matrix in C2×2

From the above examples it is clear that

1. not all matrices can be diagonalised and

2. we must be precise about the the field F in which we want the matrices
to be diagonalized.

We shall for most part of the course assume F to be either R or C.
We have the first fundamental question about diagonalizability as,
Question
What condition(s) should the matrix A satisfy in order that there
exists an invertible matrix P such that P−1AP is a diagonal matrix?
If we find this criterion, say [C], then then given any matrix A we ask whether
A satisfies [C]. The various questions that arise out of this analysis are de-
scribed in Figure 1.4
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Does A satisfy [C]?

YES NO

There exists P ∈ Fn×n
such that P is invertible
and P−1AP = D ∈ Fn×n

where D is a diagonal matrix

Find P and D

There is no P ∈ Fn×n
such that P−1AP is a diagonal matrix in Fn×n

What do we do? We compromise

Compromise on
diagonal form

Upper triangular form
Lower triangular form

Rational canonical form
Jordan canonical form

on the
transformation

Look for Q and P in Fn×n
such that Q−1AP is

diagonal matrix in Fn×n

Singular Value
Decomposition

(SVD)

Can be generalized to
rectangular matrices

Figure 1.4

1.5 Third Problem

We have discussed so far two important problems, namely,

1. Solving a system of equations, the basic questions regarding this being
summarized in Figure 1.3, and

2. Diagonalization of a matrix

We have also seen that these two problems are interrelated. We shall now
discuss a third problem which is also connected to these problems.
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Consider two n× 1 vectors,

x =


x1
x2
...
xn

 and y =


y1
y2
...
yn


where xj and yj are all real. We then define the “inner product” of two
such vectors, denoted by (x, y), as

(x, y)
def
= yTx

= x1y1 + x2y2 + · · ·+ xnyn

=
n∑
i=1

xiyi

Note that the inner product of two such real vectors is a real number. Let
us look at a simple example

Example 1.5.1 Consider the vectors

x =

 1
0
1

 and y =

 −1
0
2


Then we have

(x, y) = (1× (−1)) + (0× 0) + (1× 2)

= 1

We shall now look at another type of product of two vectors.
Consider two n× 1 vectors,

x =


x1
x2
...
xn

 and y =


y1
y2
...
yn


where xj and yj are real. We then define the “outer product” or also known
as “Tensor Product” of two such vectors, denoted by x⊗ y, as

x⊗ y def
= xyT (1.5.1)
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Since x is n× 1 and yT is 1× n we see that the tensor product of two n× 1
vectors is an n× n matrix. Clearly the (i, j) th entry of the tensor product
matrix x ⊗ y is given by xiyj. We have taken two vectors of the same size.
We could generalise this by taking x to be m× 1 vector and y to be an n× 1
vector. Then we see that the tensor product x ⊗ y = xyT is now an m × n
matrix. Note that in general the tensor product x⊗ y need not be equal to
the tensor product y ⊗ x.

Example 1.5.2 Consider the two vectors,

x =

 1
−1

2

 and y =

(
2
3

)

Then we have

x⊗ y = xyT

=

 1
−1

2

( 2 3
)

=

 2 3
2 3
4 6


which is a 3× 2 matrix since x is 3× 1 and yT is 1× 2. Similarly we see that

y ⊗ x =

(
2
1

)(
1 −1 2

)
=

(
2 −2 4
3 −3 6

)

which is a 2× 3 matrix

Note that every row of the tensor product x ⊗ y is a scalar multiple of the
vector yT . Thus x ⊗ y has a simple structure. Taking the tensor product
x⊗y, where x is m×1 and y is n×1, is a simple way of generating an m×n
matrix. We further observe for any scalar α ∈ R we have αx ⊗ y is also an
m× n matrix. We can generate more m× n matrices as follows: Instead of
taking one pair of vectors x and y and one scalar α , let us now take any
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positive interger k, and k pairs of vectors, say, u1, v1;u2, v2; · · · , uk, vk where
uj are all m × 1 and vj are all n × 1, and k nonzero scalars α1, α2, · · · , αk.
For each pair ui, vi and scalar αi we can form the tensor product ui⊗ vi and
get an m× n matrix αiui ⊗ vi. We can now add all these to get

k∑
i=1

αiui ⊗ vi

which is also an m × n matrix. By varying k and varying the pairs ui, vi
and the scalars αi, we can construct, this way, a large collection of m × n
matrices. We now ask the following question:
Question
Does the above construction exhaust all m× n matrices?
We shall see that the answer to this question is “YES”. This means that every
m×nmatrix can be expressed as the sum of a finite number of tensor products
as above. We would prefer to have the vectors u1, u2, · · · , uk as orthonormal
vectors in Rm and the vectors v1, v2, · · · , vk as orthoormal vectors in Rn and
the scalars α1, α2, · · · , αk as > 0. This then leads to the following questions:
Given an m× n matrix

1. What is the minimum value of k so that we can express A as the sum
of k tensor products, and

2. Once we find the k what is an efficient way of finding the orthonormal
vectors u1, u2, · · · , uk in Rm, the orthonormal vectors v1, v2, · · · , vk in
Rn and the scalars α1, α2, · · ·αn all > 0, to get the representation

A =
k∑
i=1

αiui ⊗ vi

One such decomposition of the matrix as a sum of a minimum number of
tensor products is the Singular Value Decomposition. We shall see that this
decomposition helps us to write down the pseudoinverse A† of the matrix A
and hence facilitates solving the system Ax = b.

1.6 Fourth Problem

We shall next look at another important problem which is closely connected
with all the three problems discussed above. In Figure 1.3 we have seen all
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the questions that arise in analysing a system of equations, Ax = b. We will
have the following possible situations:

1. If b satisfies the consistency condition then the following cases arise:

(a) There is a UNIQUE solution for the system. Since the solution
will depend on b we shall denote this unique solution vector by
x0(b)

(b) There are an infinite number of solutions, from which we want
to select a unique representative solution. In this case we shall
denote this unique representative solution by x0(b)

2. If b does not satisfy the consistency condition then we get only least
square solution and the following cases arise:

(a) There is a UNIQUE least square solution for the system. Since
the least square solution will depend on b we shall denote this
unique solution vector by x0(b)

(b) There are an infinite number of least square solutions, from which
we want to select a unique representative least square solution. In
this case we shall denote this unique representative least square
solution by x0(b)

Thus in each case we want our final answer to be a single vector x0(b) which
will depend on b. We can interpret this as follows:
We consider a linear system for which the inputs are all n × 1 vectors, the
transfer function is the m× n matrix A. Then for any input x the output is
Ax.

System

(Matrix A)

I/P x ∈ Fn×1 O/P b = Ax ∈ Fm×1

Figure 1.5

When we say that we want to solve the system Ax = b what we mean is that
we want a particular output b and we want to determine the input x that
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will produce this desired output b. Our final answer to this question is x0(b).
What do we mean by this?

1. Whenever there is only one possible input that gives this desired output
b, then our answer x0(b) will be precisely this input

2. Whenever there are infinite number of possible inputs that can give this
desired output b, then our answer x0(b) will be the unique representa-
tive among these that will produce the output b. (The representative
will be chosen based on some criterion)

3. Whenever there is no possible input that gives this desired output b,
then our answer x0(b) will be precisely that input that can give the
output which is “closest’ to the desired output b.

4. Whenever there are infinite number of possible inputs that can give this
output closest to the desired output b, then our answer x0(b) will be the
unique representative among these that will produce the output closest
to the desired output b. (The representative will be chosen based on
some criterion)

Thus starting from the given desired output b we want to construct x0(b).
We therefore want to construct another system for which the inputs are m×1
vectors, and whose system matrix is an n×m matrix A†, such that when we
input b into this system the output A† is precisely x0(b). Hence we are faced
with the following fundamental problem:
Given an m × n matrix A construct an n ×m matrix A† such that
A†b = x0(b) for every m× 1 vector b
We shall see that it is possible to construct such an A†. This matrix A† is
called the Pseudoinverse of the matrix A. It must be noted that we would
like the A† that we construct to be the actual inverse A−1 of the matrix
whenever A is an invertible square matrix. However, the pseudoinverse will
make sense even if A is a singular square matrix or even if A is a rectangular
matrix.
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System

(Matrix A)

I/P x0(b) ∈ Fn×1 O/P Ax0(b) ∈ Fm×1

System

(Matrix A†)
START

I/P b ∈ Fm×1O/P x0(b) = A†b ∈ Fn×1

(To be constructed)

Figure 1.6

(Error)2 = ‖Ax0(b)− b‖2

=
m∑
i=1

((Ax0(b))i − bi)2

is least square error

1.7 Summary

Summarising our discussion, we have highlighted four important problems,
namely,

1. Solution of the system Ax = b

2. Diagonalization of a matrix and almost diagonalising a matrix

3. Decomposing a matrix as a finite sum of tensor products

4. Finding the pseudo inverse of a matrix

Finding the answers to these four problems will be the driving force for
the course. It should be noted that the second, third and fourth problems
arose out of the questions that we raised in Problem 1 on linear systems
of equations. Thus all these problems are interrelated. In the analysis of
Problems 2,3 and 4, (and hence obviously of Problem 1 also), a decisive role
is played by the notions of eigenvalues and eigenvectors of a matrix.
In the context of Problem 3 of decomposing a matrix into the sum of a finite
number of tensor products, two important special cases are,

1. Square Symmetric real matrices (or complex Hermitian matrices), and
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2. square real or complex normal matrices

In these cases such a decomposition leads us to the “Spectral Decompo-
sition”.
The main goal of the course will be the following:

1. Develop the appropriate mathematical framework to analyse these prob-
lems

2. Find the answers to the various questions we have raised in these four
problems

3. Look for generalisation of these ideas

1.8 Normal equation

We shall now look at a system related to the given system (1.1.6). Premul-
tiplying both sides of the system (1.1.6) we get

ATAx = AT b (1.8.1)

We can write this as

Nx = y (1.8.2)

where

N = ATA (1.8.3)

y = AT b (1.8.4)

The system (1.8.2) is called the “Normal System” or just Normal Equation.
We shall see that it is directly connected with the solutions of the given
system (1.1.6) as follows:

• The coefficient matrix N of the Normal System is a square symmetric
matrix

• The Normal System (1.8.2) is consistent irrespective of whether the
given system (1.1.6) is consistent or not
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• Whenever the given system (1.1.6) is consistent, the set of solutions of
(1.1.6), is the same as the set of solutions of the Normal System (1.8.2)

• Whenever the given system (1.1.6) is not consistent, the set of least
square solutions of (1.1.6), is the same as the set of solutions of the
Normal System (1.8.2)

Example 1.8.1 Consider the system

Ax = b (1.8.5)

where

A =

 1 1 1 1
1 −1 1 −1
2 0 2 0

 (1.8.6)

We then have

ATA =


1 1 2
1 −1 0
1 1 2
1 −1 0


 1 1 1 1

1 −1 1 −1
2 0 2 0



=


6 0 6 0
0 2 0 2
6 0 6 0
0 2 0 2


Hence the Normal System is given by

Nx = y (1.8.7)

where

N =


6 0 6 0
0 2 0 2
6 0 6 0
0 2 0 2

 (1.8.8)

y = AT b
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=


1 1 2
1 −1 0
1 1 2
1 −1 0


 b1
b2
b3



=


b1 + b2 + 2b3
b1 − b2

b1 + b2 + 2b3
b1 − b2

 (1.8.9)

Clearly with this y the normal system (1.8.7) is consistent.
At first let us consider the vector

b =

 1
1
2

 (1.8.10)

Then the system (1.8.5) becomes

x1 + x2 + x3 + x4 = 1
x1 − x2 + x3 − x4 = 1
2x1 + 2x3 = 2

 (1.8.11)

The third equation is the sum of the first two equations. The system is
consistent. We have, from these,

x1 + x3 = 1
x2 + x4 = 0

}
(1.8.12)

Eliminating x3 and x4 we get

x3 = 1− x1
x4 = −x2

}
(1.8.13)

where x1 and x2 can be chosen arbitrarily. Hence the general solution of the
given system (1.8.5) with the rhs b as given in (1.8.10) can be written as

x =


0
0
1
0

+


α
β
−α
−β

 (1.8.14)
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where α and β can be chosen arbitrarily. Let us now look at the corresponding
Normal equation with this b. we have, from (1.8.9) and (1.8.10),

y = AT b =


6
0
6
0

 (1.8.15)

Hence the normal equation Nx = y beomes

6x1 + 6x3 = 6
2x2 + 2x4 = 0
6x1 + 6x3 = 6
2x2 + 2x4 = 0

 (1.8.16)

The third and fourth equations are the same as the first and second and
hence we can write this system as

x1 + x3 = 1
x2 + x4 = 0

}
(1.8.17)

which is the same as (1.8.12) that we obtained for the original system (1.8.5).
Hence the normal system has the same set of solutions as the original system.
Next let us consider the given system (1.8.5) with the vector b now as

b =

 1
1
0

 (1.8.18)

Let us first look at the Normal system. We have from (1.8.9),

y =


2
0
2
0

 (1.8.19)

Hence the Normal system becomes

6x1 + 6x3 = 2
2x2 + 2x4 = 0
6x1 + 6x3 = 2
2x2 + 2x4 = 0

 (1.8.20)

25



which is consistent. On the other hand the given system (1.8.5) with this b
is inconsistent and hence we can only find least square solutions.. We have
for any x the square error as

‖Ax− b‖2 = ((Ax)1 − b1)2 + ((Ax)2 − b2)2 + ((Ax)3 − b3)2

= (x1 + x2 + x3 + x4 − 1)2

+(x1 − x2 + x3 − x4 − 1)2

+(2x1 + 2x3)
2

Let us denote this error by F (x1, x2, x3, x4), that is

F (x1, x2, x3, x4) =


(x1 + x2 + x3 + x4 − 1)2

+(x1 − x2 + x3 − x4 − 1)2

+(2x1 + 2x3)
2

(1.8.21)

Our aim is to find x1, x2, x3 and x4 such that the above is minimum. Hence
from calculus we know that we have to choose these such that

∂F

∂xi
= 0 for 1 ≤ i ≤ 4 (1.8.22)

Hence we get, differentiating and simplifyng,

6x1 + 6x3 = 2
2x2 + 2x4 = 0
6x1 + 6x3 = 2
2x2 + 2x4 = 0


which is the same as the normal equation (1.8.20) we obtained above. Hence
the set of least square solutions for the given system is the same as the set
of solutions of the Normal system. From (1.8.20) we, therefore, get the least
square solutions as,

x =


0
0
1
3

0

+


α
β
−α
−β

 (1.8.23)

where α, β can be chosen arbitrarily.
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